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On the 3n+1 Problem: Something Old,
Something New
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RIASSUNTO - Una ben nota congettura in teoria dei numeri tratta dell’andamento
delle iterazioni della funzione che trasforma gl'interin in (3n+1)/2 (sen ¢ dispari) o in
n/2 (sen é pari). Tale congettura afferma che la cardinalitd della successione generata
da un qualsiasi numero nalurdle n ¢ finita e l'ultimo elemento della successione vale
1. In questa nota vengono trattati alcuni aspetti di tali successioni con particolare
riferimento alla loro cardinalita.

ABSTRACT - A nolorious number-theoretic conjecture concerns the behavior of
the iterales of the function which takes inlegers n to (3n 4+ 1)/2 (if n is odd) or ton /2
(if n is even). This conjecture asserts that the cardinality of the sequence generaled by
any nalural number n is finite and the last element of the sequence equals 1. This note
deals with some aspects of such sequences, most of which concern their cardinality.
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A .M.S. CrassIFicATION: 11A99 - 11B99

1 - Introduction and generalities

The so-called 3n 4 1 problem is a notorious number-theoretic conjec-
ture which is also referred to as the Collatz problem, Hasse’s algorithm,
Syracuse algorithm, Ulam’s problem, etc. The exact origin of this prob-
lem js obscure (see [2] for a complete reference list): let us recall it briefly.

(YWork carried out in the framework of the agreement between the Italian PT Admin-
istration and the Fondazione “Ugo Bordoni”.
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On the basis of a given natural number n, let us generate the sequence
S(n) = {si(n)}(k = 1,2,...,1) obeying the following rule

(i) so(n) = n ¢ S(n)

i'—%(l) if 84_1(n) is even
(ii) Sg(n) =

ifk;l%“_)_il if 84-1(n) is odd
(iii) when s;(n) = 1, the generation of S(n) stops.

From (i)-(iii) it follows that the last element of S(n) is si(r) = 1 and
n = 1 generates an empty sequence. As an example, we show in detail

the generation of S(3):
5(3)=(9+1)/2=5
 s(3)=(15+1)/2=8
(1.1) 5(3)=8/2=4
4(83)=4/2=2
s5(3)=2/2=1.

Let us define the cardinality / of S(n) as the length of the natural
aumber n and denote it by £(n). The example (1.1) shows that £(3) = 5.

By definition we have
(1.2) ¢1)=0.

The following conjecture has been offered (e.g., see [2])

CONJECTURE 1: £(n) < oo for all n.

This apparently intractably hard to solve conjecture has been checked up
pumericaily to n = 2* by Nabuo Yoneda at the University of Tokyo [2).
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The truth of Conj. 1 would imply that all elements of S(n) are distinct.
The values of £(n) for the first few values of n are:

{1)=0 £6)=6
(2)=1 (=1
(1.3) {3)=5 {8)=3
{4)=2 ¢9)=13
£5)=4 £(10)=5.

As soon as we became aware of the 3n+1 problem, we were attracted
by the rule of construction of S(n) in view of a possible application to
modern cryptography. Nevertheless, the aim of this note is neither to
discuss practical applications of these sequences nor to try to prove Conj.
1, but rather to present some properties of S(n) emerged during our
study; most of them concern the length of positive integers (secs. 2 and
3). Some simple considerations on the possible smallest counterexample
to the above conjecture are offered in sec. 4. In sec. 5 further properties
of S(n) and the results of some brief computer experiments are discussed.

Let us conclude this section by stating the following theorems the
proofs of which are omitted because of their triviality.

THEOREM 1. {(n)=k+{(s(n)) (0<k<))
THEOREM 2. £(2%d) =k + ¢(d).

CoROLLARY 1. £(2%) =k.

2 — On the numbers having the same length

A glance taken at table (1.3) leads us to realize that there exist
distinct numbers having the same length. This phenomenon has a simple
explanation; it is caused by the coalescence of the S(n)’s, generated by
distinct n, after a certain number of steps. We can clearly see it, if we
refer to the so-called Collatz tree (2, p. 5] whose root is any positive m;
by Theor. 1, the length of all leaves at the h*h level is k + {(m). We recall
[3, p. 20] that, if m = 0 (mod 3) the number of leaves is 1 for all A, if
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m # 0 (mod 3) the expected number T}, (m) of leaves at the A" level is
3(4/3)"/2, while, for arbitrary m we have

(2.1) Ti(m) = (4/3)".
We shall make use of (2.1) in sec. 5.

