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Existence, Uniqueness and Stability for a Semi-Linear
Equation of the Viscoelasticity

B. D’ACUNTO - A. D’ANNA®

RiASSUNTO - Si considera un’equazione iperbolica del lerzo ordine, con un ter-
mine forzanle non lineare, che regge i moti unidimensionali di un corpo con un com-
portamento viscoclaslico di tipo rilassamento. Si discutono alcuni problemi di valori al
contorno per i quali si dimostrano anche dci principi di massimo. Inoltre, si studia un
problema di evoluzione e si prova la limilatezza e la stabilita alla Liapunov rispetto a
due melriche.

ABSTRACT -~ We deal with a hyperbolic third order partial differential equation
with a non-linear forcing tcrm that rules the one-dimensional motions of a body with a
viscoelastic behaviour of rclaration type. We discuss some boundary value problems for
which mazimum theorems are also slated. Morcover, we consider an evolution problem
and show the boundedness and the Liapunov stabilily with respect to two melrics.

Key Worbps - Hyperbolic third order PDE - Boundary value problems - Mazimum
principles - Liapunov slability and boundcdness.

A.M.S. CLASSIFICATION: 35L35 - 35B50 - 35B35

— Introduction

Let B be an isotropic, intrinsically homogeneous body with a vis-
coelastic behaviour of relaxation type. Denote by u the only non-vanishing
displacement component from a reference configuration. It is known [10,

(*)This research was supported by Italian Ministry of University and Scientific Research.
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13] that the basic motion equations lead to the following third order hy-
perbolic partial differential equation

(*) E(‘Il“ - urz)t + uy — ku:: = f'

Here, € and k are positive constants and denote, respectively, a relaxation
time and the ratio (< 1) of the initial and the regime values of the relax-
ation function typical of B. Moreover, in this work, the forcing term f is
supposed to be a non-linear function of u, u,, u,, that is

(**) f= f(z,t,u,u,,u,).

The evolution equation (*) follows from the relaxation representation;
however, the same type of equation is obtained via the creep representa-
tion [13].

When f = 0or f = f(z,t) equation (*) has been widely analyzed by
P. RENNO, sece.g. [4, 6,8, 9]. Then, some other problems concerning the
computation of the solutions and their qualitative behaviour have been
considered [5, 7). Furthermore, the unilateral phenomenon arising when
the free motions of I} are impeded by a rigid obstacle has been treated
(10, 12, 13, 14]; in this last case the scheme proposed is in complete
agreement with the analysis developed by an encrgetic approach [11].

In this paper, with reference to (*), (**), we discuss several questions,
which are a first step to solve physically meaningful problems - e.g., the
piston problem, the impact or support problems - and the properties of
the solutions of an evolution problem. We start with the analysis of the
motion with prescribed tension at an end and boundary conditions on a
characteristic of the operator (*). In the linear case we get the explicit
solution by applying suitably the classical Riemann method to the third
order hyperbolic operator defined by (*) (§1). This is also useful to
determine in the non-linear case the integral equation equivalent to the
differential problem (§2). The existence and the uniqueness are shown by
considering a map F of a metric space into itsell and proving that F' has

a unique fixed point. Afterwards, we study a boundary value problem
when, instead of the tension, the displacement of the end is given; we write
the (known) solution of the linear case in a new form useful for our aims
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and treat the non-linear situation with the above mentioned tecnique.
Successively, we consider (*), (**) with the only initial conditions and
examine an evolution problem by means of successive extensions of (some)
previous results.

Since, in special applications, such as unilateral and free boundary
problems, maximum principles are essential, we devote to them Section
3, where some maximum theorems are stated.

Finally, in §4 we examine the qualitative behaviour of the solutions
of (*), (**) assuming the ends of B are fixed and the forcing term (**)
depends linearly on u;. This situation occurs when the body is subjected
to a non-linear positional force. In this case, under suitable hypotheses on
f and f; and referring to the initial perturbations, we show the Liapunov
stability for the equilibrium and, besides, the boundedness of the solutions
with respect to two metrics, using the energy functional associated to (*).

1 — Explicit solution of a problem with given tension

We consider the operator L defined by

(1.1) L = €d,(8? — 82) + 7 — kd?

and discuss on Qr = {(z,8): 2 € Ir,z2 <t < T -2z}, I+ =]0,T/2[, T > 0,
the following problem

(1.2) Lu= f(z,t), (z,t)€Qr,
(1.3) u.(0,t) = b(t), teJr=]0,T[,
(1.4) | u(z,z) = uo(z), Gu(z,z)=g(z), z€lr.

