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Notes on R,.-Lindelof Spaces

N. ERGUN

RiAssuUNTO - Vengono generalizzate ad una cardinalita piti elevata delle ben note
caratlerizzazioni, come il leorema di Aquaro e qucllo di Aull, di alcuni spazi Ry -compatti
come spazi di Lindeldf.

ABSTRACT - Some well known characterizations such as Aquaro’s theorem and
Aull’s theorem on being Lindelof of certain Ry -compact spaces are given this time in
higher cardinality forms.
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1 - Introduction and preliminaries

The existence of at least one complete accumulation point of certain
subsets has under been guaranteed and even is the characteristic property
of certain spaces whose open coverings admit certain subcoverings. The
following joint statements contain two well known assertions related with

this purpose:

THEOREM 1. A topological space is countably compact (resp. com-
pact) i every countably infinite (resp. infinite) subset has at least one
complete accumulation point.
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This characterization of countably compactness via- w-limit points
is known as Bolzano-Weierstrass theorem. The other characterization
written in the parenthesis is due to KELLEY, see [12]. It is also well
known that every Lindelof space X is R;-compact i.e. all closed-discrete
subspaces of X are countable or equivalently every uncountable subset of
X has at least one accumulation i.e. limit point. Lindel6fness of certain
R,-compact spaces were conversely established by the first two results in
the following which were discovered respectively by JONES and AQUARO,
see [11] and [1}. The third one in the following is due to AULL and
generalizing these two, see [3).

THEOREM 2. A developable T) space is Lindelof iff it is R,-compact.

THREOREM 3. A T space is Lindelf iff it is R,-compact and meta-
Lindelof.

TreOREM 4. A T, space is Lindelof iff it is R,-compact and 66-
refinable.

The following two sufficiency conditions on being R,-compact of sep-
arable spaces are due to JONES [11] and HEATH [9] respectively.

THEOREM 5 - [WCH). Separable normal spaces are R,-compact.
THEOREM 6. Separable meta-Lindelof spaces are R,-compact,

WCH in above denotes the weak continuum hypothesis (see page
171 of [16]) which asserts that 2% < 2" is taken as true in that theo-
rem. Similarly GCII denotes the generalized continuum hypothesis saying
9%e = R, 4, for each ordinal number a.

We want to give in this note, analogous results of these theorems for
higher cardinals beyond of some other results. No separation axiom is
assumed unless otherwise is explicitly stated. A topological space X is
called R, -Lindelsf iff each open covering admits a subcovering containing
at most R, number of members [8], [6]. X is called R,-compact ifl each
subset of cardinality R, has at least one accumulation point or equiva-
lently cardinalities of all closed-discrete subspaces are less than R,. This
concept is weaker than the one given by KOTHE, see [13]. w, will denote
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the least ordinal number of cardinality R, as usual. The greek letters
are provisioned for denoting the ordinal numbers throughout the note. A
family of open coverings (Gg) p<wq Of X is called an R,-development for

X iff B, = {st(z,g,'g)}ﬁ< is a local basis for each ¢ € X. HoODEL has
proved the following in [10‘] for these spaces:

THEOREM 7. A regular space X has a basis which is the union of
R, number of open-discrete families iff it has an R,-development so that
B, = {stz(:r, G,I,)}‘,< is a local basis for each z € X.

Spaces possessing an R,-development are called as R, -developable in
this note. Recall that developable spaces are noting but Ry-developable
ones. Iterated starsets are defined as st”(z,G) = st(st"~!(z,G),G) for any
point z and for any family G. X is called meta R,-Lindeldf [15] iff each
open covering of X admits an open refinement G such that ord(z,G) =
card{G €G:z € G’i < R, holds for each z € X. A space X is called
weakly R, - Lindelof iff each open covering of X admits a subfamily G such
that cardG < R, and the union G = U{G’: Ge g} of its members is
dense in X. Thus weakly R.-Lindeldf spaces are nothing but weakly
R,41-compact spaces of ULMER {17]. A space X is called R,Rs-refinable

