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Support Dependent Fourier Transform
Norm Inequalities

J.J. BENEDETTO ) - C. KARANIKAS

RIASSUNTO - Data una vasta classe di pesi v > 0, ciascuno dei quali sod-
disfa una condizione naturale di concavitd, si dimostra, per LI}(R) = {f: |[f|lv =
f_co |£(8)]v(t)dt < oo} il seguente teorema: esiste una costante calcolabile c(e) tale
che [|Flleo < c(e)llf|lv per tutte le f € LL(R) la cui trasformata di Fourier ha sup-
porto [—e,e] (Teorema 3.5 ¢ Teorema {.1). In relazione a tale risultato é possibile
dimostrare che insiemi di Helson associati a gran parte delle algebre di Beurling sono
finiti (Teorema 5.2).

ABSTRACT - For a large class of weights v > 0, each salisfying a natural concavity
condition, the following theorem is proved for LL(IR) = {f: ||f]l. = f::o 1/ (D)v(t)dt <
o0} : there is a computable constant c(e) such that ||Flleo < c(€)||fllv for all f € LL(R)

whose Fourier transform F is supported by [—¢, ] (Theorem 3.5 and Theorem {.1). A
related result demonsirales that Helson sets associated with most Beurling algebras are

finite (Theorem 5.2).

KEY WORDS — Beurling algebras - Weighted Fourier transform inequalities -
Helson sets.
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1 - Introduction

We introduce a method which establishes support dependent weight-
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ed Fourier transform norm inequalities,
(1.1) IFlleo < e(e)llSf2llx s

where F is the Fourier transform of f, the support of F denoted by supp
F is contained in [—¢,¢], the weight v satisfies a concavity condition, and
¢ is an explicit computable function depending on v. Our setting is the
real line IR but we anticipate generalizing (1.1) to higher dimensions and
formulating it for other L?-norms.

For motivation we make the following two comments. First, inequal-
ities similar to (1.1) are used to apply the uncertainty principle in signal
processing problems; several of the papers in [4] highlight the contribu-
tions in this area of Chalk, Fuchs, and Landau, Pollak, and Slepian of

Bell Laboratories. Second, related inequalities,

(1.2) |Fully < cllfollp, g <00,

have recently been considered in the context of characterizing weights u
and v for which (1.2) is true, e.g., [2].

In Section 2 we establish notation and state some background ma-
terial for perspective. Section 3 contains our method, Theorem 3.5, and
is the major section of the paper. We apply Theorem 3.5 to Beurling
algebras L}(IR) in Section {. Finally, Section 5 is devoted to Helson sets
in Beurling algebras L}(IR). We prove that these v-Helson sets are finite
if o(t) > 1+ t°.

For eligible weights v, a corollary of our main result from Section
{ is the following: if F, is the Fourjer transform of f, € L!(R), and
supp F, C [—¢,¢] and F,(0) = 1, then li_l.'l(l)"f,v"l = oo, cf., Remark
5.3c. This fact is clear for certain specific classes {F.}, such as the de
la Vallée-Poussin kernel, but is not apparent for every such class {F.}.
For comparison, if »(t) = 1 in which case L!(R) = L'(IR), we recall that
{1 fellh} is bounded for the de la Vallée-Poussin kernel {F:}.

2 — Preliminaries
The Fourier transform F of f € L'(IR), where £1(1R) is the space
of Lebesgue integrable functions on R, is F(7) = J f(t)e=ivdt. F is



(3] Support Dependent Fourier Transform etc. 159

defined on R(= R); and we write f & F, f = F, and F¥ = f. I’(R)
and || ||, 1 € p £ oo, are the usual Lebesgue spaces and norms. We
shall have occasion to use the weak topology a(L’,L"), p > 1, where

1 1
-+ ==1
p Y
If v > 1 is measurable on IR then
L(R) = {f: Ifll, = Ifoll = [ 1F0lo(t)dt < o0} € L*(R)

is a Banach space with norm | ||,. A,(IR) is the set of Fourier transforms
of elements from L!(IR); we write L!(IR) = L!(IR) and A,(R) = A(R).

