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RIASSUNTO - 5i introducono i concetti di misura di precompaltezza convessa ¢ di
Sfunzione convessamente condensante. Si otlengono teoremi di punto fisso e di migliore
approssimazione in spazi vettoriali topologici non necessariomente localmente conveassi.

ABSTRACT - The concepls of conver precompaciness measure and of convedly
condensing funclion gre introduced. Therefore fized point theorems and best appproz-
imation theorems are obtained in topological veclor spaces which are not necessarily
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1 — Introduction

One of the main tools in fixed point theory is the use of noncompact-
ness measures, since pionereeng work of DarBo ([4]). We reccommend
(1] and [3] for more informations and further references to the literature.
The above tools are useful with many difficulties when the framework is a

(‘);\;Otk supporied by research funde of Ministero Pubblica Istruzione - Italia (60% and
40%).
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not necessarily locally convex topological vector space (see [7], {8]). This
type of problems is of interest to us in this paper.

In what follows E will denote a real Hausdorfl topological vector
space.
In (11} IpzIk gave the following definition:

DEFINITION 1.1, (cf. Definition 2.2 of [11]) A set B C E is convezly
totally bounded (e.t.b. for short), if, for every neighbourhood V of 0 € E,
there erist a finite subset {z;,i € I} C B and a finite family of conver sets
{Ci,i€ I} such that C; C V for eachi€ I and B C Hezi + Ciyi € 1).

Using the Definition 1.1, he proved:

TrREOREM 1.2. (cf. Theorem 2.4 of [11]). Let B be a conver subset
of E. Assume that K C B is a compact sel and f: B — K a continuous

Junction. If f(B) i3 a convezly lolally bounded set, then f has a fized
point in K.

The above theorem is closely related with the following, more than a
half of a century existing:
ScHAUDER'S CONJECTURE: Every continuous function from a non-

empty compact, convex set in a topological vector space into itsell has a
fixed point.

The relation between Theorem 1.2 and the Schauder's Conjecture is
given by.

ProaLEM 1.3. (cf. Problem 4.7 of [12]). Is every compact, convex
set in a real Hausdorfl topological vector space c.t.b.?

In the same order if ideas introduced by Sapovskn {{14], [15]), Him-
MELBERG, PORTER and VAN VLIECK ([9]) defined a very general mea-
sure of precompactness in the context of locally convex topological vector
space. Subsequently they gave a definition of condensing multifunctions,
for which the following theorem holds.

TreEoREM 1.4. {cf. Theorem 1 of [8]). Let B be a nonempty
complete, convez subset of a Hausdorf{ locally conver topological vector
space E, and let f: B—oB be a condensing mullifunction with convez
values, closed graph and bounded range. Then [ has a fized point,
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In Paragraph 2 we introduce two measures of convex precompactness,
related with Defirition 1,1, Further, to study them and to make a com-
parison with the results in [9] easier, we introduce some other measures
of precompactness, similar to that of [9).

In Paragraph 3 we define and develop the concept of convexly con-
densing multifunction. Therefore we obtain our main fixed point theo-
rems for convexly condensing multifunctions. To this purpose, we are
compelled to introduce a control on the convex precompactness measture
for the convex hull of a set, because we work in the context of not neces-
sarily locally convex spaces.

In Paragraph 4, using the same tools, we prove a Fan’s best approxi-
mation theorem for convexly condensing multifunctions. Our result is in
the same order of ideas of the following theorem.

Let E be a Iausdorff locally convex topological vector space, equip-
ped with a continuous seminorm p.

THEOREM 1.5. (ef. Theorem 1 of [16]). Let B be an approzimatively
p-compact, conver subset of E end f: B—oE be a continuous multifune-
tion with closed and conver values. If f(B) = U{f(z),z € B} is rela-
tively compact then there ezists an z € B with d (z, f(z)) = d,(f(z), B).
(do(A,B) = inf{p(z — y),z € A and y € B).

In our theorem we remove the compactness condition on the range
of f. Further we shall work in a space E which is not necessarily locally
convex and equipped with 2 continuous seminorm p. Some examples of
such type of spaces can be found in [2].

Finally a few words about terminology, most of which is standard.

