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The Spectrum of the p-Laplacian
on Kahler manifold

M. PUTA - A. TOROK

. RiIAsSsuNTO ~ Si studiano alcune propriela spettrali del p- Laplaciano su una varield
Kadhleriana compatta.

ABSTRACT ~ In this paper we study some spectral properties of the p-Laplacian on
compact Kahler manifolds.
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1 — Introduction

Let (M, J,g) be an n-dimensional Kihler manifold (all manifolds are
assumed to be compact, connected and of complex dimension n > 1)
with complex structure J and Kihler metric g. By A? we denote the
Laplacian acting on p-forms on M. Then we have the spectrum for each
P

Spec?(M,g) = {0< Xip S A2p £ ... — 00}
where each eigenvalue is repeated as many times as its multiplicity in-
dicates. It is well known that Spec’(M,g) = Spec®™?(M,g) and imme-
diately from Hodge theory that 0 € Spec®(M,g) if and only if the p-th
Betti number g, # 0 and 0 has multiplicity 8, # 0.
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An interesting problem on the spectrum is as follows: “Let (M, J,g)
and (M’,J',¢') be compact Kihler manifolds with Spec®(M,g) =
Specf(M',¢') for a fixed but arbitrary p. Then: is it true that (M, J,g)
is of constant holomorphic sectional curvature % if and only if (M’,J’,¢’)
is of constant holomorphic sectional curvature 4’ and h = h’?7".

The answer to the problem is affirmative for p = 0,1,2,...,6 and
some particular values of n which are determined by a technical argu-
ment which is used in all the proofs, namely the condition that some
polynomials should be strictly positive, [3], [4], [6]-(8].

In this paper we shall prove that this argument can be extended
for each p € IN, p > 1 and we shall determine most of the values of n
for which it applies. To obtain the exact values of n one can use the
computer. Morcover, the method which we have used is applicable also
to the real case, see [5].

2 — Preliminaries

Let M be a compact Kihler manifold of complex dimension n. If
(6%,...,6") form a local field of unitary coframes, the Kihler metric g
and the fundamental 2-form @ are respectively given by:

1 — .
g=§Z(0‘®0'+0‘®0‘),
v-1 i AP
0= —5—20 AG.
Let O = TR0 A &, be the curvature form of M. Then the

curvature tensor R is the sensor field with local components R;:,,,. The
Ricci tensor E = (E;) and the scalar curvature 7 are given by:

1 AT LG A
= EZ:(R,,@ AG + R0 NG
T=2Y Ri.

where

Ri=2ZRfkj-
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We denote by |R| and |E| the length of R and E respectively. Then
for each p € IN, p < 2n, the Minakshisundarm - Pleijel - Gaffney’ formula
is given by:

Zexp(-—,\,,,,t) =(4rt)~" [aO,p +ta,+...+ t"aN,,] +
(2.1) k
+O(ENrH),

as t \, 0, where we have (see [2]):

(2.2) a9, = (2:) J dM ;
((5)-o()] frews

s [ {[() -n((p 7))
[2(7) + () (525 v
e [(5) - (5o () s

Let G and B be the Einstein tensor field and the Bochner curvature
tensor field. Their components (G;;), (Biju) are respectively given by

(see [7]):

(2.3) ap=

az'

(2.4) +

1
(2.5) Gij = Bij — 50T



260 M. PUTA - A. TOROK (4]

Biju = Riju — ——(Ejega — Ejgu+
2n + 4

+ Eugjx — Eagy + E;r JiJa — Eje Ji Jut
(2-6) + Jis EipJi = T By J{ — 2E3 J{ Jij—

. 1
-2E,J{Ju)+ m [gjkgﬂ = gigirt

+ JieJa = Jjndie — 2«’&1-7-‘,']1'-

Then we have:

(2.7) IGI! IE|2 - _];_‘.1'2 :
8
2 _|RI2 — 24 T

On the other hand a straightforward computation shows us that for
p¢{1,2,3,2n - 1,2n}:

29) (2:) _ 2n(2n—1)(20 - 2)(2n - 3) (2n - 4)

p(p—1)(2n—-p)(2n—-p-1)

2n-2\  (2n-2)(2n-3) (2n-4
(2.10) (p—l)‘(p—lxzn—p—n(p—z)

and then the formula (2.4), by means of (2.7), (2.8), (2.9) and (2.10),
takes the form:

8
@11)  a,=c J {40l + 251G + vty au,

4
n(n+ 1)

where:
(2n -

= 360p(p— 1)(2n - p)(2n—p - 1)
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and
a =8n* — n*(60p + 24) + n*(210p? - 30p + 22)-

(2.12)
— n(180p° — 15p* + 6) + 45p*;

B = —4n® 4 n*(180p + 36) + n3(—450p® + 30p — 83)+
(2.13) + n?(360p° — 15p? — 210p + 69)+
+ n(—90p* + 105p® 4 180p ~ 18) — 90p?;

¥ =20n° — n®(120p + 44) + n*(240p? + 180p + 19)—
(2.14) — n®(180p° + 270p* + 7) + n*(45p* + 180p° — 150p + 21)—
— n(45p* — 75p* — 90p + 9) — 45p°.