If v > 1is not only measurable, but satisfies the arithmetic condition,
v(s+t) < v(s)v(t), then LI(R) is a commutative Banach algebra under
convolution. These Banach algebras were introduced by Beurling in 1938;
and in this case the function v is a Beurling weight and L!(R) is a
Beurling algebra. The main property of Beurling algebras is contained in
the following theorem.

THEOREM 2.1. Let L(IR) be a Beurling algebra. Spectral analysis
holds for L}(IR) if and only if

7 log v(t)
(2.1) / o8 Tt < oo

In particular, L}(IR) is a regular Banach algebra if and only if (2.1) is
satisfied. This fact, as well as the sufficient conditions for spectral analysis
were proved by Beurling. Domar [3] provided the necessary conditions for
Theorem 2.1. Once conditions for regularity are established, it is natural
to deal with inequalities such as (1.1) for regular Beurling algebras.

REMARK 2.2 The inequality (1.2) with p > 1 depends on the local
behavior of v, and techniques are not yet available to compute explicit
constants ¢. On the other hand, if p = 1 (and ¢ > 1) the global behavior
of the weights characterizes (1.2) and the constants are computable just
as they are in (1.1). In fact, we've observed the following for positive
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measurable weights u and v for the case p =1 and ¢ > 1: (1.2) is valid if
and only u € L(IR) and 1/v € L*(IR), in which case the best constant is
¢ = |J|luf,)|1/v|loo- In the limiting case, ¢ = oo, this result yields the trivial
estimate, | Fl|eo < || fv]]:, for eligible weights v and supp F C [—¢,¢]; and,
hence, it is a much weaker inequality than (1.1).

3 — The method

Concave functions v have the property that v(t)/t is strictly decreas-
ing, and differentiable concave functions are characterized by the decrease
of v(1). We consider the following stronger version of concavity.

DEFINITION 3.1. An even, positive function v on IR is a-concave
if, as a function defined on (0,00), it satisfies the Jollowing conditions:
i. v is continuously differentiable,
ii. v(t)/t® is decreasing for some a € (0,1),
iii. v’ is locally integrable,
iv. v’ decreases lo 0.

EXAMPLE 3.2. The following Beurling weights are a-concave:
i. v(t) = 1+, a € [0,1), whose Fourier transform V is the kernel of
the classical potential U#(7y) = V # () where p is a measure;

ii. v(t) = 1+log(l+ [t]).

LEMMA 3.3. Let v be an a-concave function and define the integral,

o)
v R
V720, Cx(n) = [Z sinyd,
0

for each K € [0,00). Set C(7) = Cw(7)-
a. C(7) is a positive, continuously differentiable, and locally integrable
function on {0,00).

b. There is p > 1 such that lim Cx = C in the weak topology o(LP, L)
on (0,1).
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t)smt

c. Cly) = ?0(7 SIRE 4t and

V7€ (0,00), C'n =5

t
v (—) sintdt < 0.
Y v

ProOOF. i. We define

%y (ikr
a,(7)=/%smttit>0 k>0and v>0.
0

Note that ai(7) > ar41(y) by the strict decrease of v(t)/t on SCO ,00).
t+kn
Further, if ¥ > 0 and k& > 1, then the fact that v <
y () () <

v(:’;r) / (-;E) for t € [0, 7] and the hypothesis that v(t)/t decreases to 0, as
t — o0, allow us to use the dominated convergence theorem to observe
that klixg var(y) = 0, and, hence, that kll.To ax(y) = 0 for each v > 0.
Combining these facts we obtain the convergence of the alternating series,

5.;(—1)"%(7) > ap(y) — ay(7) > 0, for each v > 0.

o0
Also, we observe that Y_(~1)*a,(y) converges uniformly on compacta
0
contained in (0,00) because of the estimate
2 nr
<a,,(7)<; E_Z) -0, n—00,
v

