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Classification of Almost Parahermitian Manifolds

P.M. GADEA - J.M. MASQUE®™

RIASSUNTO — Si oltengono: una classificazione delle varietd guasi parahermitiane
e le proprietad caralteristiche delle 136 classi essenzialmente diverse, si studiano, infine,
esempi delle classi primilive.

ABSTRACT — A classification of almost parahermitian manifolds, a characteriza-
tion of the 136 essentially different classes, and ezamples of the primitive ones are
given.
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izontal lifts of tensor fields - Representations of the full linear group.
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1 — Introduction

As is well known, GRAY and HERVELLA [9] have classified the almost
hermitian manifolds (see also [14]), and thus inaugurated a method for
the classification of structures given by a 0-deformable (1,1) tensor field
J and a metric g compatible with J, defined on a differentiable manifold.
The method uses the decomposition of the space W of tensors satisfying
the same symmetrics as the covariant derivative (with respect to the Levi-
Civita connection of ¢) of the fundamental 2-form, in the invariant and
irreducible subspaces of W under the action of the structural group.

(*)Supported by the Spanish DGICYT grant n® PB89-0004.
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NAVEIRA [18] has obtained a similar classiffication of the riemannian
almost product manifolds, which has been studied by several authors (see
(2], (8], (18], [16)).

The case of almost complex manifolds with a Norden metric has been
solved in a similar way by GANCHEV and Borisov [7].

In the present paper we give the corresponding classification for
the almost parahermitian manifolds, obtaining a characterization of the
136 essentially different classes, and showing examples of the primitive
ones, and also of parakihlerian manifolds. This classification completes,
together with the earlier ones, that of the structures (J,g) on a 2n-
dimensional differentiable manifold M, such that J € 7;'(M) fulfils J? =
47, and J is an isometry of the riemannian metric g, or an anti-isometry
of the (necessarily pseudoriemannian of signature (n,n)) metric g.

2 - The classification
2.1- The classification at the tangent space level

Let (M,g,J) be an almost parahermitian manifold. That is, M is
a differentiable manifold, ¢ a pseudoriemannian metric on M, and J
an almost product structure on M such that g(JX,JY) = —g(X,Y)
for all X,Y € X(M), i.e., J is an anti-isometry of g. Then (see [10])
dim M = 2n, and the structural group of the tangent bundle TM can be
reduced to the group of matrices of the form

(5 ), Aecunm.

Let F be the fundamental 2-form on M, defined by F(X,Y) =
g(JX,Y), and ¢ the covariant derivative of F' with respect to the Levi-
Civita connection of g. We can then write

#(X,Y,2) = (VF)(X,Y,2) = (VxF)Y,2) = ¢((Vx))Y, 2),
and it is immediate to prove the following:

(2.1.1) #X.Y,2) = -§(X,2,Y),
(21.2) #(X,JY,J2) = §(X,Y,Z).



[3] Classification of Almost Parahermitian Manifolds 379

The tangent space T = T M at each point z € M splits as the
direct sum of n-dimensional subspaces T = V @ H, such that we can
choose a basis {A4;,...,4n, U1,...,Us} of T, where {A,,...,A,} and
{Uy,...,U,} are bases of V and H respectively, in which the expressions

(lﬂ 0) (0 ﬂ)
g._ 9 == I .

So, V and H are the eigenspaces J, and J_ of T corresponding to the
eigenvalues +1 and —1 of J, respectively; and both spaces being maxi-
mally isotropic with respect to g.

Let us now consider the vector space

W={a € ®°T";a(X,Y,2)= -a(X,2,Y), a(X, 1Y,/ Z)=a(X Y, z)}

of tensors in ®3T* satisfying the symmetries (2.1.1) and (2.1.2), and let
us study the decomposition of W in invariant and irreducible subspaces
under the natural action of the group G¢(n,IR). According to the sym-
metries of W we have

(2.1.3) W = (V" @AWV @ (V' A*H ) (H @AV ) O (H" @ A*H°).