If p takes one of the values 1,2,3, 2n — 1, 2n then the formula (2.4)
becomes:

8
ay,=c° / {4(1"|Bl2 + mﬂ°|G|2+

(2.15) M
0.2
+ wn ¥ 1)7 T }dM
where:
(i) ifp=1and n 2> 1, then
ool g d,.,

360’ T @n-D@En-2)2n-3)

(ii) if p=2 and n > 2, then

0 _ 1 Eo = f||:=2 R
(2n-2)(2n-3)"’
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(6]

whileforp=2,n=1

1 5
| o_ 0o_2 o_
< 2'360, a 11 ﬂ 2’ 7 ’
(iii) if p=3 and n > 2, then
c°=—1— £°=i&3-
‘6-360-’ 2n-3'
(iv) if p=2n-1and n > 2, then
cO = L EO - L:zn—l .
360’ (2n—1)2n-2)(2n - 3)’

(v) if p=2nand n 2 2, then

0 'p=2n

=30 &= 2n(2n — 1)(2n — 2)(2n - 3) "

Here ¢ stands for any of the symbols a, # and v and £ | means
p=po

that in the expression of £ we take p = py. Note that a®, %, 4° are also
polynomials of n in all of the above cases (i)-(v), excepting the situation

p=2,n=1

REMARK 2.1. We conclude that if (n,p) # (1,2), the sign of the
coefficients of [ |B|2dM, [|G|*dM, [r*dM in the formulae (2.11) and
M M A

(2.15) can be obtained by studying the polynomials a, 8 and y. We see
that whenever one or the polynomials a, § or - is non zero for some given
n,p € N, p < 2n, (n,p) # (1,2), it has the same sign as the corresponding
before mentioned coefficient even for the cases p =1,2,3, 2n — 1, or 2n.

To exploit this, from now on we shall write (2.11) and (2.15) as:

. - 8 =
oxp =¢ [ {16101 + 5 BIGT+

(2.16)

+ "7‘r2}d1l'[ ,

4
n(n+1)
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where @, f and 4 have the appropriate expressions.

3 — Some remarks on the functions &, ﬂ~,'7

In this section we shall present some properties of the functions &, 8,5
which will be essential in the following considerations.

THEOREM 3.1. Letp,n € llf', p < 2n, let a, 8,7 be the polynomials
given by (2.12)-(2.14) and let &, 8,7 be the functions introduced by (2.16)

in Remark 2.1.
(i) The function a(-,p) is strictly positive for p > 22 and for 1 <
p < 21 it has only the following integer roots:
n=8 for p=2;
n=8 for p=14.
(ii) Ifp> 100 and ne[0.51p;0.6198p]U[0.6454p; 0.82225p]U[1.2755p;

2.2799p] U [2.466?1);42.3961)], then the polynomials a,f3,v (and
the funclions &, 3,7) are strictly positive.

<2n) _6(2n—2) =0
4 p-1
if n(2n~1)-3p(2n-p)=0

. u-1 u-1
'ﬁn=_2_-i p= 2 iv’

(iii)

where u,v are natural roots of the Pell equation u? — 12v® = 1.
The least solutions are up = T, vo = 2, 4y = 97, v; = 28, uz = 1351,
v, = 390, which give:

(n;p) € {(3;1),(3;5),(48;20),(48; 76), (675; 285), (675; 1065)}

(iv) i (3) - 6(**=) =0, then y(n,p) < 0.

p-1
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The results of (ii) can be slightly improved if we consider for p a
greater lower bound, see the Remark 3.2.

REMARK 3.1. If p < 100 the roots of the polynomials a, # and 7 can
be determined using some numerical methods [1] and the computer. In
the Table 1 there are some results.

Table 1
P lr the values of n such that &,5,5 > 0
1 - - - [8,51]
2 1 34,7 - (9,94]
3 — - [4.6] 10,136
4 2 3 (58] 12,179
L — 4 6,10] 15,221
6 3 45 7.12) 18,264
7 —_ 5,6 8,14] 20,306
8 4 6.7 9,17) 23.348
9 — (6.8) [10,19] 25,391
10 5 (7.9] 12,21) 28,433
20 112 1417 24,43] 53,857
40 [2124] [2634]  [50,89]  [102,1705)
60 [31.36] (3950]  [75,135] [150,2553]
80 [4149] {5266] [101,181] [199,3401]
100 (5161]  [6583] [126227]  [247,4249)]

We obtain all the values found in [3], [4], [6]-[8], with the exception of
n = 9 for p = 4 (probably a miscalculation in [6]. For p = 3,4,5,6 we
have found some new values too.