Z( 1)*ax(y)

where once again we use the decrease of v(t)/t.
ii. Ck is inifinitely differentiable on (0,00).
Also, from part { we see that C(7) exists and equals ozoj(—l)a,,('y). In
(1]
particular, C(y) is a continuous positive function on (0,00).

iii. We now show C € L'(0,1).
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To this end we first observe that Cx > 0 on (0,00). In fact, for each
v € (0,00), we have

N 1 Ky
Cx(7) =Y (an(7) — azers(Y) + = w(u/7) sin udu

k=0 72'(N+1) u/7

where Ky < 2x(N +2); and the right hand side is positive by the decrease
of v(t)/t and the fact that az(7) > @2e41(7) (part i).
Since Ck > 0 we invoke Fatou’s lemma and have

(31) 0< [ctir<tim [ cxnar,

where K ranges over an infinite sequence tending to infinity. To see that
the right hand side is finite we note that

f T v(t)(1 — cost)
(3.2) / Cx(7)d7 = / W acm,

where M is independent of K. This boundedness is a consequence of the

L y(t)(1 — cost
a-concavity; in fact, v(2)(1 — cost)/t? > 0, bf—ip———)dt < 00, and
K o0
/ v(t)(1 — cos t)dt < / v(t)(1 — cost) dt < oo.
12 - tag2—a
1 1

(3.1) and (3.2) yield the desired integrability.
iv. Part b follows from the classical real variable theorem that

(3.3) sup ICkllp < o0

and limCx = C a.e. on (0,1) imply o(L?, L*')-convergence on (0,1) when
p € (1,00). We already have the pointwise convergence, and so it remains
to verify (3.3).
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We begin proving (3.3) by choosing a € (0,1) for which v(t)/t* is
decreasing on (0,00), and then taking p > 1 for which pa € (0,1). Be-
cause of the monotonicity of v(t)/t we can employ the second mean value

theorem for integrals to compute

1
ol <2 1 [ Dt

1 Exc,y . K
+2"1/|v(1) / sm'yth_ v(K) sm'ytdtlpd
0 1

tl—a Ke tl-a

EK,'y
9p-1 (lv()d)”
< / t)dt
p+1\J

1 K 7. S
=1 v(1) / sin ¢ v(K) sinu, |p
+2 _/I 70 ul—adu+ (K7)a ’ ul-adul d77

MK,y

where we have used the convexity of ¢ for p > 1 to effect the first in-

1""]dul are uniformly bounded

equality. The “partial sums”
by N and so we obtain

1 4
? 2°-1 27-Y No(1))P
[orl v 255 [ 0w + 25

Thus, (3.3) is valid and the proof of part b is complete.

v. Define n

Ca(r) =Y (-1 'ar(7), 7>0

and let T C (0,00) be a closed interval.
We first observe that

x
(3.4) a2(7)=—7—12/v'(t+kx) sintdt, yelI.
0
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To check this, we recall that a;(7) exists an I, and note that the derivative
of its integrand with respect to 7 is not only continuous for each ¢ € (0, 7)
but is bounded by (1/€2)v/(1/£) which is integrable on (0,%) (£ is the left
hand end point of I).

Because of (3.4) and the decrease of v’ we have the estimates, |a,,(7)| <
|ai(7)| and

1) = Coua )| = | (-1 )] € |eta()] <

Sl-/v' (Tl) sintdt = -g,‘;v' (ﬂ) ;
7 g gl L

consequently, the decrease of v’ to 0 at co yields the uniform conver-
gence of {C.} on I. Combining this fact with the already demonstrated
(uniform) convergence of {C,,} on I we conclude that C is continuously
differentiable on (0,00) (thus completing part a) and that part ¢ holds.