The aim of this section is to find out sets of integers {a:} and {b:},
depending on a positive parameter k, such that

(2.2) £(ai) = £(b;) for k =(0),1,2,....
It can be sometimes hard to find out such sets but, once they have been

discovered, (2.2) is in general easy to check by proving that s;(a;) = s;(b)
for some j.

THEOREM 3. If k and d are arbitrary natural numbers, then

(2td-1)= l(ﬁ“d -2%),

PROOF. On the basis of (ii) it is readily seen that s, (2*d—1) = 3td—1.
Therefore, from Theor. 1 we have €(2*d - 1) = k + £(3*d — 1) and, from
Cor. 1, {(2¢d— 1) = {(2*(3*d - 1)) = £(6*d — 2*). We point out that, for
n = 28d — 1, the quantities 5;(n) < 82(n) < ... < s¢_y(n) are odd. 0

The study of the behavior of £(3* — 1) as k varies led us to discover
the following cute property

THEOREM 4. If k is an arbitrary natural number, then

£(32k+1 - 1) —_ e(32k+2 _ 1) .
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PRrOOF. It can be readily proved that
1 (mod 4) if h is even

(2.3) 3k =
—1(mod 4)if his odd.
Therefore, we can write
32+ _ 1 = 2 (mod 4)

(2.4)

3242 _1 = 0 (mod 4).

(2.4) and (ii) allow to prove that s;(32%+! — 1) = 5,(3%+2 - 1) = (3%+2 —
1)/4. i

COROLLARY 2. If k is an arbitrary natural number, then

Q2! — 1) = (2%~ 1) -1.

PRrROOF. Let us write (cf. the proof of Theor. 3) £(2%*+! — 1) =
2k + 1 + £(325+1 — 1) and £(22+? — 1) = 2k + 2 + £(3%+2 — 1). Theor. 4
proves the statement. 0

TREOREM 5. If k and d are arbitrary nonnegative integers, then
£(24(3%/%d 4 1)) if k is even

(2%d+1) =
{£(2"(3("“)/’d +2)) ifkisodd.

Proor. From (ii) it is seen that, for 1 < j <&,

(25) @de1) 3UD29k-ig 4 2 ifj is odd
D $;(2°d+1) = _ ]
! 3i294-id 4 1 if j is even.

If k is even, from (2.5) we have s;_(2*d+1) = 3*/22d+2 = 2(3*/%d +
1). On the other hand, it is clear that s,_,(2%(3%/2d + 1)) = 2(3%/%d + 1).
If k is odd, from (2.5) we have s,(2%d + 1) = 3(*+1)/2d 4 2. On the other
hand, it is clear that s,(2*(3(*+1)/2d + 2)) = 3(*++/2d 4 2, o
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THEOREM 6. If k is an arbitrary nonnegative integer, then

(32K + 23) = £(96k + 69).

PROOF. It can be readily checked that s5(32k +23) = 3;(96k + 69) =
27k + 20. o

THEOREM 7. Ifk is an arbitrary nonnegative integer, then

£(64k + 15) = £(192k + 45).

PROOF. It can be readily checked that sg(64k+15) = 36(192k+45) =
81k + 20. 0

2.1- On the k-tuples of consecutive numbers having the same length

A slight extension of (1.3) suffices to show that there exist several
k-tuples of consecutive integers {n,n +1,...,n 4 k — 1} such that

(2.6) n)=L(n+1)=...=Ln+k-1).

For given k, let us denote as no(k) the smallest n for which (2.6) holds.
It can be readily checked that ng(2) = 12, no(3) = 28 and no(5) = 98
(this means obviously that also ny(4) equals 98). By means of a simple
computer experiment carried out for 1 < n < 10° we worked out the

results shown in Table 1.

Table 1 - Behavior of no(k) vs k.

k no (k) k no(k)
2 12 14 2987
3 28 17 7083
5 98 25 57346
6 386 27 252548
7 943 29 331778
8 1494 30 524289
9 1680 40 596310
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Obviously, the values of ny(k) pertaining to the values of k missing
in Table 1 equal the value of ny(k) corresponding to the smallest k ex-
ceeding these missing values. The comparatively slow growth of no(k) as
k increases suggests the following

COoNIECTURE 2: There exists a finite nqo(k) for arbitrarily large k.