iffl each open covering admits a refinement |J G, which is the union
H<wg

of R, number of open families such that each point z € X has order
ord Zz,g,,(,)) < Ry for an appropriate index u(z) < w,. The density
(resp, weight) of any space X is the minimum of all cardinal numbers
card D (resp. card B) over all dense subsets D of X (resp. over all
basis B of X). The cellularity of X is the supremum of all cardinal
numbers card G over all families G of X with nonempty and pairwise
disjoint open members, whereas, the character of X is the supremum
of its local character numbers x(z,X) where x(z, X) is the minimum of
numbers card B; over all local basis B, of the point z in X. Notice that
the density number and weight are always assumed in any space. See
[7] for instance for these cardinal functions. Semi-regularization space,
almost open functions and some other concepts are defined in the last
section which they mentioned and used. The standard reference book is
[12]. We give now some examples on all these.

REMARK 1. All countably compact spaces are Ro-compact. Count-
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able compactness and R,-compactness coincide on T spaces. An N,-
Lindelof space is evidently R,;,-compact and also is Rg-Lindelof for each
a < B. Notice that X = [0,ws[ equipped with the usual order topol-
ogy is an Ry-Lindeldf but non R,-Lindeldf space, if @ < g, after con-
sidering the open covering with members G, = [0,u (1 < wp). Y =
[0,wa42[ is an example of Ry 4i-compact non R,-Lindeldf space. Any R,-
compact space is naturally Rg-compact if a < 3. The topology on the set
Z = [0,wqa41[ which is generated by the whole subsets A C Z satisfying
card(Z — A) < R, is an R, 41-compact T; space but it is not R,-compact.
Rq-Lindelof spaces are evidently meta R,-Lindeldf. The free sum space

> X, is evidently a meta R,-Lindel6f non R,-Lindelof space, where,

H<wa i1
each X, is R' x {¢} and IR! is the one dimensional Euclidean space.

All paracompact even all metacompact spaces and in particularly all
pseudometrizable spaces are meta-Lindelof but they are not necessar-
ily Lindeldf. All non separable pseudometrizable spaces are such spaces.
The paper [5) contain some examples of weakly Lindeldf, non Lindelof
spaces. Notice that all subsets of cardinality less or equal to Rqy, in
space Y = [0,wq42{ defined in above has complete accumulation points,
but none of the subsets with cardinality R,42 have such kind of accu-
mulation points. The o-compact space [0,w) U 8 [, wn41] is evidently
a Lindelof space, but uncountable subsets witi‘l_cardina,lity N, in this
space has no complete accumulation points. Finally every regular space
is w(X)-developable after considering t}_f development containing all the
open coverings G(By, B;) = {B\, X — B;: B, C By,(B,,B;) € B x B}
whereas the basis B is satisfying card B = w(X).

2-0On Na-Lindeiafness

Being R,-Lindeldf of certain R,4;-compact spaces is studied.

PrOPOSITION 1. A topological space is R, -Lindeldf if each subset of
cardinality greater than R, has at least one complete accumulation point.

PROOF. Suppose that X is not R,-Lindeldf. Then there exists at least
one open covering G = (Gp) 5.4, of X with no subcovering of cardinality
less or equal to R,. One can suppose without loosing the generality that
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G is the one with the least cardinality among all open coverings of X with
this property and therefore its well ordered indexing set I = [0, By has
the cardinality card I = R which is greater than R, i.e. w, < G and each
proper segments of it has cardinality less than R. So ® < card (X - U Gpg)

holds for each u < f, by this supposition and consequently the subset A
of all selected points

3uEX‘,:UGﬁU{3737<I‘}} ) Yu<po
B<p

is well defined by the axiom of choice. Its cardinality satisfies card A =
R > R, but A has no complete accumulation point in X since GgN A C
{zu: p < B} holds for each member G of G i.e. for each index # < f.
Thus the statement follows.

COROLLARY 1. A topological space is Lindelof if each uncountable
subset has at least one complete accumulation point.