A multifunction f: X -—eY between two topological spaces X and
Y is a function which assigns to each point * € X a nonempty subset
f(z) of ¥. The graph of f is the set {(z,y) € X x Y.y € f(z)}. [ is
uppersemicontinuous (u.s.c.) if for every closed subset C of Y f~YC)} =
{z € X, f(z) N C # @} is closed. f is lowersemicontinuous (l.s.c.) if for
every open subset C of Y, f~'(C) is open. f is continuous if it is both
u.s.c. and ls.c.

If f is compact valued (i.e. for each z € X, f(2) is compact) and
Y is compact and regular, then f iz u.s.c. ifl the graph of f is closed
in XxY. X =Y, a fixed point for f is a point z € X such that



178 E. DE PASCALE - G. TROMBETTA [4]

z € [(x). A subset B of E is precompact (or totally bounded) if for
every neighbourhood V of 0 € E there exists a finite set F such that
BcV+F,whereV+F={c+yx€Vandye F}.

2 - Convex Precompactness

For a subset 4 of E and a neighbourhood V of the origin, we consider
the following property (P): “there exist a finite family of closed convex
sets {C;,ié € I'} and a finite subset of E{z;,i € I} such that C; C V for
each i € J and A C U{z; + C;,i € I}, In the remainder of the paper B
will denote a basis of neighbourhoods of 0 € E. For a subset A of £ we
give the following:

DEFIRITION 2.1,
By(A) = {V € B, Property P holds for V}.
Ry(A) ={V € B, for each W € B Properiy P holds for V + W},

We denote indifferently with R(A) either R;(A) or Ry(A). The above
sets R(A) measure the lack of convex precompactness of A.

REMARK 2.2. Property P is slightly different from that of Definition
1.1.

First of all we observe that there is no loss of generality in Definition
1.1 if the sets C; are assumed to be closed.

Further the assumption “z; € A” is related with the usual possibility
to work with internal (z; € A) or external (z; do not necessarily belong
to A) measure for A.

For the sake of simplicity we confine ourselves to the case of external
measures.

We collect some properties of R in the next

ProrosiTioNn 2.3.
(a) Ri(A) C Ro(A).
{b) A C B implies R{(B) C R(A).
(c) A is c.t.b. iff R(A) = B.
{d) R(AU F) = R(A) for every F C E finite.
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(e) R(A) = R(A), where A denotes the closure of A.

It will be clear from 2.5(c), 2.6 and 2.7(a) that even in the context
of locally convex spaces, in general R,(A) € R2(A).

To make a comparison with the results of [9] easier, we introduce the
following other measures of precompactness. The second one is just that
introduced in (9).

DeriviTiON 2.4. Qi(A) = {V € B, “there ezists a finite set F such
that ACV + F7}.
Qa(A) = {V € B, “there erists a precompact set S such that A C V+57}.
Qa(A) = {V € B, “for every W € B there ezists a finite set F' such that
ACV 4+ W+ F, and the sets F are all contained in a precompact set S,
not depending on W "}.
QuA)={V €B, Yorevery We B, V+W € Q,{A)"}.

We denate by Q the generic {;.

ProrosiTION 2.5.
{a) Q(A4) = B iff A is precompacl.
(b) A C B implies Q(B) C Q(A).
(¢) Q:{4) C Qx(A) C Qa(A) C Qu(A).
(d) Ri(A4) C Qi(A), Ro(4) C Qu(A).
{(e) If the sets belonging to B are closed Q2(A) = Q3(A).

PRrooF. The properties listed from (a) to (d) are obvious.

We prove (e): if V € @3(A) then there exists § precompact such that
ACV 4+ W45 for every W € B, Consequently ACN{V +W+ 5, We
B} =V F+5=V+SandsoV € Qi4).