The principal aim of this subsection is to find out classes of k-tuples
(k = 2,3,4) of consecutive integers {ny,ny +1,...,n, + k — 1} for which
(2.6) is satisfied. Mutatis mutandis, the statement just after (2.2) is still
valid.

THEOREM 8 (see [2, p.12]). If h is an arbitrary natural number,

then
£(8h +4) =£(8h + 5).

PROOF. It can be readily checked that s;(8h+4) = s3(8k+5) = 3h+2.
1]

Analogously, it can be easily proved that

(2.7) {(32h +2) = £(32h + 3)
(2.8) £(32h + 22) = 4(32h + 23).

THEOREM 9. Ifh is an arbitrary natural number, then

8(32h + 4) = £(32h + 5) = £(32h +6).

PRroor. It can be readily checked that s5(32h + 4) = 35(32h + 5) =
35(32h + 6) = 9h + 2 a

THEOREM 10. Ifh is an arbitrary nonnegative integer, then

£(256h + 98) = £(256h + 99) = £(256h + 100) = £(256h + 101).
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PRroOF. It can be readily checked that s3(256h+98) =...= 83(256h+
101) = 27k + 11. 0

8 — Closed form expressions for the length of certain integers

In this section we show how it is possible to establish closed form
expressions for the length of certain classes of integers. From Theor. 2,
it is apparent that we may confine ourselves to investigate odd integers

only.
First, let us consider the class of integers {Z;}(k = 1,2,...) men-
tioned in [1, p. 264). The numbers Z, are defined by the first order

recurrence relation

(3.1) Zk = 4Zg_1 + 1 (Zl = 1) .

THeoREM 11. Ifk is a positive integer greater than 2, then ¢((Z;) =
2k.

Proov. First observe that £(Z;) = £(1) = 0. By induction on k it
can be readily proved that

(3.2) Z, = (2* - 1)/3.
Since Z; is odd, from (3.2) we can write
(3.3) si(Z) = (3Z: +1)/2=2"%"  (k22)

whence, by Theor. 1 and Cor. 1, we obtain UZ) = 1+ 2% =
142k—-1=2k. a

The use of the predecessors of a positive integer allows to find out
several classes of integers whose length can be given by means of a closed
form expression. The predecessors of a positive integer are defined in the
next subsection where some simple properties of them are also pointed

out.
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3.1- The predecessors of a positive integer

The predecessors of a positive integer n are the numbers z such that
8;(z) = n. Each number n has the even predecessor p(n)

(3.4) p(n) = 2n.

The number n has also the odd predecessor g(n)
(3.5) g(n) =(2n-1)/3

if and only if

(3.6) n=2(mod3) (n2>5).

Let us define also the quantities p;(n) and g;(n) as

{pj(n) = p(...p(p(n))...)
(3.7)
gi(n) = ¢(..-q(g(n))...)

whence p(n) = p;(n) and ¢(n) = ¢:(n). It is evident that

(7 pairs of brackets)

(3.8) pi(n) = 2'n

exists for arbitrarily large n and j. As to the quantities g;(n), let us state
the following theorem which generalizes (3.5) and (3.6)

THEOREM 12. g;(n) ezists iff n + 1 =0 (mod ¥).

PROOF. Rewriting (3.5) as ¢;(n) = 2(n+1)/3 -1, by (3.7) it is seen
that

2(n+1)

3 -1,

(3.9) gj(n) =

The quantity on the right-hand side of (3.9) is integral (i.e., q,(n)
exists) iff n + 1= 0 (mod ¥).
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3.2~ Some examples

The technique for obtaining classes of odd integers whose length can
be expressed in closed form is rather simple. Starting from a class of
integers {n;} whose length is known (powers of 2, in the simplest case),
we determine ¢;(n;) (for some j) with the aid of (3.9) and obtain the

quantity {(g;(n:)) by Theor. 1.