Proor oF THEOREM 3.1. By remark 2.1, for (n,p) # (1,2) it is
enough to work with the polynomials a, 8,7. To simplify the calculation
we shall take m = 2n and then we have:

a(n,p) = 7¢/(m,)
B(n,p) = 38'(m.p)
1(n,p) = 11—6(m = 2)y'(m, p)

where:
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o'(m,p) = 2m* — m*(30p + 12) + m*(210p* - 30p + 22)—
— m(360p° - 30p° + 12) + 180p*;
B'(m,p) = —m® + m*(90p + 18) — m®(450p* — 30p + 83)+
+ m?(720p° - 30p® — 420p + 138)—
— m(360p* — 420p* — 720p + 72) — 720p%;
9'(m,p) = 5m® — m*(60p + 12) + m3(240p* + 60p — 5)—
~ m?*(360p® + 60p? — 120p 4 24)+
+ m(180p* — 120p* — 360p + 36) + 360p°

Now (i) and (ii) follow from the claims below and by the determina-
tion of the roots of a(-,p) for 1 < p < 21 with a computer.

CLAM 1. For each z % 2n and p > 22 we have o/(z,p) > 0.
Making the substitution z = p(z + 1) we obtain:

o'(z,p) = p*(22% — 222° + 1322% — 22z + 2)-
- p*(122° + 662 + 66z + 12)+
+ 220%(2* + 22 + 1) — p(122 + 12).
On the other hand:

27— 2223413222 - 2224 2= (22 +1)* +(2* - 11241)+72* >

(3.1)

(2 +1)12+72 =249 +1
and
(3.2) p*>22p*, if p>22.

Using the relations (3.1) and (3.2) we have for each z € IR and p > 22.
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o' (p(z + 1),p) > 220°(z* + 92 + 1) — p*(122° 4 662° + 662 + 12)+
+ 22p% (2% + 22+ 1) — p(122 + 12) =
= p*2* + p*%[212° — 122 4+ 2]+

12 12
+p*(112-3)* + p* [92’ o + (1 - ;T!)] +

+ 22p%(z+1) > 0.

CLamM 2. If p > 100 and £ = 2n € (—o0,—p] U [1.02p; 1.6445p] U
[2.551p; 84.792p], we have

B'(z,p) > 0.
Let us compute the values of the polynomial g’ for z = kp.

B'(~p,p) = 1621p° — 42p* — 757p° — 1302p* + 72p =
= 1618p° + p*(p — 42) + p*(»* — 757) + p*(p* — 1302) + 72p.

and then 8'(~p,p) > 0if p > 100. In a similar way we obtain for each
p > 100:

£'(0,p) < 0 B'(2.513p,p) < 0
B'(pp) <0 B'(2.551p,p) > 0
p'(1.02p,p) >0  ['(84.792p,p) > 0
p'(1.6445p,p) > 0 ['(84.99p,p) < 0.
£'(1.6695p,p) < 0

Hence for each p > 100 we can demarcate the roots of the polynomial
B'(-,p) and then the Claim 2 follows easily.

CLaiM 3. If p > 100 and z = 2n € [0;1.2396p) U [1.2908p; 4.5598p] U
[4.9338p; 00) we have

7'(z,p) > 0.
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Using the same technique as in the bove claim we obtain that:

7(-p,p) <0 7'(1.2908p,p) > 0
2(0,p) > 0 4'(4.5598p,p) > 0
+(1.2396p,p) > 0 7((3 + V3)p,p) < 0

Y((3-V3)p,p) <0  4(4.9338p,p) > 0

if p > 100, and then the desired conclusion follows immediately.
The proof of (iii) is a straightforward computation using the fact
that, since p cannot be equal to zero or 2n,

(211) _2n(2n~1)(2n -2
p] p2n-p)\pP-1

To obtain (iv) we make the substitution » = (u —1)/2, p = (v —
1)/2 £ v in 9(n,p) and then we replace v? by (u% ~ 1)/12 (see (iii)). The

result is y((u —1)/2,(x-1)/2¢ V(12 = 1)/12) = -1/8(u - 1)(u—2)(u—
3)(u? — 6u + 53) and the least value of u is 7. 0

REMARK 3.2. The intervals given in (i) can be extended by imposing
on p a greater lower bound as can be scen from the proof of Claims 2,3.
Moreover, for p — oo one can obtain asymptotic evaluations of the roots
of the polynomials 8 and 4. The set of values for which 8(-,p) > 0 and
7(-,p) > 0 is, for large p (with the numerical values truncated after 4
decimals):