CoRrOLLARY 2 - [GCH]. A T; space with R, character is Lindelof
iff each uncountable subset has at least one complete accumulation point.

PROOF. Only the necessity requires a proof after Corollary 1. If a T,
space X with character R, is a Lindeldf space then its cardinality is not
greater than 2%®» = R, ,; by the well known theorem of ARHANGEL’SKII
under GCH, see Theorem 3 of [2]. Hence cardinalities of all uncountable
subsets of X are successor cardinalities and therefore they evidently have
at least one complete accumulation point since X is Lindelof.

COROLLARY 3 - [CH]. A first countable T, space is Lindelof iff each
uncountable subse! has at lcast one complete accumulation point.

COROLLARY 4 - [CH]. A developable T; space is Lindelof iff each
uncountable subsect has at least one complete accumulatioon point.

PROPOSITION 2. Inany R.- Lindelof space each subset of cardinality
Rs.+1(8 2 a) has at least one complete accumulation point.
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PROOF. Notice only that Ry,; = Rf is always a successor cardinality.

ProPosITION 3. An R,-developable Ty space is R, -Lindelof iff it is
Ra41-compact.

Proor. This statement will be an easy consequence of Proposition
4 and Proposition 6 but we give here an independent proof which is a
modification of JONES’s arguments. Let X be a T, space with an R,-
development (Gg) pewq: We are going to prove that X is Ra-Lindeldf if
it is Ro41-compact. Let us take an open covering U = (Ui),., of X. We
suppose that X as well as I are well ordered by the well known Zermelo’s
principle. Let Xs be the subset of all points z such that st(z,Gp) is
contained in a suitable member of I/. Notice that X, could be empty for
some B but X = |J Xps. Now let us take a fixed # < w, and define

z5 = min Xp wh:rz ;t(:cpl,(]p) C Us €U. If Xg — Up, is non empty
define then z5;, = min(Xs — Up;) and U, € U with st(zp2,G5) C Up,.
Let all the points z5; and members Up; € U be defined for each ordinal
number i < j. Define the point zg; and Up; € U as follows

Tp; = min (Xp -U Uﬂi) y  st(zp;,Gp) C Up;

i<y

if the difference set in above is still nonempty. This process continues
only at most ®, number of steps, since X is an R,4;-compact T space
and the subset of all points zg; is a closed-discrete subset of X, for any
member of the open covering G5 contains at most one zg;. In fact if
iy < i and zp;,, T, are belong to the same member of G5 then the
following contradiction would be obtained:

Zpiy € 8t(25iy,G8) — | Upi C Upiy — | Upi = 0.

i<iz i<ia

Therefore each X5(8 < w,) is covered by at most R, number of Up; € U
and so X is covered by at most X, number of members of U.

PROPOSITION 4. Every open covering of an R, -developable space has
a refinement which is the union of R, number of closed-discrete families.
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PROOF. Let the development (Gs) p<wq De defined on X and the open
covering U = (U),, be given. Let the well ordering < be defined on I.
Then for each f# < w, and i € I, define the following closed sets

Kp = {.‘l: eX: St(z,Gp) - U;} - U U;.
i<i

Notice that the subset K(4,G) = {z € X: st(z,G) C A} is always
closed for any open covering G of X and for any subset A C X, since
if zo ¢ K(A,G) then there exists at least one Go € G contains zo and
not contained in A and so Gy N K(A,G) = 0 is obtained. The family
K = (Kl"')-'e ; is discrete for each B < w, since if a member G of the
open covering G intersects Kpg;, then it doesn’t intersect all the other Kjs;
sets. In fact by using any point z € GN Kj;, one gets G C st(z,Gp) C Ui,
and consequently the following inclusions hold for any i > 4o

GNKp CU,NKp; CU;y — UU, =0.
i<i
In particularly G N Kp; is empty for each i < io. The family pU Ks
<wa

refines & and covers X since {st(z,0s)},.,, is 2 local basis for each
z € X and z € Uj(;) where i(z) = min{i€ I: z € U:}.

