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On Some Configurations of Points in a
Finite Affine Space AG(n,q)

D. PASQUALI COLUZZI™)

RIASSUNTO - Data una iperquadrica non degenere Q di AG(n,q) con g dispari ¢
primo, per i punti di AG(n,q) non appartenenti a Q viene data la definizione di punto
regolare o quasiregolare rispello a Q e successivamente sono determinati sia il numero

sia la configurazione dei punti dello stesso tipo.

ABSTRACT - Given a proper hyperquadric Q of AG(n,q) with ¢ odd and prime,
for the points not lying on Q we give the definition of regular or quasiregular point with
respect to Q and successively we determine the number and the configurations of the
poinls of the same type.
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— Introduction

In this work we determine at first the number and the distribution
of the exterior points to a proper hyperquadric Q of the n-dimensional
affine space AG(n,q) over a Galois field ¥ of order ¢ odd and prime.
Successively we give the definition of regular or quasiregular point with
respect to Q for the points not lying on @ and hence we determine both

(*)This work was supported by the scientific research funds of 40% of the “Ministero
della U.RS.T.”
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the number and the configuration of the points which are either regular o
quasiregular with respect to Q. In this way a pencil F of hyperquadrics
arises, which contains particular classes of hyperquadrics, whose point
are of the same type; such hyperquadrics depend on either the pairs of
consecutive squares and non squares of v, or a class of transformations
which preserve or change the quadratic character of the elements of «.

For every hyperquadric of F there is a group G of affine transfor-
mations generated by the symmetries with respect to the hyperplanes
intersecting @ and containing its center O. In PG(n,q) the harmonic
homologies whose fixed points belong to a secant hyperplane 7 through
O and whose center is the pole of & with respect to @ correspond to such
symmetries.

Finally it is proved that the type of points of AG(n,¢) is an affine
invariant.

1 — Subsets of GF(q)

Let ¢ be an odd prime integer, and let ¥ = GF(q) denote the Galois
field of order ¢. As in [3] (see bibliography), we will writez € D or z € A
according as z is a non-zero square or non square element in GF(q). Put

(1.1) E={z:ze0,z-1€0}
(1.2) H={z:ze0O,z+1€0}
(1.3) I={z:ze0,z-1€A}
(1.4) L={z:zeA,z+1€0n1I}

For such subsets of ¢ the following properties are true.

1g=—1(mod 4)
a) |E| = |I| = |H|

b)zeOnl =

r—1 g—1

|L| = , where r = =

1
cEizenH = ;(—:H;

Hl’_a ”
(34
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)z el = -z €A\;
pairs of consecutive elements of (0 and as many

d) 4 contains i
analogous pairs of A;
e) 7 contains at most two triplets of consecutive elements of either O or
A, only if ¢ = 11,19,23 (see [9]).
II g=1 (mod 4)

1‘ —
@) Bl = 0| = 22,
YzeONE = %eE; zeOnH = %eHandleHifzeCl;
dzel = -z€0;

P -

2

r
=12l = 3;

d') v contains pairs of consecutive elements of (J and g analogous

pairs of A.

2 — Subsets of AG(n,q)

Let (z1,22,...,2,) be the coordinates of a point of AG(n,q) and let
k — 1(k > 0) be the greatest dimension of the linear spaces contained in
a proper hyperquadric of AG(n, q); the equation of such a hyperquadric
may be one of the following types (see [3] and [10]).

Hn=2k:
(2.1) QpF(2k,q)=23+...+ 622, +1=0(6 €0);

(22) Qu)Fi(2k,q)=21+...+623, +1=0(6 € A);

(2.3) Q"])Fl"(2k, q) =21+ T2Zg+ ...+ Tak—2T2x—3 + -’B;k =0.

Ifn=2k-1:
(24) QIFi(2k-1,9)=23+...+6z3_+1=0,(6€0));

(2.5) Qu)Fi(2k-1,9) =2z, + 2225 + ... + Tae-2T2k1 = 0.
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En=2k+1:
(26) Qui)Fui(2k+1,9) =zt +...+ 6823, +1=0, (6€A)

(27) Quw)Fw(2k+1,9)==z+2zi+...+623,,,=0,
with §€0ifg=~1(mod 4) and § € A if =1 (mod 4).
Let t;(n,q) denote the number of the points lying on the proper
hyperquadric Q; of AG(n,q); in particular we have:
¥r(2k,g) = ¢! - ¢*; Yu(2k,q) = ¢ +¢*7
Yrr(2k,q) = @75
12k -1,9) = ¢* 2+ ¢ $u(2k-1,9) = ¢
Yr(2k+1,9) = ¢ - ¢*; Yrv(2k+1,9) = ¢**.
Regarding the number of the points of AG(2k, g) not lying on a given

proper hyperquadric Q it will be denoted by ¥; or ¥. according as the
corresponding polar hyperplane determines with @ a section of type Q;

in AG(2k — 1,q) or Qi1 in AG(2k + 1,9).
In particular for Q; we have:

(i)
P(2k,¢) = ¢ — @71 + 57 = $i(2k, ) + ¥e(2F,q), With

1 - _
¥i(2k, q) = 5(«1"‘ -g¢* '+t +4 - 2)

[without counting the center of Q] and
1
ve(2k,g) = 5@ — ¢ ="+ g').

The points of former kind belong to r — 1 proper hyperquadrics of
the same type as Q; and the asymptotic hypercone A; whose points are
W(Ar) = g1+t —g*~1—1 and hence i(2k, @) = (r—1)¥r(2k, @)+ ¥(Ar);
but the points of second kind belong to r hyperquadrics of the same type
as Q; and hence ¥.(2k, ¢) = r¥:(2k, g).
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For @;; we have:
(ii)
$(2k,q) = ¢** — ¢! — ¢*! = (2K, 9) + ¥.(2k,q) , With

¥i(2k,q) = %(q“ —¢* '+ ¢* — ¢*1) = ripys(2k,¢) and
¥.(2k,q) = %(q”‘ -t~ ¢* — ¢+ = 2) = (r - )Y (25, 9) + ¥(Anr),

where the center of Q;; is excluded and ¥(As) = ¢*' —¢* +¢*~' - 1.

For Qi1 we have:
(iii)
B(2k,q) = ¢ — " = $i(2k, q) + ¥.(2k, q) with
1
¥i(2k, q) = ¥e(2k,q) = 5(?2" -¢* = riri(2k, q).
For the points of AG(2k — 1,¢) not lying on either Q; or Qrr we have:

(")
Y(2k —1,9) = ¢* ' — g% — "' = rprs(2k - 1, 9)4+

(r — 1)9r(2k - 1,9) + ¥(A;) , where $(Ar) = ¢**%;

and
(ii")
W(2k —1,9) = ¢~ — ¢**? = 2r¢;;(2k — 1,9) respectively.

Finally for the points of AG(2k + 1,4q) not lying on either Q1 or Qrv
we have:

(i)
Y(2k +1,¢9)=¢** — ¢®* + ¢*=rpy(2k + 1,¢)+(r — 1)¥urs(2k + 1,9)+
+ ¥(Arrr), where Y(Arr) = ¢**,

and
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(i")

Y2k + 1,q) = ¢***! — ¢®* = 2r¢;y(2k + 1,q), respectively.

8 — Regular or quasiregular points of AG(n,q)

Let F(z,,z3,...,%,) = 0 be the equation of a proper hyperquadric Q
of AG(n,q) and let P be a point not lying on @ whose affine coordinates
are (Z,,Z,...,%,). A line s of AG(n,q), represented by the equations

=Z;+ it withi=1,2,...,n and t € v, is intersecting in two distinct
pomts P, and P,, or ta.ngent at P, = P,, or exterior o @, according as
the involution represented by 8t? + 2at + F = 0 is hyperbolic, parabolic,
or elliptic respectively, that is according as D = a®> — fF € 0, D = 0, or
D € A respectively. Notice that a denotes what arises by substituting the
direction parameters [; of s to z; in the equation of the polar hyperplane
# of P with respect too Q; obviously @ = 0 means that is parallel to #.
Moreover § denotes what arises by substituting the parameters /; to z; in
the terms of degree of the equation of Q. Finally F denotes what arises
by substituting Z; to z; in the equation of Q. In particular, if we denote
by ¢ what arises by substituting Z; to z; in the terms of greatest degree
of the equations of the proper hyperquadrics of AG(n,q) =c+1lor
F = ¢ + %, according to the equation; moreover either FeOorFeA
according as the point P of AG(n,q) not lying on Q belongs or not to a
hyperquadric of the same type as Q.
The point P is interior or exterior with respect to the affine seg-

ment P, P, of the lines intersecting Q according as (P,P,P) = {: =

(a —-p\F/ﬁ)2 € O or A respectively and hence, as it is known, according
as (see [3]).