REMARK 3.4. Because of the elementary claims in the statement of
Lemma 3.3, we’d like to point out that their verifications are surprisingly
but necessarily arduous.

a. We know that C, Cx € L'(0,1),C,Ck 2 0,1imCx = C pointwise
1

on (0,1), and lim [ Cx exists. On the other hand, the functions C' and
0

1
Cx do not satisfy the condition, lim [|Cx — C| = 0. To see this, we first
0

observe that pointwise convergence yields convergence in measure since
we’re on a finite measure space, and so the norm convergence is equivalent
to uniform absolute continuity of {Cx}. A straightforward calculation,
even for the trivial weight v(t) = 1, shows that this Vitali condition fails.

b. We showed that C(7) is continuously differentiable on (0,00) and
that the operations of differentiation and integration can be interchanged
on the integrand of C (Lemma 3.3c). As such it should be noted that
even though

To(t) . T [t\sint
C(r)= /—(t—)sm'ytdt = /v (;) —t_dt’
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we do not have
C'(y)= ./d (Tsm'yt) dt;

in fact, this last integral not only does not converge uniformly on com-
pacta in (0,00), it does not converge anywhere on (0,00).

c. We must use the fundamental theorem of calculus in Theorem 3.5,
and for this purpose we only require the absolute continuity of C not the
continuity of its derivative. The integrability of ¥ on (0, 00) is sufficient
for this purpose, but is too strong a condition for the examples we have
in mind, e.g., Example 3.2. Thus, we use local integrability to deal with
a neighborhood of the origin (we don’t have continuity of v’ on [0,7]) and
the fact that C’(y) is continuous elsewhere.

THEOREM 3.5. Let v be an a-concave function; and IetE be an
even twice continuously differentiable, non-negative function on IR which
satisfies the conditions F(0) = ||Fl|jc and supp F C [—¢,e]. Then we
have F € A(R), f « F, and

@ I,

where C was defined in Lemma 3.3. ij v( ) ———dt < oo then f € L,(RR).

PRrooOF. i. Since F is twice continuously differentiable and has com-
pact support we have F € A(IR). A similar computation, for example,

/ v(t)lF"(t)Idt:;rl— / "—t(j—)l / F®(y) cos ytdn]dt,
0

lsr21 11|21

v(1)

1+t,dt<oo

allows us to conclude that f € L}(R)if [
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ii. Using Parseval’s theorem we make the estimate

Iz [ woueaz] [ s

R <IISK k<K
=|-21’-r- / iF'(—v) / I(tl)(sgnt)e'“"dtd'yl
- J<insk
_| / F'(y ) sm'ytdtd7|

where K > 1. Consequently, we've established the inequality,

36 VE>1,3|] 2 / F(%) / s|n7tdtd7|

Since

1/K
/ Py ) 20 gin ytdtdy| < / WPy / w(t)dt = ex,r
we can replace (3.6) by

(3.7) VK>1 —“f" |/ '(7)/ ()sm'ytdtd'yl-exp,

where '}im exr = 0. Applying Lemma 3.3b to (3.7) we obtain the
—~00
inequality,

(38) s 2| / F’('r) 2 in ytadn|.
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ili. We now choose some necessary constants and parameters. First note
that

(3.9) Vv€(0,1],0 < vC(7) < a0(1).

Since C(y) > 0 and C € L'(0,1) (Lemma 3.3a) we know that
}C(A)dA is increasing on [0,1). We are given £ > 0 and we take v € (0,1].
)

By the continuity of F’ and the hypothesis that F¥(0) = 0 we can choose
n = n(e,v) € (0,min(e, 1)) such that

(3.10) sup |F'(7)| £
veloul 2 [ C(A)dA
and

Using (3.10) we make the estimate,
| / FnCd| < 5,
and, thus, we obtain
(3.12) 2 2| / F(C(d| -3

from (3.8), where v > 0 is arbitrary and 7 depends on ¢ and v.
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iv. Formally, we compute

| / F(7)C(1)dv| =| - Fm)C(n) - / F(v) 7’% (s) I8 Y fudy|

u
T-lF(n)C(n) - j F‘sz) jv’ (%) sin udud-yl
(3.13) >F(n)C(n) - | / F S) Zv' (s) sin udud|

>F(n)C(n) - “F“w ] ‘—yl; 70’ (s) sin ududy

=Fme + ||, [ 3o

n

=c@|F],, -t (Jr],, - Fem) -

To justify (3.13) we first note that [ v/ (E) sin udu exists and is non-
0

negative since v decreases to 0 on (0,00) and because the integral is an
alternating series. The second inequality of (3.13) follows.

