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Conservation Laws for the von Karman
Equations of a Thin Plate

G. SACCOMANDI - M.C. SALVATORI

RiAssSUNTO ~ Si considerano Ic equazioni di von Karman che approssimano le vi-
brazioni di una piastra sollile. Sfrutlando il fallo che esse sono autoaggiunte, tramite
una versione generalizzata del teorema di Nocther, si calcolano tullte le leggi di conser-
vazione in corrispondcnza alle trasformazioni puntuali di queste equazioni.

ABSTRACT ~ The equalions of molion and the associated Lagrangian densily of one
of the systems approrimaling the large deflection of plates known as the von Karman
equalions are considered. A gencralized form of Noether’s theorem is applied and a
systemalic approach is developed which allows the derivalions of all the conservation
laws in correspondence of the punctual transformalions of such equalions.
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1 - Introduction

In recent years there has been a renewed interest in the exploitation
of Noether’s theorem in continuum mechanics and especially in elasticity
[1]. The reasons for this are the paucity of systematic and complete
results [2] and the fact that conservation laws constitute a basic tool in
the analysis of solution properties for any given diflerential system [3],
[4]-

The aim of this paper is to apply Noether’s theorem, as generalized by
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BEsseL-HAGEN [3], to compute all conservation laws relate to geometric
symmetries of von Karman equations.

Considering the full Lie group of point transformations, computed
by K.A. AMEs and W.F. AMESs in [5), for the above equations and
exploiting the fact that these arise from a variational formulation [6],
we compute all the transformations which leave the Lagrangian in the
variational integral invariant only up to a divergence. In such a way we
provide a detailed classification of all the conservation laws.

Untill now this invariance group has been exploited only to determine
some exact solutions of these equations. To find this kind of solutions is
not an easy task as it is pointed out in [5] and [7]; for this reason these
conservation laws may be fundamental for the qualitative study of von

Karman equations.

2 — The equations

The von Karman equations are a non linear treatment of a thin plate
under normal pressure that takes into account the bending stresses, un-
der the following assumptions: displacements are small compared to large
dimensions of the plate, the normal displacement is constant throughout
the thickness of the plate, the normal to the underformed midle surface
remains the normal to the deformed middle surface, lateral load is per-
pendicular to the plate and there are no body forces in the plane of the
plate [8]. To have an idea on the range of applicability of these equations
the reader is referred to [9].

The following notation will be used: w is the normal displacement;
¢ the Airy stress function; E the modulus of elasticity; § the flexural
rigidity; h* the thickness of the plate; ¢ the lateral load intensity.

With this notation the equations read:

(2.1) Gosee + 2eeyy + Sy = E {(wsy)’ — wzzwy }

h.
(2.2) Wysrr + 2Wepyy + Wyyyy = % + '3- {¢yy Wez + PezWes — 2¢:y w:y} .

We shall be interested in two cases: the first one which concerns the
vibration of a plate whose deflections are large in comparison with A*,
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i.e. ¢ = —pwy and the second one in which there is no lateral loading,
ie. g=0.

It is important for our purpose to note that the equations (2.1) and
(2.2) are the Euler-Lagrange equations of the functional [6]:

(2.3) F= / Lav,

where
=B {5 + (o) + (@)} +

(2'4) - ";-—.' {%(‘ﬁz:)z + %(¢yy)2 + (¢:y)2} +

Eh 1E
+ _6_'¢ {(wzy) wuwyv} 2 6p(w“)z :

3 — Symmetry Groups and Noether’s Theorem

The theorem of Noether establishes a correspondence between trans-
formations which leave invariant an action functional, up to a diver-
gence term, and conservation laws of Euler-Lagrange equations associ-
ated with this functional [3]. Here we adopt the assumption to consider
only smooth, (at least C*), solutions of the von Karman equations and
we introduce the compact notation z° = ¢, z! =z, 2% = y.

Let:

T =z’ + X(2', 4, w) + O(€F),
(3’1) $ =¢+ (&(I", é, w) + 0(52) ’
T = w+ W(z', ¢, w) + O(?), i=0,1,2,

be a one-parameter Lie group of punctual transformations, with infinites-
imal gencrators X*, ® and W. These generators determine the operator:

(i} ad 9

A= Xa—'-+W +¢%
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The action of the group (3.1) on the first derivatives of unknown
functions are determined using the formulae:

(3.2) % = D, -¢,D;X*, W' =DW-wDX"*,

and on the second derivatives by the formulae:

(3.3) §4 = D;# - ¢;D;X*, W9 =D;W-wuD; X",
here the summation convention is in force over the range (0,1,2) and:

9 i} i i}
D +¢la¢+wl +¢ua¢ ija_w;

According to [3] (3.1) is a divergence variational symmetry, DV, for
the functional F if and only if:

/ L(Z 8,5, 6, B, b Tis (1 + €X:)dV +

(34)
_/L(zii¢vw’¢iiwﬁ¢ﬁaw§i) = f/D,‘F‘dV,
v v

where T' = (I°,I'',I'?) denotes a vector whose components, here, are
functions of z*, ¢, w and their derivatives up to second order. Keeping
only terms up to first order in € we obtain the infinitesimal invariance
criterion [3]:

oL oL aL aL oL

Xa—z;+q’5$+w +Q’%:+Waw‘+

+‘I",'58L + Wi = L + LD;X* = D;I*.

ij ow;j

(3.5)

Letting Q' = - ¢: X', Q* = W - w; X' and T = I'— LX, we can rewrite
(3.5) as:

)
Q‘ +Q’—+DQ‘0¢' DiQ* 5+

+D.,Q2 + DT,

(3.6)
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where D;; is the composition of operators D; and D;.

If (3.1) is a symmetry group for the functional F the relation (3.6)
must hold. Performing an integration by parts we obtain the following
identities;

oL oL L
3.7 Q%)= =D Q°— *Di—
(3.7) (D)5 = Di (€5 ) - @D

oL oL
(D4Q°) =" Dis - +1{ Di (0,(@) s~ Q"D )+
(3.8)

+0; (D@ )50 - @°D .a‘”)}

where the Greek index is understood in the range (1,2) and the Latin
indices in the range (0,1,2), here u! = ¢ and u? = w. Substituting (3.7),
(3.8) into (3.6), this last relation, for the particular case of von Karman
equations, reads as follows:

(3.9)
Q' {3L+D 9L p,2L ip oL } Q’{D.gL D,,;EL—+

96 Y D=5t P ag., T P agy,

) oL , nOL .o 8L
Des 5y P 0,y ,,}*D‘{Q } {D’(Q Y96, 9 Pepgt
1. 8L i) 2y OL

+2DV(Q )a¢ Q Dya¢:y +D8(Q )0 Q Dta =’+

1 . 8L 1, L woL . 9L
+3 D@ = 5 ,aww}wy{vy(o 25~ 9 Diggt

1 @b _lgip, Ok _a, O
+2D¢'(Q )a¢‘y ZQ D&'a¢y+D(Q )a QDya yy+

1, 0L 1, 8L\ _ % . p% .
+2D¢'(Q )aw 2Q D a ‘!y}—Der'*‘D:I‘l'*'DyI‘).

When {¢,u} is a solution of the Euler-Lagrange equations then (3.9)
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shows that:

(3.10)

(3.11)

(3.12)

P°EQ2%‘-—I‘0+LX0,

P =D,(@) i - @' De i + 3Dy

1 oL , aL
. —2Q Dya¢=y+Dz(Q )a —QD :=+
l 2 __1 2 oL
+ 2,D”(Q )0w,, 39 D dw,,
oL oL
2 1 _
P "DV(Q )a¢ Q Dv6¢ + Dr(Q )8¢:y
_lgip, 2E , pgn 2L _qup, Pk
50 D’a¢,, + (@) g ~ @Dyt
1, 0n 9L _Ylpep 9L
+ D@ o - 59 Degy =~ Ta= LKy,

are the components of the conserved current for such' equations.

4 - Conservation laws

It is very important to note that if (3.1) is a DV group of the func-
tional F then (3.1) is a symmetry group for the Euler-Lagrange equations
of this functional [3]. Then the full Lie group, which leaves (2.3) invariant
up to a divergence term, is a subgroup of the full Lie group admitted by
(2.1), (2.2), which has been computed by K.A. AMES and W.F. AMES

in [5).

Here we reproduce the final form of the generators X, & and W
which is given by:

(4.1) (X°,X', Xz) = (a, + 20.4!,0,2 + a4 + asy, a3 + a4y — 052) N
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(4.2) (2,W) = (2H(t)+yfo(t)+ f3(1), as+art+asz+asy+actz +ayty),

where f; are three arbitrary functions of ¢ and a; are eleven arbitrary

parameters.
Starting from (4.1) and (4.2) we can establish which transformations

admitted by the equations (2.1) and (2.2) are also admitted, up to a
divergence term, by the functional (2.3) to compute in correspondence of
such transformations the conservation laws of the von Karman equations.
By using the infinitesimal criterion (3.5) and after some calculation we
find that the DVS group of the functional (2.3) is the full Lie group
(3.11), (3.12) with:

Eh* 1
I'= 5 (;’J‘_t‘u_(a., + zayo + yan), (Tweywy — Ew;)‘fl+

(4.3) — YW wyy fo ~ Wy f3, ~Wy W i+
1
+ (yw:yw: - Ew:) f2 + w:yw:fs) .