(3.1) (PPP) =1
or

(3.2) (PPP) =-1
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respectively.
If g= -1 (mod 4), (3.1) and (3.2) become

(3.1 (e (ﬂi)_ SO (:1/’ r(r— 1)...((r2; i]?;r-zk_—l D _ :
and
(3.2")

(e (—ﬂ}/)_ T b= + ('ﬁﬁ (r(;:)l'c e BDE
respectively.

Both equations are solved with respect to o?; eractly, if D = 1, the
solutions of (3.1°) are BF and the T== elements of E and the ones of

; 1 elements of I.

(3.2’) are O and the T
Ifg=1 (mod §), (3.1) and (3.2) become

22 (r —1)...(r - 2k)a" -2~ DM

(3.17) ,‘Z:; (2k + 1)! =0
and
r/2 -2k Nk
" , r(ir=1)...(r=2k+1)a""*D* _
(3.2") o +‘§ 0! =0

respeclively.

Also in this case both equations are solved with respect to o® ezactly,
if D = 1, the solutions of (3.1") are 8F, 0 and the T=Z clements of E
and in partzcular —1 is a solution if g =1 (mod 8) but the ones of (3.2")
are the 5 elements of I and in particular —1 is a solution if g =5 (mod
8).

With respect to a cordinate system R[0,[;])(i=1,2,...,n) of AG(n,q),
the equations @ = 0 and a® = = where z € E or I, may be considered
as equations of a hyperplane through O and a pair hyperplanes which
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are symmetric with respect to O also § +1 = 0 may be considered
as equation of an irreducible hyperquadric @ of AG(n,g). Exactly the
foilowing properties are true.

If n = 2k and Q is of type Q; or Q,;, such hyperplanes, represented
by the equations a = 0 and a® = z with z € E or I, determine on Q
hyperquadrics of type Q; of AG(2k—1,q) and of type Q111 of AG(2k+1,q)
or an irreducible hypercone, according asin f+1 =z, whend € 0,z €O
orz € A or z = 0 respectively, and when § € A, z € A or z € O or
z = 0 respectively. But, if Q is of type Q11, the hyperquadrics determined
on Q are of type Q; of AG(2k — 1) and of type Q11 of AG(2k + 1,9),
according as in 3+ 1=z, when § € 0, z € 0 or z € A respectively and
viceversa when § € A.

Ifn=2k—-1o0rn=2k+1 and Q is of type Q; or Oyyy, the
previous hyperplanes determine on Q hyperquadrics, of type, Q; and Q;
of AG(2k,q) or an irreducible hypercone, according as in B+1 =1z,
when § € [0, z € 0 orz € A or z = 0 respectively, and, when § € A,
z €A orz €0 or z =0 respectively. But, if Q is of type Q1 or Qv
the hyperquadrics determined on Q are of type Q1 or Qi of AG(2k,q)
respectively when, inf+1=1z,z € O and viceversa when z € A.

In every case among the points of such hyperquadrics there is a sym-
metry with respect lo the point O. _

Therefore the number of the lines containing a point P of AG(n,q)
and intersecting Q in two distinct points P, and Py, such that the point
P is ezterior or interior to the affine segment P, P2, may be obtained by

the following

(3.3) ﬂ+1=33%+—'7-, (F#0),

which, if D =1 and F =c+1, becomes

al+e

pt (c+1£0).

(3.3) Bi1=

For every value of a® in 7 the (3.3’) preserves or changes the quadratic
character of ¢ and in this way it is known the type of the hyperquadrics
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determined on Q by the hyperplanes whose equations are a® = z with
ze€l anda=0.

Infact f+1 =z withz €, or z € A or z = 0, according as a® + ¢
and F are both elements of O or A or not, or a® + ¢ = 0.

From (3.3), if D = 0(a? = 1), we obtain also the number of the lines
through P and tangent to Q.

According as F + 1 and F are both elements of either [J or A or not
orF+1=0,inB+1=zeitherze0,orz€Aorz= 0, respectively.

In the same way, if a = 0, we obtain the number of the lines through
the point P, which intersect the hyperquadric Q in two distinct points
P, and P, such that the segment P, P, contains or not P and are parallel
to the plar hyperplane of P with respect to Q.

Inf+1=z,z€0,0rz € Aorz=0,a, according as F — 1 and
F are both elements of either 0 or A or not or F = 1.

By the subdivision of the lines through a point P ¢ Q which are
tangent or intersecting to {, according as the point P is exterior or
interior to the before considered segment P, P,, we can give the following
definitions of regular or quasiregular point with respect to Q.