PROPOSITION 5. A T, space is No41-compact iff every discrete
family of subsets contains at most R, number of members.

PRoOF. Let A = (A;) be any discrete family of subsets in an Rqyy-
compact T; space X. We naturally suppose that each 4, is nonempty.
The set X, of the all selected points ag € A is closed and discrete in X
since A is a discrete family in X and X, = U{as} = U{as} = U{es} =
X,. Thus card A = card X, < R, is found since members of A are
pairwise disjoint and X is an N,4i-compact space. Sufficiency is easy
since all the singletons of any subset without any limit point constitute

a discrete family in any space.

PROPOSITION 6. A T, space in which every open covering has a
refinement of the union of R, number of closed-discrete families is R,-

Lindelof iff it is Ro4q-compact.
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Proor. Notice that the proof of sufficiency is easy since the refine-
ment K = |J Kjp mentioned in hypothesis contains at most R, number

flwa

of members after the previous proposition and one should only then de-
fine a unique and well defined open superset, belonging to open covering
for each member of K.

PRroPOSITION 7. The following are equivalent in any space X with
an R,-development (Gp) 5, if B = {st*(2,Gp)} 5., is @ local basis for
eachz € X:

i) X is R,-Lindelof.

ii) X is weakly R,- Lindeldf.
iii) X has R,-cellylarity.
iv) X has R,-density.

ProoF. Let X be an R,-developable space so that the family B,
written in hypothesis is a local basis for each z € X. Notice first of
all that, there exists an index p = p(z,8) < w, for each z € X and
B < wg so that st?(z,G,) C st(z,Gg). Then the common refinement
Gus = {GuNGs: Gy € Gy, Gp € Gp} of G, and Gy satisfies

sta(z,g“p) =st (Stz(z,g,.p),g,,p) Cst (st(z,Gp),Gp) = st’(z,gp) .

Hence without loosing the generality the family B; = {st*(z,Gp)},...
could be accepted as a local basis at z € X from the very begining;
otherwise one can work with the families G, of all common refinements
as an R,-development of X. Now let & = (U;);, be any open covering
of X. Define the following (closed) subsets for each § < w, and i € I.

Kﬂi= {IEX: Sts(t,gp)g U,} _UUJ"

j<i

Then the family of open sets W = {st(Kpi,0p)},, is discrete in X for
each fixed < wa since each member of the open covering G intersects
at most one starset from W;. In fact if 2 member G € Gp intersect both
st(Kpi,Gp) and st(Kg;,Gp) where i < j, then, there exist two members
G and G} of Gp such that the four sets G N Gy, GNGh, Gin Kg; and
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Gf, N Kp; are all nonempty. So by choosing any point z € G':, N Kp; one
yields the contradiction Gj N Kj; = @ since

G C st (st*(2,G5),9p) C Ui C | JUe € X — Ko; .
k<j
Thus the discrete family Wj of open sets contains at most R, number
of member since X has R,-cellularity and members of a discrete family

are pairwise disjoint. Therefore X is an R,-Lindelof space since (J Wy
Blwa

covers X and refines &/. All these considerations prove the implication
iii) = 1i). The implication i) => ii) is clear. Now let the families
B, written in hypothesis be a local basis for each z € X in the weakly
R,-Lindelof space X. Let G;; be the suitable subfamily of the common
refinement G, of G, and Gy such that the union JG;, of its members is
dense and card G5 < R,. Then the family B = {st(G",G,s): G* € G,
and g, < we} which contains at most R, number of members is a base
for X as it was shown in the proof of Theorem 1 of [4]. So X has evidently
R,-cellularity since its density is not greater then R,. After Proposition
10 the equivalence of iv) and i) is easy since iv) == iii) is already known.