Firstly, we study the decomposition of the summand V* ® A?V*. It
follows from the theory of representations of the full linear group (see [1],
[4], (7], [20]) that this decomposition is V* ® A?V* = A3V* @ Y, where Y
is the subspace of ®V* corresponding to the Young element e+ (12) -
(23) - (132); that is,

Y= {a € ®°V*;a(A, B,C) = B(A,B,C) + B(B,A,C) — B(A,C, B)
- B(C,A,B), for all 4,B,C € V and some § € 8°V"}.
Thus, as it is easily proved: V* ® A%V* = W, @ W,, where

Wi =AY = {a €V ®Aja(4,B,C) =

-1

= 3,§,0(4,B,C) for all 4,B,C € v}
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and
W,=Y= {a €V @A™V S a(4,B,C)=0forall 4,B,C €V},

where uszc stands for the cyclic sum with respect to A, B and C.

In order to study the decomposition of the second summand V* ®
AH* of (2.1.3), we can use the musical isomorphism §: H* — V associ-
ated to g, and hence it suffices to study the decomposition of the space
V* ® A?V, which in turn is S¢(n,R)-isomorphic to V* ® A"~2VY* by the
usual isomorphism u. It can be proved that we have the decomposi-
tion in invariant and irreducible subspaces under G¢(n,IR): V* @ A’H* =
W3 @ W,, where W3 and W, are isomorphic, respectively, to the subspaces
N =kerc! and V = ¢}(V* ®A?V) (c} being the contraction cj(/Q® AAB) =
cl(6(A)B - 8(B)A, A, B € V, 8 € V°) of V* ® A?Y, and to the sub-
spaces ) and A"~1V* of V* ® A"-2V*, such that V* @ A’Y = AN @V and
V@A -2Y* = YPA"-'V* are decompositions in invariant and irreducible
subspaces under G¢(n,IR). The fact that u is a S¢(n,IR)-isomorphism
does not cause any problem. In fact, let N7 = p(N). Obviously, N is
G{(n,IR)-invariant. If we prove that N is §¢(n,R)-irreducible, then A/
will also be §¢(n, R )-irreducible and, hence, G¢(n,IR)-irreducible. If this
were not so, it would exist a G€(n,IR)-invariant proper subspace N of
N thus, N, would be S¢(n,IR)-invariant. But then A would not be
S¢(n,R)-irreducible.

We can write

Ws ={a EV' ONH; Za(A,-,U,-,U,-) =0,1<;5< n} ,
i=1
{Al,coo,An,U],---,Un}
being an adapted basis of T, and _
Wi = {a € V" ® A™H"; a(4,U,V) = B(V)g(4, V) - B(V)3(4, 1)
forall A€ V,U,V € H, and someﬂGH'}.

The subspaces Ws,...,Ws are defined as W,,...,W,, respectively,
under interchange of ¥V and H.
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In low dimension, some of these subspaces are zero. Thus, forn =1,
it is immediate from the symmetries of W that W = {0}. For n = 2,
since A3V* = A3H* = 0, we have W; = Wy = {0}. If a € V* ® A?V", it
is immediate that Agca(A,B,C) =0, for all A,B,C € V; hence W, =
V* @ A2V*. Similarly, Ws = H* ® A2H*. The space V* ® A?H* admits the
basis {6 ®wi Awz , 02 Qw; Aw}, {6:,02,w;,w.} being an adapted basis of
T*. Thus, V* @ A’H* ~ V*. Hence W3 = W = {0} and W, = V" @A?H",
Ws =M ® A*V°.

For n > 3, the eight subspaces are not trivial.

We have thus proved:

8
THREOREM 2.1. The space W splits into the direct sum W = @ W;

i=1
of the following invariant and irreducible subspaces under G{(n,IR):
Wy = A%V W, ={a EV' @AYV ;“S,ca(A,B, C)=0

forall A,B,C € V} ;

Wa ={a € V’®A"H‘;20(A.-,U.-,U,)= 0, 1 S] S n,

i=1

where {A;,U;},1 < i < n,is an adapted basis ofT};
W, ={a € V" ® A" ;a(A, U, V) = B(U)g(A, V) - B(V)g(A,U),

forall A€ V,U,V € H,and some B € ‘H‘}.