Here, G is the operator

(1.5) G=¢(0 - 02)+(1-k)o.
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An explicit solution of the problem (1.2) - (1.4) is achieved by the
following

THEOREM 1.1. Under the hypotheses that b € C*(Jr), uo € C*(I1),
g € C°(It), f € C°(r), there ezists a unique solution u of (1.2) - (1.4)
with u € C*(Qr), (uy —vez)e € C°(Qr). Moreover, its ezplicit ezpression
is given by (1.16).
PROOF. Let (zo,%0) € Q7 and
Zo = {(I,t): lt—lol < to—t}, Qo:QTnZo.

We indicate by v(|zo — 2|, — 1), (2,t) € Zo, the Riemann function
(10, 8, 9] defined by

to—t

v(|zo—z|,t0—1t) = / .Fy(z,ty — t)dz

lzo—-=|

(1-6) Rt = e-‘e""‘{fo(w) + / [4nyTo(€y) + €N (L))

- Io(w(1 - 9*) 2)e'”"«ly} ,
where I, is the modified Bessel function of order n and

0<r<t, b=(1-k)/2%, 7=(1+K)/2%, §=k,
n=bt-r)/2, €=2pbr(t-r)]'?, w=b- )

Furthermore, we put

K% = 2¢(0? £ 8%,) — (14 k)0, ¥ 2k0, .
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We first solve problem (1.2) - (1.4) when b(t) = 0 by applying the
Riemann method to the hyperbolic operator (1.1). Setting

z;:(to+(—l)i2°)/2, ti=z;, 1=12,

D={(zt) e, 0<z2<2,,2<t<th—20— 1},

and recalling the properties of the function v [10], we obtain the following
explicit expression for the solution 2

(1.7)

2(zo,to) = —€uo(Z1)ve(z0 + 21,80 — t1) — Euo(Z2)vi(Z2 — Zo, 80 — t2)+

+ %7{”0(2)11""”(30 +2,8 — 2) + g(z)v(z0 + 7,80 - z)}dz+

+ % o/ {wo(2)K*o(lz0 — 2l 1o — ) + g(e)o(l20 — 2l to — 2) }dz+
+ % / f(z,t)v(zo + 2,8 — t)dzdt + % n{ J(z,)0(|20 — 2|, t0 — t)dzdi+
L

+ u(0)(£3. - k)v(l‘o, to) .

Moreover, it can be verified that 2 € C*(Qr), (zi — 2.2 ) € C°(Qr).
Assume, now, b(t) # 0 and note that, defining

P = zb(kv, — €v5) + b(ev, — kv),
Q = zb(Ev“ - 'U‘) + :tb'(v - Ev;) + evd’z y

one has

18 - / (Lzb(t))o(|zo — 2], to — t)dzdt = / (Qdz — Pdt).
8 st
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Let us compute the right-hand side of (1.8):

(:o,!o) zo
/ (Qdz — Pdt) = / {eblev — vt — v+ ko)t
(’2:‘2) *2

+ v(ezb” + zb' — kb) + evy(b - zb’)}dz =

(1.9)
4]
= / {zb(2ev.. — 260z — v + kv, ) + v(exd" + 2b'—
2]
— kb)}dz + £0,(0,0)0b(to) — v4(z2 — Z0, fo = t2)Z2b(ta)
(0,20—%0) 0
/ (Qdz— Pdt)= — /{xb(—ev.. — eva kv, $ )+
(zo.%0) %0
+ o(—ezb” - kb — zb) + eu,(b + 2b) }dz =
(1.10)

[}
= - /{3b(—2€v“ —28‘0,, +kﬂg+v‘)+
=0

+o(-ezb"~ kb—zb')}dz-+£v,(0,0)zeb(to)

From (1.9), (1.10) and recalling [10]

v=0, K*sv=00ndZ,, €v(0,0)=-1,

we deduce
(=0.%0) (0,t0—=0)
/ (Qdz — Pdt)+ / (Qdz — Pdt)=
(1.11) (z2,t2) (z0.t0)

= —2z0b(tg) — £vi(Z3 — o, Lo — 12)Z2b(12) -
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For the other two integrals we have

(0.0) to—xo
(1.12) / (Qdz — Pdt) = / B(1)(ed, — K)o(zo, 1o — t)dt,
(0,t0—20) o
and, moreover, proceeding as for (1.10), we obtain
(x2,12) z2
/ (Qdz — Pdt) = / {abK+v + vlezb” + (1~ k)zb]}dz-
(1.13) A ]

- GU‘(Zg — Toy to - tz)l'zb(tz) .