[0.5059p + 0.1165 + 0,(p); 0.6339p — 0.7583 — 1/0.1076p — 0.7253+
+ 0,(p)] U [0.6339p — 0.7583 + 1/0.1076p — 0.7253 + 04(p) ;
0.8224p — 1.1738 + 04(p)} U [1.2753p + 1.8204 + 05(p);

2.3660p + 21.7583 — 1/20.8923p + 673.1753 + 0g(p)]U

[2.3660p + 21.7583 + 1/20.8923p + 673.4753 + 0+(p) ;

42.3962p — 9.7630 + 04(p)] -
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where ’11.12, 0:(p) =0,i=1,2,...,8. (All the numerical values appearing
above can, accidentaly, be expressed with rational numbers and square
roots),

Since the inference of these asymptotics is quite long, and the im-
provement is not essential, we don’t give the details.

4 — The main results

In this section we shall present the main results of our paper.

THEOREM 4.1. Let (M,J,g) and (M',J',g') be compact Kdhler
manifolds with Spec’(M, g) = Spec®(M', ¢') for a fized but arbitrary p,p €
NN, p > 1, (which implies dimM = dimM' = n). Then for any n € NN,
2n > p such that the funclions a, B,% are strictly positive (hence for all
values given by the Theorem 3.1 (ii) and Remark 3.1), (M,J,g) is of
constant holomorphic sectional curvture h if and only if (M',J’',g’) is of
constant holomorphic sectional curvature h' and h' = h.

Proor. For the proof we shall adopt the standard argument of S.
TanNo [7].

It is known that a Kihler manifold has constant holomorphic sec-
tional curvature if and only if G = 0 and B = 0. Assume that (M’,J',¢’)
has constant holomorphic sectional curvature h’. Then the relation (2.16)
takes the form:

4
! = 2 ‘.
a3, c/’——n(n+ 1)71' aM

Using the equality of the spectra we obtain:

- 2 8 ] 2 4 2} —
A[{4a|B| + n+2ﬂlGl + n(n+1)7r dM =
(4.1) 4
- ~ 12 '
_/——n(n+1)7r dM
M!
and

(4.2) [ranm = / ~dM'; / M = / M’
M M

M M!
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because (2?") - 6(:"_'17) # 0 by Theorem 3.1 (iv). These imply (since 7’ =

constant)

(4.3) /‘r’dM > /r"dM'.

M M

Therefore from the relations (4.1), (4.3) and our hypothesis we can con-
clude that (M, J,g) is of constant holomorphic sectional curvature h and

moreover h = h'. 0

THEOREM 4.2. Let (M,J,g) and (M',J',g’') be compact, Einstein,
Kéhler manifolds with Spec®(M,g) = Spec®(M’,g') for a fized but ar-
bitrary p, p € IN, p > 1 (which implies dimM = dimM’' = n). If
(n)p) ¢ {(8’2)a(8, 14)} and n(2n - 1) - 3p(2"' - P) # 0, then (M’ Jyg) is
of constant holomorphic sectional curvature h if and only if (M',J’,¢)
is of constant holomorphic sectional curvature b’ and b’ = h.

Proor. If (M, J,g) and (M',J’, ¢') are Einstein manifolds, then G =
0, G' = 0 and 7, ™ are constant. The equality of the spectra implies

a;,p =aj, fori=0,1,2.
By Theorem 3.1 (iii), (2;‘) —6(2;_',2) # 0 and then from (2.2) and (2.3)
we obtain that 7 = r’. Using (2.16), the equality a;, = a3, implies:

/ &|BJdM = / &|B'PdM’ .
M M!

But @ # 0 by Theorem 3.1 (i), hence B = 0 if and only if B’ = 0. 0

As a consequence we obtain the following:

COROLLARY 4.1. Let (M,J,g) bc a compact Kihler manifold and let
(P*(C),Jo,90) be the complezx projective space with Fubini-Study metric
and assume that Spec’(M,g) = Spec’(P"(C),go) for a given p € NN,
p21. 1If:

(a) the functions &,B3,7 are strictly positive (hence for all pairs (n,p)

given by the Theorem 8.1 (ii) and Remark 3.1),
or
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(b) M is an Einstein manifold and (n;p) ¢ {(8;2),(8;14)}, n(2n — 1) —
3p(2"' - P) # o,

the (M, J,g) is holomorphically isometric with (P"(C), Jo, go).

In other words, in the class of compact Kihler manifolds (respectively
in the class of compact, Einstein and Kahler manifolds), (P*(C), Jo, go)
is completely characterized by the spectrum of the p-Laplacian whenever
(n; p) fulfils (a) (respectively the restrictions given in (b)).

REMARK 4.1. It is an open problem to decide what happens in the
cases when n has a value which is not mentioned in our theorems.
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