The subspaces Ws,...,Ws are defined as W,,...,W,, respectively,
interchanging V and H. Ifn = 1, then W = {0}. Ifn = 2, then
W, =Ws=Wy=W,={0}. Ifn>3, thendimW;>1,i=1,...,8.
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Thus, we have 2% classes of almost parahermitian manifolds. How-
ever, since V and H are equivalent (it is enough to change J by —J), we
have only 136 essentially different classes if n > 3. If n = 2, that figure
is reduced to 10.

2.2 - The primitive classes of almost parahermitian manifolds

We say that an almost parahermitian manifold M is of class W;, W; @
W;, etc., i = 1,...,8, if for every z € M we have ¢, € W;, - € W, 0 W,
etc. We denote the class corresponding to {0} by PX (parakihlerian)
and the one corresponding to W by W. Since T is the model of each
tangent space T- M, z € M, the tensor field ¢ corresponding to a given
class satisfies the conditions of the tensor a of the invariant subspace
of W corresponding to this class. We can thus establish the conditions
for the class W,,W,,..., in terms of an adapted local basis {A;,U;},
1 < i < n. From now on, we denote by V and H the eigenbundles of
TM corresponding to the eigenvalues +1 and —1 of the almost product
structure J on M, respectively.

Thus, for the class W, we have: ¢ € V* @ A?V* and ¢(4,A,B) =0
for all A,B € V. Hence, ¢(X,X,Y) = 0 for all X,Y € X(M). Moreover,
from ¢(U, A, B) = 0 we obtain VyA € V, for all 4, B €V, U € H. That
is, V is parallel along H. From ¢(4, U,V) = 0 we also obtain V,U € H.
That is, H is parallel along V. Finally, from &(U,V,W) = 0 we conclude
that VyV € H. That is, H is autoparallel. In particular, H is integrable,
and the connected maximal integral submanifold through each point is
totally geodesic.

Conversely, if (VxF)(X,Y)=0,ViU € X, VyAEV, VyV e H
for all A € V,U,V € H,X,Y € X(M), from the last three conditions
it follows that ¢(U, A, B) = ¢(A,U,V) = ¢(U, V,W) = 0, and from the
symmetries of ¢ we obtain: ¢(4,B,U) = #(A,U,B) = ¢(U,A,V) =
$(U,V,A)=0. Hlence g€ V* ® A?2V°, and since ¢(X, X,Y) = 0, we also
have ¢(A, A, B) = 0. We thus conclude that the characteristic conditions
of the class W, are the following:

(VxF)(X,Y)=0,VyA€V,VxU€EH,
forall A€V,U eH, X,Y € X(M).
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In W,, M is parallel. Moreover, the condition (Vx F)(X,Y) = 0 is equiv-
alent to adding to the other ones the following: V44 € V for all A € V.
That is, every geodesic with initial tangent vector in V maintains its
tangent vector in V.

Similarly, for the class Wy we have the characteristic conditions:

(VxF)(X,Y):O, VxAE€eV, ViU EH,
forallAeV,UeH,X,Y e X(M).

We now consider the class W,;. We have

dF(X,Y,2)= § o((Vx))Y,2) =
(2.2.1)
=S ¢(X,Y,Z)(X,Y,Z € X(M))'
xvz

Since ¢ € V*®A?V", it follows that ¢(U, X,Y) = ¢(X,U,Y) = ¢(X,Y,U)
=0forallU € H, X,Y € X(M). But from (2.2.1) we obtain dF(A4, B,C)
= 0, and thus dF = 0. As in the case W, we also have VxU € H,
VuA €V, forall Ae V,U€e H, X€ X(M), and ¢€ V* ® A?V".

Furthermore, from dF = 0 and (2.2.1) it follows that A§c¢(A’ B,C)=
0 for all 4, B,C € V. Consequently, the conditions

dF =0,VxUeH,VyAeViorall AcV,UeH,X € X(M)
characterize the class W,. Similarly, the conditions
dF =0,VxAeV,V,UeHloral AeV,UeH,X € X(M)

characterize the class W;.