REMARK 2.6. We think that the inclusions listed in Proposition
2.5(c} are in general strict. We give 2 counterexample in the case of @,
and Qy. Let E =1y, {e,,n € N} be the canonical base of i3, B = {B,,r >
ﬂ} where BR = {-’E € fz,”ﬂ:"g S T}. IMA = BI + [0, l]E: = {I+ )«q,z € B;
and A € (0,11}, we have B, € Qi(A) \ Q:1(A). Since A = B, + [0, 1]e,
and [0,1])e, is precompact, B, € Q:{A). Suppose that A C B, + F with
F = {z!,...,2’}. Fora fixed k ¢ IN and for every n > 2, there exist
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z(n) € B, and ') € F such that ¢, + ¢, /k = z(n) + 2", We consider
in the last equality the first and n-th component: 1/k = z,(n) + z}™,
1= z,(n) + 2\, The inequality 1 > 2,(n)? + z,(n)? = (1/k — zi(™)2 4
(1 = zi? and the lim £X") = 0 (because F is finite) imply that z3™ =
1/k eventually. Since 2" ¢ {z},.-.,2}} and k is arbitrary, we have a
contradiction,

ProrosiTioN 2.7. If E is a locally convez space and if B is com-
posed of convex neighbourhoods we have:
(2) Ri(A4) = Qi(A4), Ro(A) = Qu(4)
(b} Q(co A) = Q(A), where co A denoles the convez hull of A,
(c) Theorem 1.4 holds not only for the measure Q2, but also for the
others ;.

ReMARK 2.8. We do not know if the equality in the Proposition 2.7
(a) holds in not locally convex spaces. This is a very difficult question.
In fact a positive answer, even in the limit case of @,(A4) = Q4(A) = B,
implies a positive solution to Shauder’s conjecture.

3 - Fixed Points

It is well known that in the fixed point theory in locally convex spaces
the relation Q{co A) = Q(A) (see Proposition 2.7(b)) is of great impor-
tance. But we cannot prove, in general, that the inclusion R{co A) ¢
R(A) is an equality. To bypass the difficulties arising from this fact we
introduce a control for R(co A) in a way similar to that of (8] and [17].

DEerINITION 3.1. Let B be a subset of the space E. A mullifunc-
tion f: B——oF is convezly condensing (with respect io R} if there exists
@: B—— B, such that

(C) P(R(Z)) C R(coZ) for every Z C T f(B)

and one of the following implications holds for every bounded subset Z of
B

. (a) P(R(S(Z))) C R(Z) = [(Z) e.Lb.
(b) e(R(f(Z)) C R(Z) = Z c.tb.
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Roughly speaking, the sense of the above definition is that convexly
condensing multifunctions take bounded sets not c.t.b, to sets which are
more nearly c.t.b.

REMARK 3.2. If Eis locally convex, B is composed of closed convex
sets, R = R,, and ¢ is the identity of B, then Definition 3.1 reduces to
that of [9].

REMARK 3.3. The maultifunctions for which f(B) is c.t.b. verify
Definition 3.1 (a), but in general do not verify 3.1 (b). The conditions
(a) e (b) in Definition 3.1 are related by the following conjecture: “f
u.s.c. and Z c.t.b. implies f(Z) c.t.b.”.

Moreover conditions (a} and (b) are particular cases of the more
general condition: ¢{R(f(Z))) C R(Z) and f(Z) C Z implies f(Z) c.t.b.

But the last condition requires a preliminary knowledge of the subsets
which are invariant for f and it is not useful to work with in the proofs
(see for example Lemma 3.6 in what follows).

ProrosiTioN 3.4. Let B be a nonemply convez subset of E and
f: B—oB a converly condensing multifunction, such that GSf(B) C B
is bounded. Then for every u € f(B) there exists a subsel Lo of B, such
that Ly = @{f(Lo) U {x}} and f(Lo) is c.t.b.

ProoF. Let £ = {L Ceof(B)/L =L, u€ L, f(L} C L}. Since
T f(B) € L, L is not empty. Let Ly = N{L,L € £} and L, = &{f(Lo)V
{u}}. It is easy to see that L; € £ and so Ly = L, = T{f(Lo)V
{u}}. If Property (a) of Definition 3.1 holds for f we have R(L,) =
R(co{f(Lo) U {u}) 2 ¢(R(f(Ly))). Since Tof(B) is bounded, f(Lo) is
c.t.b.. Analogously, if Property (b) of Definition 3.1 holds, we have L,
c.t.b.. But f(Lo) C Lo implies f(Lo) c.t.b..

In the next theorem we shall use a2 multivalued version of Theorem
1.2 by Idzik. Such versione was obtained by IDzix himself in [12].