Next, Lemma 3.3b yields the first and penultimate equalities in (3.13).
The remaining inequality and equalities in (3.13) are clear.

v. To complete the proof we observe that

et (|F],, - F) =l (|F], - Fn) |
(3.14)

by (3.9) and (3.11); and, hence, by combining (3.12), (3.13), and (3.14) we
obtain (r/2)| filv > C(e)lIFlleo — ¥ which yields (3.5) since v is arbitrary.
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EXAMPLE 3.6a. By the definition of C(€), we can replace (3.5) by

"F" = 2(ao(e) - al(e))|
where a,(€) = f Msm tdt.

b. I () = 1+]t|", o € (0,1), then

smt 1 T(a)
Cle)=7+ —/tl_a * ()

4 - Fourier transform norm inequalities for Beurling algebras

We emphasize that the constant in the following result is support
dependent.

THEOREM 4.1. Lel v be an a-concave Beurling weight. For each
f € LI(IR), whose Fourier transform F is supported by [—¢,€], we have

1/4
(4.0 IFl. < (zas) .
where C was defined in Lemma 3.3.

Proor. i. Suppose F is an even, twice continuously differentiable
non-negative function on IR which satisfies the condition, supp F C
[~€,€). Let ||Fllo = F(v), v € [0,¢), and define G(A) = F(A—7)F(=A~-
7). Clearly, we have ||G|l, = G(0) = ||F}|2, and supp G C [-2¢,2¢]. G
satisfies the conditions of Theorem 3.5, and so

1. = Iel.. <

where § = G and where the second inequality follows since v is an (even)
Beurling weight. Consequently, we’ve shown the inequality

1/2
(42) 7. < (20(25)) 41,
for such f & F.
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ii. Next, suppose F is twice continuously differentiable on IR and that
supp F C [~¢,€). Define the functions G(A) = F(A\)F(X) and H()) =
G(A) +G(-X).

FeA (IR) since f € L}(R) and v is even. Thus, G > 0 is an
element of A (IR.) by the submultiplicativity of v. Further, G is twice
continuously differentiable and supp G C [~¢,¢]. Finally, [|G]| = || Fl|%
since |F(7)[* = Fi(7)* + F2(y)? = G(7) where F = Fy +iF; and || F|le =
|F (7.

By definition, H i is an even, twice continuously differentiable, non-
negative function on R which satisfies the condition, supp H C [—e¢,€].
We have [[H||o 2 ||Gllo = ||F||2, because G > 0; and we apply (4 2) to
H obtaining the inequality,

x 1/2
I <bml. < (o)

< (o) o], < (%)"’ I

where § = G and A = H and where we've used the evenness and submul-
tiplicativity of v to obtain the last two inequalities.

]
v

iii. For the general case, take f € L)(IR) where supp F C [—¢,¢€].
Let p, be a non-negative, even, twice continuously differentiable
function which satisfies the conditions, 1/2x [ p,(A)dA = 1 and supp

pq C [-m 7]
Set G, = F*p, so that G, is twice continuously differentiable and

supp G, C [—(c + n),e + ). Smce lpy(t)] < 1 we have llgnlle < Niflle
where §, = G,; in partxcula.r, gn € L‘(lR) We can apply (4.3) to G, and

we obtain
2 1/2
wo o, (C(2(e+n))) J=I. (0(2(51 n))) |

For each v > 0, choose 5, > 0 such that |||G,,[|°° - ||F||°°| < v for
n € (0,1,)- Thus, (4.4) yields the inequality,

17l < (coz5)

2

+V,
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from which we deduce (4.1) by the continuity of C.