ExAMPLE 1. The numbers ¢,(2*) exist iff kK > 3 is odd. They are
the numbers Z1y/2 (cf. (3.1) and (3.2)). These numbers satisfy the

congruences
0 (mod 3) if k = 5 (mod 6)

(3.10) a1(2") ={ 1 (mod 3) if k = 1 (mod 6)
2 (mod 3) if k =3 (mod 6).

It can be readily checked that
for even j if k = 3 (mod 6)

(311) B =py(0:(2) = 2 (mod3)
for odd j if k=1 (mod 6).
The condition (3.6) and (3.11) ensure the existence of the integers

2i+1(++1-1)-3
D= (P.y)=
(3.12) W=q(Pis) 9

k=3 (mod 6) if j is even
k=1 (mod 6) if j is odd .

By Theor. 1 and Cor. 1, we get
(W) = 14 4(Ps) = 1+ U2) + t(a:(24)) =

(3.13) ] " .
=1+42)+14+62°)=7+k+2.

As a numerical example, let us put ¥ = 7 (= 1 (mod6)) and j = 3

(odd) in (3.12) thus getting W;® = 453 and £(453) = 3+ 7+ 2 = 12;

with the aid of a pocket calculator, it can be immediately checked that

312(453) =1.
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In the next two examples, we shall proceed in a different way. More
precisely, we firstly shall give the class of odd integers and the closed
form expression for their length, then we shall prove the validity of this
expression.

EXAMPLE 2. The numbers Z, (see (3.2)) can be generalized by con-
sidering the numbers

(3.14) 7= (3) ea-1,
where
(3.15) € =20710D 4

These numbers include, as a particular case, the numbers Z,. In fact,
from (3.2), (3.14) and (3.15), it can be easily seen that 2{") = Z,. The
following lemma allows us to state that the numbers Z{™ are odd integers.

LEMMA 1. €, =0 (mod 37).

Proof. Denoting by ¢(-) the Euler totient function, from Euler’s
theorem we have

n ne— n=1\ 2
26 = 229" = (22"7') =1 (mod 3")

whence
(3.16) 25" = 41 (mod 3").
Since 22! = —1 (mod 3) for all k, the positive solution to the congruence

(3.16) must be clearly disregarded. Therefore we can write

2" = (2=""")2"'l = €up — 1= —1 (mod3"). 0
Now we are in a position to state the following
THEOREM 13.
ODifn=k=1
qz") = {

n 4 (2k — 1)3""! otherwise.
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ProoF. The proof of the particular case » = k = 1 is trivial. Since
(2£) is odd, from (i) we can write

n-j
(317)  &(2") = (g) eox—1 (odd,for1<j<n—1).

Observe that

(3.18) 3(Z8M) = up~ 1= 2" D)
Therefore, from Theor. 1 and Cor. 1 we have
UZ{) = n4 £ (2770D) = g (2% 1)31, 0
EXAMPLE 3. Finally, let us consider the numbers
(3.19) Y™ = (%)6,, +1
where
(3.20) o =4k 1,
Observe that Y = (1) . The proof that the numbers Y™ are odd

integers is analogous to that of Lemma 1 and is omitted for brevity.
THEOREM 14. L(Y™) = 2(n + k37-1),

PROOF. Since Y™ is odd, from (ii) it is readily seen that, for 1 <
j ..<. 2n - 11

22"-j6n,k

(3.21) 5(Y™) = :::‘;W t2 (jodd)
3"-1‘/’;": +1  (jeven).

Observe that

(3.22) 920-1(YEV) = 26,4 +2= 22741

Therefore, from Theor. 1 and Cor. 1 we have

l(yk(”)) =2n—-142k3""1+1= 2(n + kan—l) . 0
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4 — On the possible smallest n such that {(n) = 0o

Let ng be the possible smallest counterexample to Conj. 1. In this
section we show that np must necessarily belong to particular classes of
integers: this result is very useful in view of further computer search after
its existence. The proofs are carried out by reductio ad absurdum, that is
we shall prove that, if ny belongs to certain classes of integers, then there
exists either one of its predecessors or one of its successors s¢(no) (both
having, obviously, infinite length) smaller than n,: a contradiction!

PROPOSITION 1. ng is odd.

PROOF. If ng is even, then 8,(ng) = no/2 < no 0

PROPOSITION 2. ngo = 4k+3 with k # 0 (mod 4) and k # 5 (mod 8).