Therefore, from (1.11) - (1.13) we achieve

—/(Lzb(t))v(lzo—zl,to - t)dzdt= ]b(t)(ea,—k)v(:co, to—t)di—
i 0

(114)  —2zob(to)+ /{zb(z)lx’+v(|zo —alto - zH

+[ezb"(z)+ (1 — k)zb'(2)]v(|z0 — 2|, t0 —~ z)}d:—

- 26'1);(32 — Zo, to — tz):!:zb(tz) .

Then, we replace Qf with Qg in the identity (1.8); using analogous
arguments we find

(1.15)
- j(Lzb(t))t(xo + 2,80 — t)dzdt = / B(£)(eDy — K)o(zo,to — 1)dt—
o o

T
— 2ev(zo + 21,8 — t,)zlb(tl)+/{zb(x)1\'+v(zo +z,tg —zH
o

+ [ezb"(2)+(1 - k)zb'(2)]v(zo + 2, 80 — z)}d:r .
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We note, now, that the wanted solution is obtained from the one of
the problem (1.2) - (1.4) previously solved, by replacing in (1.7) z(z,t)
with u(z,t) ~ zb(t), uo(z) and g(z) respectively with uo(z) — zb(z) and
9(z) — ezb"(z) — (1 - k)zb'(z) and, lastly, f(z,t) with f(z,t) — Lzb(2).
Finally, we take into account (1.4), (1.5) obtaining

(1.16)

u(Zo, o) = —€to(Z1)ve (Zo+ 21,2 — 81)—EUo(Z2)ve(z2 — Zo, 8o — t2)+

+%o/{“o(z)K to(zot2,10 — 2)+9(z)v(To+ T, b0 ~ z)} dz+

+5 [{uule) K o(lza-al to - 2) + o(@)o(lza-alto - 2) Jaz+

+%/f'(z,t)v(zo+z,to - t)d:l:dt-}-% /f(x,t)v(lzo — z|,tg — t)dzdt+
0 fo
to—~2o

o (0)(e8s — k)o(zo, o)+ / B(1)(, - K)v(zo, to — 1)dt .

0

Under the hypotheses on b, the solution « has the same qualitative prop-
erties of the function z; thus, the theorem is completely proved.

2 — Initial and boundary value problems for the non-linear equa-
tion

Consider the equation
(2.1) Lu = f(z,1,u(z,t),u.(z,1), u(z,t)),

with L defined by (1.1). In Subsection 2.1 we study the following problems
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Problem A
Lu=f on S,
(2.2) u=1y(z), Gu=g(z)fort=zand z€ Ir;
(2.3) u=ga(t)forz=0, teJr;
Problem B

This problem is obtained from 2 changing (2.3) into

(24) u, =b(t)forz=0, teJr.

Moreover, in Subsections 2.2, 2.3 we discuss an initial value question

and an evolution problem.

2.1~ When f is a function of z, ¢, then, as we have shown in [11], Problem

2 has an explicit solution u(zg,%). This, setting

(o, g5 Zo, to) = €0(To + Z1,t0 — ) )uo(zy)—

)
1
—€vy(z3 — Zo,to — t2)ug(2z2) — = [ {uo(z) K v(zo + 7,80 — )+
23

(2.5) .
+o()(za+ 2,10~ 2) }dz + % / {u@)K*(I20 - 2l,t0 - 2)+
+9(z)o(|20 - 3l,t0 — 7) }dz,

u(f;z0,00) = %/f(:c,t)v(lzo - z|,to — t)dzdt—
(2.6) "

- %/f(z,t)v(zo + z,t0 - t)dzdt,
a;
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is given by
(2.7)  u(zo,t0) = a(to) + u(uo — a,9 — Ga;zo,45) + u(f — La;zo,1p) -
We consider now the non-linear case and prove

THEOREM 2.1. Suppose a € C*(Jr), uo € C*(I7), g € C°(Ir) and
there ezists a positive constant H such that

If(:r’ta u,u,,u,) - f(-"-', tyu.vu:nu:)l S H{Iu - u‘|+
(2.8)
+ lue - uzl 4+ Ju - w1}

Moreover, if

(2.9) a(0) = u(0)

and f(z,t,u(z,t), u:(z,t),u(z,t)) € CO(Qr) ¥ u € CY(Qr), then Prob
lem A has a unigue solution u € C*(Qr) and (uvy — u,.), € CO(Rr).