5 — Helson sets in Beurling algebras

DEFINITION 5.1. Let E C R be compact, let L:(R) be a regular
Beurling algebra, let A,(E) be the restriction algebra to E- of elements
from A,(R), and let C(E) be the algebra of continuous functions on E.
E is a v-Helson set if A, (E) = C(E).

If v(t) = 1 then v-Helson sets are the classical Helson sets used to
study the structure, including the arithmetic structure, of group algebras,
e.g. [1). Clearly, v-Helson sets are Helson sets, and the following result
describes their trivial nature for most Beurling weights.

THEOREM 5.2. Let E C R be compact, let Li(IR) be a regular
Beurling algebra, and suppose that v(t) > w(t) = 1+ [t|* on R for some
a € (0,1). If E is a v-Helson set then E is finite.

PROOF. i. Since 4,(RR) C A,(R), it is sufficient to prove that E is
finite when E is a w-Helson set. We denote A,(IR) by A,(IR) and A,(E)
by A.(E).

ii. Define the quantity,

|7 = sup |F(v +ma— Fl

Aa(ﬁ) is the space of continuous functions F on IR for which HF]la < oo.
A,(E) is the space of restrictions of A,(IR) to E.

iii. In this subsection we’ll verify the classical fact,
(5.1) Ap(R) C A(R), B2a;
and, consequently, by the compactness of E, we obtain

(5.2) Ao(E) € Au(E).
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As a preliminary calculation, note that |e™ —1|?/|u|? < 2, u # 0; and
so, for any K > 0, we find that

e~ 1] _ {\/ilxl““ltl SVRKlY, i < K
[Al* =\ o7k, it N2 K.

Setting these two bounds equal implies K = v/2/|t|. Consequently, we
have |e"* — 1|/[A|* < 2(1-2/2)|g|e,

Using this calculation and taking f = F € As(IR) we make the
estimate,

|7]. < §l;g_£ lf(t)ll'(%;ild‘

< 20-12 7 AL+ o)t < 292 1]

and, therefore, (5.1) and (5.2) are obtained.

iv. It is clear that A,(E) C C(E); and this inclusion, combined with
(5.2) and the hypothesis that E is v-Helson, imply that A,(E) = C(E).
It is easy to see that this equality forces E to be a finite set.

REMARK 5.3. a. Our original argument for Theorem 5.2, which
we give in Remark 5.3c, was intimately related to Theorem 4.1. This
argument did not involve A, and was valid for Beurling algebras larger
than L} (R), but not for L*(IR).

b. To outline the argument alluded to in Remark 5.3a we first state
the following adaptation of a technique formulated and implemented by
Varopoulos and Drury, e.g., [1]. Let E be a v-helson set, with Helson
constant K, and a v-spectral synthesis set; E satisfies the condition that
for each closed disjoint pair E,, E; C E, there exists f = F with the
properties that F' = 1 on a neighborhood of Ey, F = 0 on a neighborhood

of Ez, and "f",, S K.

c. It is easy to see that w-Helson sets are totally disconnected and
that closed countable subsets of w-Helson sets are w-Helson. Also, using
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the fact that points are w-strong Ditkin sets, we can check by conventional
methods that closed countable sets are sets of w-spectral synthesis. Thus,
given an infinite w-Helson and w-spectral synthesis set, we can choose
a countably infinite w-Helson and w-spectral synthesis subset E. We
see that the condition from the result in Remark 5.3b fails because of
Theorem 4.1; and so, since the w-spectral synthesis of countable sets is a
fact, we are forced to conclude that w-Helson sets are finite.

This argument is incomplete because the technique stated in Remark
5.3b does not necessarily allow for separating functions F' supported as
they are in Theorem 4.1.
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