PRrOOF. If ng = 4k + 1, it is immediately seen that s;(no) = 3k+1 <
No.
If ng = 4k+3 with k = 0 (mod 4) (k = 4h), we can write no = 16~ +3
whence s4(np) = 9k + 2 < nq.
If np = 4k + 3 with k = 5 (mod8) (k = 8k + §), we can write
no = 32h + 23 whence (cf. the proof of Theor. 6) s5(n0) = 27h 420 < no.
a

ProposITION 3.

12k+3  (k# 0 (mod4))
n°—{12k+7 (k# 1 (mod4)).

PRrOOF. Let us consider odd integers as expressed by the forms 64 +5,
6h + 3 and 6k + 1.

Case 1: no =6h +5.
q;(no) = (2710 - 1)/3 =4h +3< No .

Case 2: ny = 6h + 3.
(a) h=2k+1, odd
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no = 12k + 9 whence s3(ng) = 9%k + 7 < n,.

(b) h =2k, even
no = 12k + 3. If k = 0 (mod 4) (k = 4m), we can write ng = 48m + 3
whence s4(n¢) = 2Tm + 2 < n,.

Case 3: np=6h + 1.
(a) h =2k, even
no = 12k + 1 whence s;(ng) = 9k + 1 < n,.
(b) h=2k+1, 0dd
ng = 12k+ 7. If k =1 (mod4) (k = 4m + 1), we can write no =
48m + 19 whence s4(no) = 27m + 11 < n,.
0

Combining Prop. 2 and Prop. 3, after some simple manipulations
leads to the following admissible forms for ng

{ 12k+3  (k #0,4,7 (mod 8))
(41) N =

12k+7  (k#1,4,5 (mod8)).

5 — Some numerical results

In this section some properties of the sequences S(n) are pointed out
and the results of three computer experiments are shown.

15T EXPERIMENT

The length £(n) has been found for 1 < n < 107 and the quantity

(5.1) i) =~ 0

i=1

has been calculated for all integers n lying within the above interval.
The numerical evidence that turns out from this experiment leads us to
believe that

- £(n) = n only for n = 6,73

— the largest n such that {(n) > n is n = 63.
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Fig. 1 Behavior of #(n) vs n.

The behavior of {(n) vs n is shown in fig. 1.
This behavior suggests (see [2, p.6]) that there exist a positive constant

¢ such that
(5.2) {n)~clnn.

2ND ExpERIMENT

It is know [3, p. 5] that, if n is a random integer, the residues
modulo 2 of the quantities s¢(n) are uniformly distributed. The aim
of this experiment has been to evaluate the distribution of the residues
modulo 3 of s,(n).

We generated 10° sequences S(n) (n randomly chosen, with replace-
ment, within {1,2,...,107}) thus obtaining 103,719,207 elements s¢(n)
(cf. fig. 1 for n = 107): 68,737,144 of them (66.27%) turned out to be
congruent to 2 (mod 3), 34,648,305 (33.41%) congruent to 1 (mod 3) and
333,758 (0.32%) congruent to 0 (mod 3). These results are strictly close
to those presented in [4]. The non-uniformity of this distribution can be
justified by a heuristic argument based on the proof of the following

THEOREM 15. If n is any natural number, then S(n) contains at
most one odd integer divisible by 3.
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PRroor.

Case 1: n =1 (mod 3)
We have either n = 6k + 4 (even) or n = 6k + 1 (odd).

(5.3) 8(n) = {:: :::z E: :;:I;) =2 (mod3).

Case 2: n =2 (mod 3)
We have either n = 6k + 2 (even) or n = 6k + 5 (0dd).

3k4+1 (neven) - {l (mod 3)

(5.4) 8(n) = {Qk +8 (nodd) 12 (mod 3) )

Congruences (5.3) and (5.4) show that, if n # 0 (mod 3), s,(n) = 1 or 2
(mod 3) V k, that is S(n) does not contain any element divisible by 3.
Case 3: n =0 (mod 3)

Subcase 3a: n odd
We can write n = 3d with d an arbitrary odd integer and

(5.5) s1(n) = (9d+1)/2 =2 (mod 3).

Again, (5.3) and (5.4) show that s;(n) =1 or 2 (mod3) V k.