PRrooF. In our proof we shall use (2.7) written in a simpler and more
convenient form. Indeed, proceeding as in §1, from the identity

vLla = O.[a(kv, - ev:)] + Bi[a(eve — v,) + a'(v — €v,) + £va”]

we formally obtain

- /v(la:o — 2|, 1o ~ t)La(t)dzdi+ / v(zo+2, o - 1) La(t)dzdl =
L a)
(2.10) = —a(to) +u(a, Ga; 2o, t0) — £v,(20, Zo)a(to — Zo)+
fo—%0

+ / a(t)(kd, — £0..)0(zo, to — 1)d1.

Q
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When f depends only on z,t, from (2.7), (2.10) we get the following
expression for the solution of Problem A

u(zo,t0) = —€v(Z0, To)a(to — To)+

(2.11) + 7°a(t)(k0, — €0,)(Zoy to — t)dt+

+ "(“Oa!]; Zo, tO) + u(f; zo,to) .

In the non-linear case (2.1) we achieve again (2.11), but this represents
no more the solution in explicit form.
In order to show the theorem, we put

w(Zo,t0) = —€v:(Z0,Z0)a(to — Zo) + u(Zo, g; Zo, o)+

+ ] a(t)(ka, - eB,,)v(:ro, to — i)dt N
]

(2.12)

and introduce the functional transformation F that maps u € C‘(ﬁr)
into the function

(2.13)
z(::o,to)=% w(|z0 — 2|, to = ) f(2,, u(z,1), s (2, 1), ua(z, £))dzdtt

+w(zq,tp) — -21-/v(zo+z,to =) f(z,t, u(z,t), u:(z,t), ue(z,t))dzdt .
g

Under the hypotheses of the theorem we can differentiate (2.13) with
respect to z¢,l;. So, we have
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1
z,‘,(zo,to) = w,o(zo,io) + '2' vzo(lzo - zlvtﬂ - t)f(z,t, u,u,,‘u‘)d:tdt—
Qo

- %/v,o(zo + z,t0 — t) f(z,t,u, u;, u,)dzdt+

,
17
+ § v(zo —Z,Zo — a:)f(z,z — T + to,“, uz’ul)dz'*'
0
1 Totto—~T2
+ Z / v(GZ — Zgylo — t)f(zht’ U, Ug, ul)dt+
z2
17
+ 2 v(z ~ 29, % — Z9) f(2,20 — T + Lo, U, Ue, ug)dT+
<0
1 tg—zg—=)
+ n / v(zo + 21,80 — 1) f(21,1, u, u,, u,)dt+
L3
2
+ = Jv(zo + 2,20 + 2) f(2,%0 — To — T, U, Uz, Uy )dz .
0

In this formula the last five integrals vanish since either v = 0 on 92,
or z; = —z; + o + (~1)izo, i = 1,2. Therefore,

1
2z (Zoy o) =Weo(Zo, to) — 3 /v,o(zo + 2,80 — t)f(z,t, u, uz, u, )dzdl+
2
1
(2.14) + 5/”:.»('30 - z|,t0 — t) f(z, ¢, u, uz, u)dzdl.
1)

Similarly,

1
21y(Z0,%0) =Wy (Tost0) — 3 /v,o(zo + z,t0 — t) f(z,1,u, ue, u)dzdi+
2]

1
(2.15) + 3 /v.o(lzo —z|,t — ) f(z,1, u, v, u,)dzdl.
Qo
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From (2.13) - (2.15) we see that F maps C;(Qr) into itself. Then, we
put z* = F(u*) and equip Cy(Qr) with the norm

lull = max fe=0u(zo, to)| + max fe™ 1, (zo, to)}+
+ max [e~*u, (2o, %0)|, (Zo,20) € O,
where c is a positive constant we fix later. Moreover, let
M, =maxv(|zo — z|,ty — t) + max |v(|zo — z|, % — t)|+
+ max |v,(|zo — zl,80 — t)|, (z,8) €Ro, (Zo,t0) € Or,
M,; = maxv(zo + 2,1l — t) + max [v:(zo + 2,80 — )]+
+ max |v(zo + 2,80 — t)], (z,t) € Do, (20,t0) € Or.
From (2.13), recalling (2.8) and the definition of norm, we get
|2(zo, t0) ~ 2°(20, o)} <

< (M1/2)/|f(z,t,u, Uz, 1) — f(z,t, 0", ul, uf )|dzdt+
1t

(2.16) + (M/2) / | f(zyt 8, vy ) = f(2,,8, 4,4z, u)|dzdt <
nl

< %MH"u—u’” / e'dzdt + / e*dzdt §
fio a;

where
M= ma.x{Ml,M,} .