He worked in the more general context of multifunctions f defined
on almost convex sets (for the definition see {10}, [12])

TueoreM 3.5. Let B be a nonemply conver subset of E and
f: B—oDB be a convezly condensing mullifunclion with convez values.
If [ has closed graph, @ f(B)} C B is bounded and complele, then f has
a fized point.
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Proor. For a fixed u € f(B), let Ly be the set whose existence
is guaranteed by Proposition 3.4. Let g: Ly—oL, be the multifunction
whose graph is defined by graph ¢ = graphf N (Lg X Lg). Since graph g
is closed and g(L,) is contained in the compact set f{Ly), ¢ is u.s.c.

By Theorem 4.3 of [12] g has a fixed point 2, which is fixed for f too,
because ¢ is a submultifunction of f (for each z € Ly ¢(2) C f(z)).

We prove a property of multifunctions convexly condensing with re-
spect to the measure R;. We do not know if the same result holds for
the measure R;.

In the next lemma and theorem following it we need that the fixed
basis of neighbourhoods B is composed of circled sets.

LEMMA 3.6. Let f: B—oB be a multifunction convezly condensing
with respect to the measure Ry and A: E —{0,1] a real function. Then
the multifunction A f: 2 € B—oA(z)f(z) = {M2)y, ¥ € f(z)} is convezly
condensing with respect to the measure R,.

ProOF. Let Z be a subset of B and V € Ry(f(Z)). Given U € B,
let W € B be such that W + W C U. By the definition of R, there
exist a finite family of convex sets {C;,i € I} and a finite set {z;,? € I}
such that C; C V + W for every i € T and f(2) C U{z: + Ci,i € I}.
Since V + W is circled, we can suppose, without loss of generality that
0 € C;. So we have Af(Z) C U{Mz)z: + A(z)Ci,i € [ and = € Z} C
u{[0,1)=: + Ci,i € I}.

For every i € I there exist convex subsets D;; C W and a finijte
family {wj,7 = L,...,n:} such that [0,1]z; CU{Di; + g,i = 1,.. i}
Consequently Af(Z) CU{ys + D;; +Ci,i€Tand j=1,... +Mi}

Since Dj; +C; CV+ W+ W CV + U for every i and j, we have
V € Ry(Af(Z)). I condition 3.1 (a) holds for f we have @(RAAf(2Z)) C
RA2Z) = @(RAS(2))) C RAZ) = f(Z2) ctb. = Af(Z) ctb, If
3.1 (b) holds for f, 3.1 (b) holds also for Af.

TaeoREM 3.7. Let B C E be a complete convez set and W be a
closed neighbourhood of « € B. Let f: BN W —oB be a multifunction
convezly condensing with respect to R, and in accordance with Definition
3.1 (a). If f has closed graph, conver values, co f(B N W) is bounded
and the following boundary condition holds: “z € OWnB and z €
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tf(z)}+ (1 —t)u = there ezisls 3 > 1 such that z € sf{z) + (1 — $)u”,
then f has g fired point.

Proor. Let X = {z € W N B, there exists ¢ € [0,1] so that z €
tf(z) + (1 —t)u}. The set X is closed. If £ € X N (W N B) there are
t € {0,1) and s > 1 such that z € ¢f(z) + (1 - thu N sf(z) + (1 - s)u.
Let o € [0,1] be such that as + (1 ~ @)t = 1. Since f(z) is convex, we
have z € altf(z) + (1 ~ t)u] + (1 ~ e)[sf(z) + (1 — s)u] C f(z), and so
we are done. So we can suppose X N(@W N B) = §. Since the space E is
completely regular there exists a continuous function A: E—[0,1) such
that: A(z) = 0 for every z € X and A(z) = 1 for every z € W N B.

Let

z)=

{(l— A(z))f(z) + Mz)u ifzeWnB
u ifre B\W.

Then g: B—oB has closed graph and co g{ B) is bounded. We claim
that g is convexly condensing with respect to R;. Let Z C B be such
that @{R.(g(Z))) C R:(Z). By Lemma 3.6 the restrictionof g to W N B
is convexly condensing and since g(Z) = ¢(Z nW N B)U {u} we have
P(R2(9(Z))) = ¢(Ro9(ZNW N B))) C Ro(Z) C(R(ZNW N B) =
gZnNnWwnB)ctb. = g(Z) c.t.b. By Theorem 3.5 there exists z € B
such that z € g(z). Iz € B\ W then z = u € W N B, which is possible.
S0 z € WnN B and consequently z € X. So we have A(z) = 0 and
z € f(z).