Subcase 3b: n even
We can write n = 2"3d (k > 1) and

2h-¥3d (even) for 1< k< h -1
(5.6) s1(n) =

3d (odd) for k= h.

From (5.6) and (5.5) it is apparent that S(n) contains h—1 even elements
and exactly one odd element (namely, s,(n)) which are divisible by 3. [0
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3RD EXPERIMENT

It is clear that, if Conj. 1 is true, s;(n) must eventually equal a power
of 2 (say, 2*) for some k =t and

(5.7) Sepi(n) = 2~F (i=0,1,...,h).

Let us define this final portion (k + 1 elements) of S(n) as the tail
of S(n) and denote its length by A(n). From (3.4)-(3.6) it can be readily
proved that

(5.8) A(n) > 4 for n ¢ {1,2,4,8},
and there is a unique n having a prefixed odd tail length, i.e.
(5.9) Mn)=2m+1 = n=2""H,

The quantity

(5.10) X(n) = % 3oAG).

i=l

has been found for 1 < n < 107 and its behavior vs n is shown in fig. 2

5

A 4

0 200 400 600 800 1000

3

Fig. 2 Behavior of XA(n) vs n.
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for 1 < n < 10%. The maximum value of A(n) within the above interval
equals 24 and pertains, obviously, to n = (2-2% - 1)/3 = 5,592, 405.
For 10° < n < 107, the value of A(n) oscillates about d ~ 4.32. The
naturals less than n having tail length equal to 4 are 933 in number for
n = 10° and 9,379,078 for n = 107. Mainly due to (5.9), we suspected
that A(n) should have a rather slow growth as n increases. The numerical
_evidence turning out from this experiment led us to believe that there
exists a finite limit d ~ 4.32 of A(n) as n tends to infinity. In fact, the
following theorem can be stated

THEOREM 16. The limit lim X(n) = d ezists and 4 < d < 4.75.

PROOF. Let us consider the k**(k > 4) level of the Collatz tree [2,
p.5] whose root is 1. From (5.8), (5.9) and (2.1) we can state that at most
one leave has odd tail length and that the expected number T{*(1) of
leaves having tail length 2i (i = 2,3,. = |k/2]) is

(5.11) TE)(1) = (4/3)F-%.

It follows that the expected value A, of the tail length of the leaves at
the kM level can be expressed by

1 .
- 2:(4/3)-% ,
(5.12) a7y ; i(4/3)
After some manipulations omitted for brevity, we can write

hrtt? — (h 4+ 1)r*+ — 1% 4 272
(5.13) Ab =2 (1 _ r)z ’

where r = 9/16. Taking the limit of both sides of (5.13) as k tends to
infinity yields

' im Ag = A _o 2T 45
(5.14) Bim Ay = lim Ay = Ao = e i

Since X; < \; for i < j and from (5.8), the theorem is proved. o



[19) On the 3n + 1 Problem: Something Old, etec. 103

As a consequence of Theor. 16, we can assert that the expected
value of A(n) is a negligible fraction of £(n). This fact agrees with the
known fact [3, p. 5] that the residues modulo 2 of s,(n) are uniformly
distributed.

REFERENCES

[1] C. BOHM - G. SONTACCHI: On the Ezistence of Cycles of Given Length in
Integer Sequences Like £n41 = z/2 if zn Even, and zn41 = 3zn + 1 Otheruwise,
Atti Accad. Naz. Lincei, Rend. Sc. fis. mat. e nat., LXIV (1978), 260-264.

[2] J.C. LAGARIAS: The 3n + 1 Problem and Its Generalizations, Amer. Math.
Monthly, 92 (1985), 3-23.

[3] J.C. LAGARIAS - A. WEISS: The 3n+1 Problem: Two Stochastic Models, Ann.
of Appl. Prob., 1 (1991) (to appear).

[4] G.M. LEIGH: A Markov Process Underlying the Generalized Syracuse Algorithm,
Acta Arithmetica, XLVI (1986), 125-143.

Lavoro pervenuto alla redazione il 27 febbraio 1990
ed accetlato per la pubblicazione il 10 maggio 1990
su parere favorevole di G. Koch e di R. Dvornicich

INDIRIZZO DELL'AUTORE:
Piero Filipponi - Fondazione Ugo Bordoni - Via B. Castiglione, 59 - 1-00142 Roma - Italia