Let us multiply (2.16) by e~“* and compute the integrals. One has
- . A!H . Zo—=% —-C(X
ez — 2| < _CT”“"“ "{2_e¢(o 2) _ g-e(r1+7o) .

+ e c0[2 — ™2 — e"’]} .
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Therefore,
(2.17) ez — 2| < MH|ju - u*||/c.
Moreover, (2.14) and (2.15) imply

(2.18) €™z, — 27| < MHllu —w]|/¢?,

(2.19) e~z — z{| < MH|lu—u"||/c.

By taking into account the definition of norm, from (2.17) - (2.19) it
follows ||z — z°|| £ BM H/c?)||lu — v*||. Assuming ¢ > 3IMH, F results
a contractive map. So, we can conclude that there exists a unique u €
C'(Qr) satisfying (2.11) when f is the non-linear forcing term given by
the right-hand side of (2.1).

The analysis of the expression (2.11), then, points out v € C*(Qr)
and that u, — .. is continuously differentiable with respect to t. Be-
sides, the boundary conditions (2.2) are verified by means of (2.9). Con-
sequently, u is the only solution of Problem A.

An analogous result holds also for Problem B; indeed, one has

THEOREM 2.2. Assume ug, g and f satisfy the hypotheses of Theor.
2.1. Ifb € C¥Jr), then there ezists a unique solution u of Problem B
such that u € C*(Qr), (U — uze)e € C°(0r).

Proor. We proceed as in the previous theorem. Indeed, we can
apply the same methodology replacing F with the map ' defined by

F'u(zo,t0)= -;— /v(zo + z,1 — t) f(z, 1, u(z,1), v (z,1), w(z,t))dzdt+

)

+ wa(zo,to)+% / v(|zo — 2|, t0 — ) (2,8, u(2, 1), u:(2, 1), w(z,1))dzdt
17

with wg given by the right-hand side of (1.16) for f = 0.
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2.2~ We refer again to the semi-linear equation (2.1) and consider an
initial value problem on

§={(z,t):0<t<1/2, t<z<1-1}.
We want to study (2.1) on S with the following initial conditions
(2.20) u=1u;, W=1u, Gu=1us fort=0and z € Iy,
where
(2.21) In, =]0,1].
For this problem, setting
So={(z,0) €S:0< i<y, T0—log+i<z<zg+1t—1},

one has

THEOREM 2.3. Suppose u; € C3=i(Toy), i = 1,2,3, and that there
ezists a positive constant H such that

If(zvtvu’ “tiul) - f(zvt)u.au;’u:)l < H{lu - u‘l + lut - u;|+
(2.22)
+lu -]},

if f(z,1,u(z,1),u.(z,1),u,(z,1)) € CUS) VY u € C(S), then the initial
value problem for (2.1) on § has a unique solution u € C*(S), (uy —
e )s € C°(S), satisfying initial conditions (2.20).

PROOF. Let us recall [10] the solution i of the above-cited problem
with f = 0 belongs to C?(S) and (& — i), € C°(S); moreover, & is
explicitly given by

1 zo+to
i(z0,t0) = / (ur(2)(607 = 3,)+ uz(2)(k— £0) +us(z))o(| 7o ~ |, to)da—

zo—to

- %v:(to,ln)[ux(zo —to) + wi(zo + b)), (20,%) € S.
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In the non-linear case one realizes the solution of the initial value problem
can be obtained as solution of the following integral equation

(2.23)
u(zo0,10) = % / f(2,1, 4(z, 1), ui(2,1), vz, 1))0(|20 — 2|, to — 1)dzdt+
So

+ #(zo,t0),  (Zoyta) €S.

Now, we are ready to apply to (2.23) the same method used in Theor.
2.1 and show completely the theorem.

2.3- We conclude this section with the analysis of the evolution problem
on

(2.24) Ar ={(z,t):z2 €I, 0<t<T}, T>0,
with the initial data (2.20) and the boundary conditions
(2.25) u=ajt) fort>0 andz=3,j5=0,1.