This means that the transformation groups we obtain in correspon-
dence of each parameter a;,a,,as, aq,as,as, @, as, a9 leave invariant F
in the classical sense while the transformation groups in correspondence
with the arbitrary functions and a7, a0, a;; are Bessel-Hagen’s divergence

symmetry groups.
The generators (4.1) and (4.2) in evolutionary form read:

Q' =zfi(t) + vf2(t) + fs(t) — (a1 + 2a,t) P+

(4.4)
~ (a2 + a4z + asy)d: — (as + agy — asz)dy ,

(4.5) Q? = as + art + a3 + asy + a0tz + anty — (a1 + 2a4t)wi+
~ (a2 + a4z + asy)w, — (as + a4y — asz)wy .

In this way we can now write by means of (3.10) the conserved cur-
rents P*:

é
(4.6) P’ = puw,Q* - EL(ax + 2a4t) — pw(az + zayo + yan),
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h.
P'= & {~6::D:Q' = 6y D,Q" + ($eee +620y)Q'} +
h. [ ]
+ 6{ (00e = b0 ) 2.7 + (14 56) w2, D07+
(4.7 - [w::z + weyy + %(‘ﬁywzy - ¢=wyv)] Qz}'*'

. 1
- h ((stywy - Ew:)fl + !lw:wvvf‘l + w,w,yfa) +

')
+ E(a: + asz + asy)L,

h‘
Pz = E {“¢=yDrQl - ¢vyDle + (¢wv + d’ny)Ql} +
+ a{ (1+56) ey D" + (1 = bee) DQ*+
(48) - [wyyy + Weye + 'hz.‘(‘ﬁ:w:y - ¢ywzt)] Q2}+

. 1
+h (zwzswy!l - (ywzwzy - §w:)f2 - wswzyfa) +

§
+ E(Gs + a4y —asT)L

The conserved currents in (4.4), (4.5) and (4.6) are the components
of the full family of conservation laws related to the geometric symmetries
of the von Karman equations. This family depends upon eleven arbitrary
parameters and three arbitrary functions, none of thesc conservation laws
is trivial in the sense of [3]i.e. P’ do not vanish identically on the solutions
of (2.1) and (2:2) and D;P* = 0 holds exclusively on the solutions of
the equations. IHowever the vector fields .U/1, A'/2, X'/s generate three
conservation laws that differ each other for a trivial one.

In the case in which there is no lateral loading, i.e. ¢ = 0 and then
w = w(z,y), ¢ = $(z,y), the families of conservation laws are obtained
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from (4.7) and (4.8) by setting:
ay =ar = a0 = a1 =0, fl(t)=k1, fz(t)=k2, fa(t)=k3a

with k; arbitrary constants and replacing the vector field with operator:

d i} 0
4a_09 ,. .9 .9
¥ _2t3t+zaz+y3y’

with its “steady”™ version with operator:
0 d
Xi=z— —.
‘ Ox + y@y
The physical interpretation of conservation laws found here can be
derived observing their densities:

— t-Translations 3
The vector field with operator X! = — give rise to the conservation

ot

law which density is:

]
(4.9) P! =pu? - £ L,

as it is well known that corresponds to conservation of energy [10].

- z,y-Translations

The vector fields with operators .X? = ‘7%, A’ = % generate the
laws with densities:
(4.10) P = pww,, P = pww,,

these conservation laws are the components of the energy-momentum
tensor and they establish the famous Rice's path independent integral
that when integrated around the tip of a crack determines the associated
encrgy-release rate [11].

- z,y-Rolalions
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The vector field with operator A® = y% —z% is in correspondence
with the density:

(4.11) P = pw,(yw, — zw,),
this conservation law is an other path independent integral related to

energy-release rates associated with cavity or crack rotation and is a
consequence of the isotropy of the body [12].

- Dilatations 3 4 3
The vector field with operator X* = 2t§ + i +'ya—y gives rise to
the conservation law with density:
o é
(4.12) P} = —pw,(2tw, + zw, + yw,) + 2EtL )

this also is a path independent integral related to energy-release rates of
the expansion of cavities or cracks [12].