REMARK 2. Notice that each open covering of a space with R,-
development (Gs),.,,. has an open refinement which could be written as
the union of R, number of open-discrete families if B, = {st*(z,G5)} .,
is a local basis for each point z € X. Therefore such particular R,-
developable spaces are clearly R,1-refinable. WORRELL and WICKE have
proved in their widely known paper [19] that all developable spaces are
Ry finite-refinable i.e. @-refinable. Proving of R,1-refinability of any
R,-developable space could easily be derived by Proposition 4(!). Thus
Proposition 3 is in fact a simple consequence of Proposition 9. Notice also
that special R,-developable spaces of the above proposition are regular
since, st(z,Gg) C st’(z,Gp) holds easily for each z € X and § < w, and
they possess a basis B = {Bg,: f < wa,#t < wa} such that each Bg, is

an open and discrete family and |J Bg, refines G5 for each f < wq af-
Blwa

ter the above remark (see Theorem 7 of HIoDEL). Notice that the above

(In fact this assertion follows easily after the proof of Proposition 4. Define the
open refinement UK% Ups of the open covering U of Proposition 4 whereas Up =
{Ur —J(Kg ~ {K}): K € Kg). In here the uniquely determined Uk € U is chosen by
the axiom of choice so that K C Uy holds.
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proposition also yields the following well known conclusion: i) Second
countability, ii) Separability, iii) Lindelofness, iv) Weakly Lindeléfness,
v) Countable chain condition are all equivalent in any pseudometrizable
space since st*(z,G,) C {y € X: d(z,y) < €} = B(z,¢) holds in such
spaces where the positive integer n satisfy log;4 — logze < n and the
sequence of open coverings G, of open balls with radius 3=" constitutes a
development in such a space. In any metrizable space vi) R;-compactness
is a new equivalent condition with these five.

Finally notice that any discrete subset A in a pseudometric space
(X, d) with R,-cellularity necessarily satisfies card A < R, since the open
balls B(z,d(z,A — z)/2) with centers from A are all pairwise disjoint.

PropoSITION 8. For any open covering G and for any subset A of
a T, space X, there ezists a subset K C A with the following properties:
i) K is a closed-discrete subset of X and ii) A C U, ¢k st(,G)-

Proor. There is nothing to prove if A is contained in the union
st(a;,G)U...Ust(a,, G) by the aid of some finite number of appropriate
points of A. Otherwise by using the transfinite induction, one can define
the following special subset K C A of the selected points @ € A where
each a € K is the least element of A — |J{st(a’,G): @’ € K,a' < a} if
this difference set is yet nonempty. Here X is accepted as equipped by
the well ordering <. Defining the least elements of these differences must
be terminated after some number of steps and this number is not greater
than card A; i.e. one of these difference sets must eventually be empty.
The subset K of these selected points is the required one. Notice that
each member of the open covering G contains at most one point from K,
for, if the different points @ and a’ of K belong to the same member of G
then by supposing a < @', one yields

a’ €st(e,6) - | J{st(z,0): 2 € X,z < ¢’} = 0.

Thus K has no limit point in X i.e. K is a closed-discrete subset of
X, since accumulation points are necessarily w-limit points in Ty spaces.
This statement could also be proved by an equivalent method of [3] and
[15] by defining the concept of distinguished subset with respect to an
open covering of X and using the Zorn's lemma.
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ProposITiON 9. A T space is R,-Lindelof iff it is R,41-compact
and R, R, -refinable.

PrOOF. Only the sufficiency requires a proof. Let X be an R,4;-
compact and ®,N,-refinable T space and let i be any open covering of

X. There exists an open refinement |J Gp of U where there exists an
flwa

index f(z) < w, for each z € X such that ord (z,Gs(s)) < Ra. Define
now

As={z€X:o0rd(z,G5) SN2}, VPA<wa,.

Then X = | Ap holds and there exist closed-discrete subsets Ky of
B<wa
X by Proposition 8 such that Kz C Ag C L1J< st(z,Gs). Notice that
z€Kp

card K5 < R, since X is R, -compact. Each starset st(z,Gp) is the
union of at most R, number of members of G5 for each z € Kz since
ord (z,Gs) < R, for each z € As. Therefore X is covered by at most R,

number of members of |J Gs which gives the required result easily.
plwa

COROLLARY 5. A T, space is R,-Lindeldf iff it is Ro4,-compact and
mela R, -Lindeldf.