We want to solve this problem by successive extensions of previous con-
sidered questions. So, we need the laws of the jumps propagation along
the characteristics ¢ + z = constant. Defining, as usually,

(W] =w* —u, [f]=f*-f, (d/dt) =
and applying the Rankine-Hugoniot method, we obtain
2fu) + (1 - k)y] =0,
2eful, + (1 - Bl + 5 1ol + (14 K)u)} =0,

(2.26) 2(Gu) + e[u]” + 2k[u) = 0,
1-k
2 [

u) — ut e:_ k) (u+

2e(uli, + (1 = k)uu +

+ S+ (L= 20 (a2 - K] e = ).
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The way of solving the evolution problem can be, now, rapidly sketched
as follows: first, we use Theor. 2.3; then, we employ Theor. 2.1, the
conditions (2.26) and the characteristic problem discussed in [15), and so

on. Thus, we get

THEOREM 2.4. Assume u;, i = 1,2,3, and f satisfy the hypotheses
of Theorem 2.1, 2.3 and that a; € C*(Jr) with a;(j) = w(5), a}(j) =
u2(j): ea}l(j) = e‘u’{(j) - (1 - k)u;(]) + u3(j)l J =0,1. Then equation
(2.1) has a unique solution u verifying initial and boundary conditions
(2.20), (2.25); moreover, u € C*(Ar) and (uy — 4. ) € C°(Ar).

3 — Some maximum principles

At first, we consider the case studied at Section 1 in which u, is
assigned on the boundary z = 0 and establish the following

THEOREM 3.1. Let the hypotheses of Theorem 1.1 be fulfilled. If in
addition

(3.1,) b<0, (£0), (£0)onJr,
(3.1) 4 >0, (>0), (20)onIr,
(3'13) 9201 (Z 0)’ (> 0) onIT’

and, moreover,

(32) f 20 on QT '

(3.3) 4(0) =0,
then the solution u of the problem (1.2) - (1.4) is such that

(3.4) u>0 onQr.
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ProoF. The proof is based on the analysis of some inequalities in-
volving the Riemann function v, as we deduce by examining the form
(1.16) of the solution.

At first, we observe that from the expression (1.6) of v it follows that

(3.5) v>0,v<0 onZ.
Furthermore, as it has been established in [9], one has
(3.6) K*tv>0 (2,0) € 2.

Inequality (3.4) is, now, a consequence of hypotheses (3.1) - (3.3) and
properties (3.5), (3.6).

We examine, then, the same question with reference to the non-lincar
case studied at §.2 and denoted as Problem B.

THEOREM 3.2. Assume thal u,, g, and f verify the hypotheses of
Theorem 2.1 and that b € C*(Jr). If (3.1), (3.3) subsist and, moreover,

3.7) f(z,t,u,u 1) 20 foru>0,
then the solution u of Problem B is sirictly positive on the set Qr.

PROOF. Let us introduce the function

(3.8)
wp(To, to) = —€uo(z1)v(To + T1, 80 — t)—

- Euo(32)v'(2}z — Zg,tg — tz) + uo(O)(ec'), - k)‘v(.’to, t0)+

+ %/{uo(z)](*v(zo+z,to - z)+g(z)v(zo+ 7,8 — z)}dzt

+% O/[Ho(z)K*’v(Izo—zl,to-z)'*'.‘l(z)”(lzl’_zl’t° —z)ldzt

+ ] b(t)(d: — k)v(zo, 1o — t)dt
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and observe that for (3.5), (3.6) it results
(3.9) - wp(zo,%) > 0 on Q7.

On the other hand, from (3.7), (3.9), we derive
(3.10) J(zoyto, Way W2y, Wh,) > 000 7.

We recall, now, that the solution u of the Problem B, as it has been
shown in Theorem 2.2, is approximated by the sequence

u%(z0,1) = wp(Zo,%) , u"t(zq, %) = wp(2o,to)+

+% / o(zo+2, lo—1) f(3, 1, u"(2,1), u2(z, 1), u7(2,1))dzdet
(3.11) &

+% / o(|zo— |y to—1) (&, 1, u™(2,1), u2(2, 1), ul (=, 1))dzdt .
o

From (3.9) - (3.11) it follows u™*(z0,%) > 0 on Q7. Since (3.9) holds,
one has ¥t — u > 0 on Q7.

REMARK 3.1. The restriction a(t) of u(z,t) to the line z = 0 is still
strictly positive since we have

a(te) = —2ev,(21, to—tl)“o(21)+/ b(t)(ed — k)v(0,t,—t)dt+
0

(3.12) + lua(e) K *o(z, o - 2) +9(@)o(z, to—2)ldt

+ / oz, to~1) f(, 1, u(z, 1), us (2, 1), w(z, 1)) dzdt.
4 _

In particular, for f = f(z,t), formula (3.12) gives us the connection
between a and b; finally, if up = 0 then a is strictly increasing.
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Also for the Problem A studied at §2.1, in which u is prescribed on
the boundary z = 0, an analogous maximum theorem subsists. Indeed,
we have

THEOREM 3.3.  Suppose that the hypotheses of Theorem 2.1 are
Julfilled. If in addition

(3.13)) kat+ea>0 (20)onJr,
(3.13,) e(0) =0,

(3.13y) g0 | (>0)onlr,
(3.13,) uy=0onlp,

and, moreover,
(3.14) [zt u,up,u,) > 0 foru>0.
Then the solution u of the Problem A verifies

u>0 onr.