A point P of AG(n,q) is said to be regular point with respect to a
proper hyperquadric Q, if it is always exterior or interior to the affine
segments determines by Q on the lines through P which intersect Q in
two distinct points and also if it is exterior to half of such segments and
interior to the remaining ones. But the point P is said to be quasiregular
point with respect to @, if it is exterior to half of the before considered
segments and interior to the remaining ones except for the lines through
P and parallel to the polar hyperplane % of P with respect to Q.

Therefore for the regular or quasiregular points of AG(n,q) with
respect to a proper hyperquadric Q the following theorems are true.

I) If ¢ = -1 (mod 4), with respect to a hyperquadric of type Q; or Q1)
of AG(2k, q) only the vertez of the asymptotic hypercone A of Q; (or
Q1) is regular; but, if g =1 (mod {), the points of A (whose vertex
is regular) and the points (¢ Q; or Q1) of a pair of hyperquadrics
associated to two elements of 0 when ¢ = 1 (mod 8) or two elements
of A when ¢ =5 (mod 8) are quasiregular.

II) Ifq =1 (mod 4), with respect to a hyperquadric of type Q, of AG(2k—
1,q) only the points (¢ Q) luing on a hyperquadric of type Qs are
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quasiregular. The same property is true with respect to a hyperquadric
of type Q11 of AG(2k + 1,9).

With respect to Q; the vertez of the asymptotic hypercone A is always
regular but the other points of it are quasiregula if g =1 (mod {) and
regular if ¢ = —1; with respect to Q1 the points of A are regular if
g=1 (mod §) and only if ¢ = 3 when ¢ = -1 (mod §).

IIT) With respect to a hyperquadric of type Qi of AG(2k — 1,q) the
points (¢ Qrr) lying on 2r hyperquadrics of the same type as Qu
are quasiregular only if ¢ = 1 (mod 4). The same property is true
with respect to a hyperquadric of type Qv in AG(2k +1,9).

4 - Particular classes of hyperquadrics

All points of AG(n,q), which are either regular or quasiregular with
respect to a proper hyperquadric Q, belong to parlicular classes F of hy-
perquadrics of AG(n,q).

In fact by (3.3) there are the following cases:

a)fora’EEandTEDora’EIandTGA,ifﬂEDnH,

(4.1)
|F| = I;—l when ¢ = =1 (mod 4) and |F| = r_;_Z_ when ¢ = 1 (mod 4);

b)a’eIa.nd_FEDora’GEandTeA,ifﬂeAnL,

(4.2)
|F| = 2;2.—1 when ¢ = —1 (mod 4) and |F] = 12.- when ¢ =1 (mod 4).

¢)fora? € Eand F =1hence B+1€ E,

(4.3)
|Fl = !-%1_ when ¢ = —1 (mod 4) and |F| = %—2 when ¢ = 1 (mod 4).

d)fora’eIandT=1andhenceﬁ+1€I,
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(4.4)
|F| = -';—1 when ¢ = -1 (mod 4) and |F| = % when ¢ = 1 (mod 4).

5 — Regulariry of points as affine invariant

In the projective space PG(n,q), obtained by extending the affine
space AG(n,q), any proper hyperquadric and the ideal (R — 1)-dimensional
projective subspace, assumed as double hyperplane, determine a pencil
of hyperquadrics with the same center C and the same ideal hyperquadric.

For every hyperquadric Q of every pencil F there is a group G of
affine transformations which leave C fixed and Q invariant. Such a group
G is generated by the symmetries with respect to the hyperplanes through
C which are second to @Q; such symmetries correspond to the harmonic
homologies, whose fixed points belong to a hyperplane through C which
is secant to @ and the center is the pole of such hyperplane with respect
to Q. G contains also the symmetry with respect to C, which corre-
sponds to the harmonic homology whose center is C and the fixed points
belong to the ideal hyperplane. Since, with respect to @, the hyperplanes
through C are conjugate with the ideal hyperplane, the previous hyper-
planar symmetries commute with the central symmetry with respect to
C and such a symmetry, beside the identity, belongs to the center of G.

It follows that the symmetries with respect to two conjugate hyper-
planes, which are second to @, commute and the product of the symme-
tries with respect to three hyperplanes through C and second to Q, which
are in a pencil F, is equal to the symmetry with respect to a hyperplane
of F.

The restriction to the ideal hyperplane of the polarity ® defined by
every hyperquadric Q of F is the same polarity ¢ and hence every hyper-
planar symmetry commuting with ® commutes also with ¢. Therefore
eery hyperquadric of ¥ determines a group isomorphic to G. It follows
that for the points of AG(n,q) the property of regularity or quasiregularity
ts an affine invariant,
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