PRrOOF. Notice only that meta R,-Lindeldf spaces are evidently R, Rq-
refinable.

COROLLARY 6. A meta R,-Lindelof T, space is Roy1-compact iff
each subset of cardinality Na4; has at least one complete accumulation

point.

PRrRoOF. Use Corollary 5 and Proposition 2 for necessity.

ProrosITION 10. An R,-developable space has R, weight iff it is
R, -Lindelof.
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Proor. It is already known that any space with R, weight is R,-
Lindelof. For the converse notice that B = |J G is a basis for an R,-

B<wa

developable R,-Lindeldf space X, where each Gj is the subcovering of the
open covering Gs with at most R, number of members and (Gp),,,. is
the R,-development of X. Thus card B < R,.

We close this section with two results on R, -compactness.

ProrosiTION 11.  Every normal space with R, density s R, 4;-
compact if 28 < 2841,

PROOF. Let the subset X, of cardinality R,,; has no limit point in
a normal space X whose possesses a dense subset D with card D = R,.
Notice then that X is a proper subset since, the opposite supposition
yields the contradiction R, < card D, for each singleton {z} of X would
be an open set and necessarily intersects D. Thus all subsets of X, are
closed in X and therefore there exists an open and nonempty G4 C X for
each nonempty subset A of X, so that G, N (Xo— A) =0 and A C G,.
Hence the function ¢(A) = G4 N D from P(X,) into P(D) is injective
since ¢(A) = p(B) yield AC G4 = p(B) = Gg C X — (Xo ~ B) and its
dual one and therefore both of the inclusions A C B and B C A must
be satisfied. All these considerations give 2%e+1 < 2®a_ just opposite of

what we have already supposed in hypothesis.

ProPOSITION 12. FEvery meta R,-Lindelof space with R,-density is
Ra41-compact.

PROOF. Let X be a meta R,-Lindeldf space with a dense subset D
of cardinality R, and let X, be any subset with no limit point in X.
Then the open covering G = {X — X} U {G:: z € Xo} where each open
G:(z € Xo) satisfies G:N Xo = {z}, has a refinement U with the property
ord (z,U) < R, for each z € X. There exists an U, € U for each z € X.
Notice that if z,y € X, are different points then U, € G, and therefore
U, C G; and U # U, hold. So card X;, < cardU < R, are obtained since
card D = R, and ord (z,U) < R, foreach z € D.
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3 — Notes on weakly R,-Lindelofness

PROPOSITION 13. A space has R,-cellularity iff each open subspace
is weakly R,-Lindeldf.

Proor. This statement is nothing but a modification of Comfort’s
lemma, see [18). Let X, be any open subspace of a space X with R,-
cellularity. Then it is clear that the cellularity number of X, is not
greater than R,. Now if there exists an open covering G of X, such that
all its subfamilies G* of cardinality R, satisfy X, € JG* then, one could
- define the points z, and open members G, € G with

G,32,€Xo-JGs , Vi < Waypr

B<u
by transfinite induction. This is impossible since the family of nonempty
and pairwise disjoint open sets G, — |J Gp (# < Waq1) of cardinality

B<p
Rat1 would be well defined on the subspace X, of cellularity R,. This
proves the necessity. Sufficiency is only straightforward.

COROLLARY 7. Spaces with R,-cellularity are weakly R,-Lindelof.

PROPOSITION 14. An open subset with no limit point in a weakly
R, -Lindeléf space has cardinality less or equal to R,.

Proor. If an open G has no limit point, then the open covering
{X —G}u{{z}: z € G} has no proper subfamily with a dense union set.

PROPOSITION 15. Regularly closed subspace of a weakly R, -Lindelof
space are weakly R,-Lindclof.