ProoF. In the occurrence of the proof of Theorem 2.1 we have
demonstrated that the quoted solution u satisfies the integral equation
(2.11) and this, by using the notation

u(a; Zo,to) = —Evg(zo, zo)a(to - z°)+

3.15 o
(3.15) + / a(t)(kd: — £De)v(z0,t0 — t)dt,

)

can be rewritten as

(3-16) u(Zo,%0) = u(a;zo,lo) + (o, g; To, to) + u(f; 2o, t0) -
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A basic role to determine the sign of the right-hand side of (3.16) is
played by the inequality

(3.17) v,<0 on 29, r=|zq—2|,

which is a consequence of (1.6).
Integrating by parts the integral in the right-hand member of (3.15) and

recalling that v = 0 on 37, we attain to
u(a; zo,25) = —£a(0)v,(o,t0)-
(3.18) to=%o
- / [ka(t) + ea(t)]vr (o, to — £)dt.

0

Since (3.17) holds, the hypotheses (3.13,2) assure that
(3.19) u(a;zg,8) >0 (20) on $r.

Furthermore, by means of the expression (2.5), we get

(0, 2a,t0) = 5 [ o@No(lza = 2l ta =) = 9z + 2,10 = 2)lds+

]
1
+ 5/9(3)?’“30 - z|,ty — z)dz,
o

in which it is |zo — z| < 7o + z. Therefore, (3.1354) and (3.17) imply
(3.20) u(uo, §; Zo,2%) 20 (>0) on Qr.
Afterwards, from (3.19), (3.20) we deduce
(3.21) w(zo,to) = u(a; Zo, 10) + u(to, g; Zo, %) > 0.
Finally, we observe that from the relation (2.6) it follows
u(f;2zo,t0) = / f(z,t,u, 4z, u)0(|20 — 2|, 8o — t)dzdt+

fg-0}

+ / F(2y 2, s, we)[t(|20 - 2]y fo - 1) = v(z0 + 2, to — £)]dzdL.
nl
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b2 this farmula it is v > 0 on Qp — 4, while |z — z| < 2+ z and (3.17)
imply
V(IIO - 3',‘0 - t) - v(zo +z,l - t) >0 on Q’D’

At this point reapplying to the integral equation
(zo, o) = w(Zo, %) + u(f; o, %),
in which f fulfils (3.14), the same argument employed in the proof of

Theorem 3.2, one proves u > 0 on Q.

REMARK 3.2 Also on the first derivatives of the solutions of the
Problems A and B some maximum principles can be stated, under suit-
able hypotheses and using the same arguments.

4 - Liapunov stability

Given the function ¢(z,t,u) defined on the set A = {z € Iy;,t €
I,u € R}, I = [0,00{ and Io; =]0, 1], together with the derivatives ¢, ¢y,
we particularize the evolution problem examined at §2.3 by considering
in the set {z € Jy,,1 > ty 2 0} the equation

(4.1) (g = Use ) + Uy ~ kuge = —(€0; + k)¢(z, 1, u(z,1)),

where 0,¢ = ¢ + duu;, with the same initial conditions and the following
boundary data

(4.2) u(0,t) =u(1,0)=0 fort>1,2>0.

Consequently, the joint conditions that we associate to (4.1) and (4.2)
are

u(j)=0 , euf(§) - (1 - k)u(j) + ua(s) = 0

(4.3) (4,5) € 1,2} x {0,1}.

If the right-hand member of (4.1) verifies the hypotheses of Theorem
2.4, such a problem admits a unique solution of class C?(Iy; x I).
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We intend, now, to investigate on some qualitative properties of these
solutions and in order to realize this analysis we need the following nota-
tions and definitions.

Referring to a general element e € C?(I, X I'), we consider the re-
striction e(-,t) € C?(Ip;) and introduce the two metrics

( 1
(o)) = [lel, + el + iz,
(4.4) « ’

d(e)() = [lel, + €2, + €hldz + de)().
0

\

Consequently, the following definitions are meaningful.