- w-Translation 3
The vector field with operator X® = P is associated with the
conservation of linear momentum; indeed the density is:

(4.13) P = puw,,

this vector field and the one obtained in correspondence with the oper-
ator A = f;a—¢ allow us to rewrite in potential form the von Karman
equations.
- Rigid Body Rotations

The natural conservation laws of angular momentum are obtained

in correspondence of the vector fields with operators X2 and X®°. The
densities of such laws are:

(4.14) P} = pzw,, Py =pyw,.

- Galileian boost



[11] Conservation Laws for the von Karman etc. 293

The vector field with operator X7 = taiw gives rise to the density:

(4.15) P = p(tw, — w),

this law is related to the motion of the center of mass and it is known as
the center-of-mass theorem [10]. In absence of external forces acting on
the system this theorem is a direct consequence of Dynamic’s fundamental
equations.

5 — Comments and conclusions

In this paper we have obtained the full class of conservation laws
related to geometric symmetries of von Karman equations, by the means
of Noether’s theorem. These laws are a generalization of certain path-
independent integrals in linear elasticity which have been of considerable
practical interest [13]. The conservation law (4.15) at first sight seems to
be new and have no analogous in linear elasticity, in reality, in absence
of body forces, it is enclosed in the infinite-dimensional family of con-
servation laws peculiar to every linear self-adjoint system of differential
equations known as reciprocity.

It is interesting to compare our work with the recent paper of UHUBI
[14) devoted to the derivation of conservation laws associated with non-
linear elastodynamics through an approach based on the calculus of exte-
rior differential forms. The conservation laws found in [14] are a subclass
of the ones found here; the laws in common are the direct consequences
of the natural balance laws and the path-independent integral (4.10), all
the other ones seems to be news for a nonlinear elastodynamical theory.

REFERENCES

{1] P.J. OLver: Conservations Laws In Elasticilty I and II, Arch. Rational Mech.
Anal. 85 (1984), 112-160.

[2] D.G.B. EpELEN: Aspects of Varialional Arguments in the Theory of Elasticily:
Facls and Folklore, Int. J. Solids Structures 17 (1981), 729-740.



294 G. SACCOMANDI - M.C. SALVATORI f12]

(3] :’.J. ?LVER: Application of Lie Groups to Diffcrential Equations, Springer N.Y.,
1986).

[4] C.O. HorGaN: Decay Estimates For The Biharmonic Equation with Applications
to Saint-Venant Principles in Plane Elasticity and Slokes Flows, Quart. Appl.
Math. XLVII (1989), 147-157.

[5] K.A. AMes - W.F. AMEs: Analysis of the von Karman Equations by Group
Methods, Int. J. Non Lin. Mech. 20 (1985), 201-209.

[6] E. REissNER: On a Variational Formulation for Finite Elastic Deformations, J.
Math. and Phys. 32 (1953), 129-135.

[7] K.A. AMEs - W.F. AMEs: On Group Analysis of the von Karman eguations, Int.
J. Nonlinear Anal. Theory Meth. Appl. 6 (1982), 845-853.

[8] J.J. SToKER: Nonlinear Elasticity, Gordon and Breach N.Y. (1968).

[9] Y.-H. Znovu - X.-J. ZRENG: On the Range of Applicability of von Karman Plate
Equations, J. of Appl. Mech. 56 (1989), 724-726.

[10]) E.L. HiLL: Hamillon’s Principle and the Conservation Theorems of Mathematical
Physics, Rew. of Modern Phys. 23 (1951), 253-260.

[11] J.R. Rice: A Path Indipendent Integral and the Approzimate Analysis of Strain
Concentrations by Notches and Cracks, J. of Appl. Mech. 35 (1968), 379-386.

[12] B. Bubpiansky - J.R. Rice: Conservation Laws and Energy-Release Rates, J. of
Appl. Mech. 40 (1973), 201-203.

[13] D.C. FLETCRER: Conservation Laws in Linear Elastodynamics, Arch. Rat.
Mech. Anal. 60 (1976), 329-353.

[14] E.S. Sunusi: Conservalion Laws in Nonlinear Elastodynamics, Int. 1. Engn. Sci.
27 (1989), 441-453.

Lavoro pervenulo alla redazione il 9 maggio 1990
ed accetlato per la pubblicazione il 1° otlobre 1990
su parere favorcvole di P. Bassanini e di R. Balli

INDIRIZZO DEGLI AUTORI:

G. Saccomandi - Istituto di Energetica - Universita degli Studi di Perugia - Via Cairoli, 24 -
06100 Perugia - Italia

M.C. Salvatori - Dipartimento di Matematica - Universitd degli Studi di Perugia - Via Van-
vitelli, 1 - 06100 Perugia - Italia