ProoF. Let X be a weakly R,-Lindel6f space and let X, be any
regularly closed subspace of X. For any open covering { XoNG: G € G} of
the subspace Xj, one can define a subfamily G* of G so that card G* < R,
and X = (X — int Xo) UUG*. Thus the following gives the required

conclusion:

Xo=intX, =int XoN|JG* =clx, | J{XonG: G €6"} .
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PROPOSITION 16. A space is weakly R,-Lindelof if it has a weakly
R,-Lindelof open-dense subspace.

PRroOF. Notice only that if X, = clx, U{Xo N G: G € G} holds for
any open-dense subspace X, and for any open family G of X, then the
following is obtained: ‘

X=Xo=JXnG)nXe=|JG.
Geg Geg

ProPosITION 17. A space has R,-cellularity iff all its open-dense
subspaces has the same cellularity.

ProOOF. Left to the reader.

PROPOSITION 18. Weakly R,-Lindeldfness (resp. R,-cellularity) of
X, X, and X, are equivalent.

ProoF. In here X, denotes as usually the semj-regularization space
of X which is generated by the whole sets of the form int G where G
is open in X. Whereas the space X, of NJASTAD [14] is defined on the
set X and its topology generated by the whole sets G — N where G is
open and N is nowhere dense in X. Then the topology of X, is weaker
than the topology 7 of X but X, has a finer topology than 7. Now
notice that if (G,),¢, and (N,) ., are respectively the families of open
and nowhere dense members of X, then

UGi=UG.=d,JintG, = da | J(G, - N,)
pel pel

uel pel

since cl,int G = G = cl,(G — N) hold for any open G and nowhere dense
N of X. Therefore all these sets are X or not X at the same time. This
proves first. The second statement written in parenthesis is easy since
two open sets Gy and G are disjoint iff int G| and int G, are so iff G, — N,
and G, — N, are so where N; and N, are nowhere dense in X.

PRrROPOSITION 19. Almost closed-almost open surjections with R,-
Lindelf fibers onto weakly R,-Lindelsf spaces can only be defined on
weakly R,-Lindelof spaces.
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PRroOOF. Let f be an almost closed and almost open surjection from
a space X onto a weakly R,-Lindelof space Y so that all fibers f~*(y) are
R,-Lindelof subsets. Remember that the function f: X, — Y is open
since f is almost open and f(G) is closed for each open G of X since f is
almost closed and these are the characteristic properties of these kinds of
functions. Take any open covering G = (G,) ,¢; of X. Then there exists
a subset I(y) C I so that card I(y) < R, and Yy € U( )G‘. hold.

Then there also exists a basic neighborhood Uy, € N, of ¥ e Y so that

f_l(Uv)gint U G, by .’/¢f(x— U Gn) .

pel(y) pel(y)
But Y = J{U,: y € Yo} holds by the aid of some subset Yo with cardY, <
N,. So
X=f1 U Uy) Cel,f! U Uy) Cc

(3¢ €Yo

cd, U (int_u_a) =

yeYo pel(y)

= U (intU G,,)= U U G,,(_:X
M3 wel(y) y€Yo puel(y)

give the conclusion since, the subfamily G* = {G,: p € I(y),y € Yo} of
G has cardinality less or equal to R,.

COROLLARY 8. Almost closed-almost open surjections with Lindelof
fibers onto weakly Lindelof spaces can only be defined on weakly Lindelof
spaces.

COROLLARY 9. Closed-open su.rjections with R, Lindelof fibers onto
weakly N,-Lindelof spaces can only be defined on weakly R,-Lindelof
spaces.
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The following propositions and their natural corollaries are all left to
the reader.

ProrosITION 20. Closed surjections with R,-Lindelof fibers onto
R,-Lindelof spaces can only be defined on R,-Lindelof spaces.

ProvrosiTION 21. Closed-open injections onto R,-compact spaces
can only be defined on R,-compact spaces.

ProrosiTiON 22. Continuous image of Ro-Lindelof (resp. weakly
Rq-Lindelof) spaces are so.
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