DEFINITION 4.1.  The solutions u(t) of problem (4.1) - (4.3) are
uniformly bounded with respect to the metrics d, and d; if for any a > 0
and ty > 0 there ezists a f(a) > a such that if the initial data verify
da(u)(to) < a, then di(u)(t) < B for every t > t,.

DEFINITION 4.2. The solution u(t) = 0 of problem (4.1) - (4.3) is
uniformly stable with respect to the metrics d, and dy if for any o > 0
and ty > 0 there ezists a §(o) €]0, 0] such that if the initial data verify
d2(u)(to) < &, then dy(u)(t) < o for allt > t,.

Now, we are able to give the following

THEOREM 4.1. Suppose that the function ¢(t) satisfies the condi-
tions

(4.5) oz, 1,2)z20, &(2,8,2)z2<0 on A.

Then, with respect to the metrics d; and d,, for the problem (4.1) - (4.3)
we have

a) the solutions are uniformly bounded;

b) the solution u = 0 is uniformly stable.
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PROOF. We carry out the proof considering the Liapunov functional
defined by

V() =5 [l = voe + ) + (1= Byut
(4.6) ° .
+ K1 - E)(e2 + u? 42 / é(z,1, 2)dz))dz .

First of all, it is useful to determine lower and upper bounds for V(t).
For this end, we recall that [3]

1
(4.7) u(0,t)=0 = /u:(z,t)dz > u¥(z,1);
°
furthermore, (4.5), implies

1
(4.8) / &(z,t,2)dz > 0.
0
Therefore, using (4.7) and (4.8), from (4.6) we derive

4.9) v 2 LBy,

On the other hand, it is known [2] that given n positive numbers a; and
an integer s > 1 the inequality

l.n 2 l.n
(4.10) (Za.-) < n"‘Zd?
is fulfilled. By employing (4.10) we can increase the first term of the
integral (4.6). Since it is 0 < k < 1 too, we have
ax(1, .
V() sm——é—‘) / [4(u2: + ul + 6"+ u)t
(4.11) b
+u§+u3+2/¢dz]dz.
)
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As regards the last term of (4.6), we note that from (4.5) it follows ¢¢; < 0
and, therefore, |¢(z, t, z)| is a decreasing function of ¢ for each fixed z € Iy,

and z € IR; consequently
(4'12) |¢(3,t,2)l < |¢(z,0,z)| y TE Io, y ZER.

Furthermore, since (4.5); implies ¢(z,t,0) = 0 too, it results
(413) #(z,0,2) = [ #c(z,0,0)dC;
[}

indicating by

m(|z}) = max{|¢¢(z,0,{), z €L, [{] <2},
(4.13) can be considered together with (4.12), obtaining
(4.14) I¢(z,2, 2)| < m(|2])]=].

Inequality (4.14) allows us to determine an upper bound for the third
and the last term of (4.11); all things considered we can write

(4.15) V(t) < max(1,&){3d3(u)(t) + 2m?(|u|)u® + m(|u|)u?}.
By virtue of (4.4), and (4.7), the relation (4.15) give rises to
(4.16) V(t) < 4max(1,€)[1 + mldy(u)(e)]*d3(u)(t).

Now, we estimate the derivative V of V along the solutions of (4.1)
- (4.3). It results

V@) = [ {60~ tee +9)+ (1 = Dl (e =~ s = G+

+ k(1 -%) (u,u:c + voue + &(z, ¢, u)u, + /¢,(z,l,z)dz) }dz
<]
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and integrating by parts with the conditions (4.2) and executing the nec-
essary simplifications, one obtains

V() = / [—ek(u“ — Uz + @) + k(1 - k)/¢,(z,t,z)dz] .

0
Hypothesis (4.5), assure that

V()<0 Vvi>o0.

Inequalities (4.9) and (4.16), considered together with the decrease of the
function V(t), imply that for any time ¢ > {, it results

(4.17) dy(u)(t) £ a[1 + m(da(u)(to))]d2(u)(te),

where a? = 16 max(1,€)/k(1 - k).

At this point, exploiting (4.17), we observe that, given a > 0 and
B(a) = (1 + dy(@))aa, the solutions of (4.1) - (4.3), starting from initial
data such that d,(u)(ts) < a, verifies the condition d;(u)(t) < 3, for all
t 2 tp.

At last, if we assume & = o/(1 + m(0o))e, o > 0, and the initial data
fulfil d5(u)(to0) < 6, then the corresponding solutions of (4.1) - (4.3) verify
dy(u)() < o, for all £ > .

Thus the Theorem is completely proved.
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