REMARK 3.8. The boundary condition used in Theorem 3.7, more
general then the usual one: “z € W Nk and z € 1f(z) + (1 - )y =>
t > 1", was used first in [5).

4 -~ Best Approximations

In this paragraph we suppose that the space E is equipped with a
continuous seminorm p.

DEFINITION 4.1. A subset B of E is approzimatively p-compact iff
for each y € E and a net {2,} in B satisfying p(za — y) — d,(y,B) =
inf{p(y — z),z € B} there is a subnet {zy} and z € S such that z5 — z.
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For more details and informations about approximatively p-compact-
ness see [13], [16], and references therein.

ProrosiTioN 4.2. If B is an approzimatively p-compact subset of
E, then for each y € E, P(y) = {z € B,p(y—z) = d,(¥, B)) is nonempty
and the multifunction P: E~—oB is u.s.c.

For a proof see Reicn [13).

DerINITION 4.3. Lel B be a nonemply subset of E. We say that
the melric projection P: E—B is convezly nonezpansive on a subset X
of E, when R(Z) C R(P(Z)) for every ZC X.

THEOREM 4.4. Lel B a nonempty approzimatively p-compact con-
vez subsel of E and f: B—oE a continuous mullifunction with conver
compact values. Suppose thai the metric projection P: E—oB is convezly
non ezpansive on f(B). If cither

(a) [ is convezly condensing, B is bounded and complete, or

(b) F(B) is c.L.b.,
then there ezists an = € B such that dy(z, f(z)) = dp( f(2}, B).

PRrOOF. (a) Define a mapping g: B—oB by g(z) = U{P(y),y € f(z)
and d,(f(z), B) = dp(y, B)}. Note that since f(z) is cempact, g(z) # 0.
Further since f(z) is convex, it follows that g(z) is also convex. In fact if
« and v are in g(z), then there exist y;,% € f(#) such that ¢ € Py, and
v € Py, and p(y: ~ v) = dp(t, B) = d,(J(2), B) = dp(y2, B) = p(y: - v).
For ¢ € [0,1] we have w(!) = ty + (1 = t)y: € f(z)N B and dp(w(t), B) <
dp(w(t) tu + (1 ~ t)o) £ td,(31,8) + (1 = )dp(y2,0) = dp(f(2), B) <
d,(w(t), B). Let Z be a subset of B such that @(R(g(2))) C R(Z). Since
o(Z) C Pf(Z) we have p(R(9(2))) D ¢(R(Pf(Z))) D ¢(RJ(Z)). The
last inclusion follows by the fact that P is convexly nonexpansive on f(B).
Consequently ¢{ Rf(Z)) C R{Z). If property (b) of Definition 3.1 holds
for f, we are done. If 3.1 (a) holds for f we have that J(Z)is c.t.b. and
since R(9(Z)) D R(Pf(2)) D> R(f(Z)), 9(Z) is c.t.b. We show that g
has closed graph. Let {z,} be a net converging to 2o and {z.} be a net
converging to zo such that z € g(z,). By the definition of g, there exist
Yo € f(z4) such that z, € P(y.} and d,(f(z.), B} = dy(ys, B). Since f
is u.s.c. and compact valued we can suppose ¥o — Yo € f(Zo). Since P is
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u.s.c. and compact valued we can suppose z, — 2 € P(y,). Further d,
and f are continuous and so dy(y., B) = dp(f(2,), B) = d,{f(20), B) =
dp(yo, B). Consequently z, € g(zo). At last, since c6g(B) is bounded
and complete, we can apply to ¢ Theorem 3.5, to obtain 2 fixed point
z € g(x), i.e. there exists an z € B such that d,(z, f(2)) = d,(f(z), B).
(b) In this case the muitifunction g is convexly condensing, because
g(B) C Pf(B). So we can apply again Theorem 3.5 to ¢ to obtain
the result.

REMARK 4.5. If E is localiy convex, B is composed of convex sets,
B is approximatively p-compact then the metric projection P is convexly
nonexpansive on every X relatively compact. So we obtain Theorem 1.5
as a corollary of Theorem 4.4.
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