As for the class W, since in an adapted local basis {A;, U;} the metric
is expressed by the standard matrix

( 5)
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we have:

6F(X) = = 3" {(VaF) (Ui X) + (Vo F) (4 X) }

=1

= _z"j{¢(,4,.,v‘,x) + ¢(U.-,A.-,X)} for all X € X(M).

In Wy, ¢ € V* ® A’H* and Z;¢(A;, Ui, U;) = 0 for every fixed j. We
therefore have §F(X) = —Z; j(hX Y §(A;, Ui, U;) = 0, kX = (RXYU;
being the component of X in . Furthermore, since ¢ € V* ® A*M°,
we have VxA € V, VyV e Hforall A€ V, U,V € H, X € X(M).
Conversely, from these conditions and the symmetries of ¢ we deduce that
¢ € V* ® A*H". But since §F = 0 as well, we obtain Z;¢(A4;, U;, U;) = 0,
1 < j < n. Hence, the characteristic conditions of W3 are

§F=0,VxA€eV,VyVeHlorall AeV,U,VEH,X € X(M),
and thus V and H are autoparallel, the integral submanifolds of both

distributions are totally geodesic and J is integrable.
Similarly, the characteristic conditions for W; are:

§F=0,V,BeV,VxUeHforall A,BeV,U e, X € X(M),

and the geometric properties are similar.
With regard to Wy, we have ¢ € V* ® A?H* and

293 (A, U, V) =B(U)9(A, V) - B(V)9(A,U)
(222) for all A€ V,U,V € M and some 8 € H*.
Hence, writing vX = (X + JX), hX = 3(X — JX), we obtain:
#(X,Y,2) = B(hY )g(vX,hZ) — B(hZ)g(vX,hY) =

= B - IV)o(X, 2~ JZ) - B(Z - T2} X.Y - TY)}
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for all X,Y,Z € X(M). Thus,

6F(U;) = —ZﬂAiaUnU )=

=1

== Z %{ﬂ(2Ui)g(Ah2Ui) - ﬂ(2Uj )g(A;,2U;)} =
i=1

= —ﬂ(U;)&q + nﬂ(U;) = (n - l)ﬂ(Ul) .

Consequently,

(VxF)Y,2) = 4—(,;1_—1){”(" —IY)(X,Z - JZ)
(2.2.3)
—§F(Z - JD)g(X,Y — JY)}

Moreover, as in the case Ws, we have
(224) VxAeV,VyVeHforalAecV,U,VEH,XE X (M),

and geometric properties as in Ws.

Conversely, that ¢ belongs to V* ® A’H‘ is obtained in the usual
way, and property (2.2.2) is immediate from (2.2.3). Thus, the charac-
teristic conditions for the class W, are given by (2.2.3) and (2.2.4). The
corresponding conditions for Wy are

1

(VxF)Y,2)= oD

{JF(Y +JY)9(X,2 +J2Z)

(2.2.5)
—~SF(Z+J2)g(X,Y + JY)}

and

(2.26) V. BeV,VxUeHforall A,BeV,U€H,X €X(M).
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Since ¢ € V° ® A®H" for the class W, and for W; is ¢ € H* @ A?Y*,
we can add the right hand sides in (2.2.3) and (2.2.5) in order to obtain
for both classes the following characterization:

(VxF)(Y,2) = ,L,(—n}_—l){w(y)g()(, Z)-6F(Z)9(X,Y)+

(2.2.7)

with (2.2.4) for Wy, and with (2.2.6) for Ws. In both cases, as in W,
and Wy, V and H are autoparallel, the integral submanifolds are totally
geodesic, and J is integrable.

In a similar way to [9], we give the following

DEFINITION 2.2. The almost parahermitian manifolds (M, g,,J})
and (M, g3, J,) are said to be locally conformally related if J| = J; and
for every T € M there ezists an open neighbourhood N of z such that g,
and g, are conformally related in N.

DEFINITION 2.3. The Lee form 8 of the almost parahermitian man-
ifold (M,g,J) is the 1-form on M defined by

8(X) = —n—_l_—16F(JX) (X € X(M)).

Then the following can be proved:

ProprosITON 2.4. The almost parahermitian manifold (M,g,J) is
locally conformally related to a parakdhlerian manifold (M, go,J) if and
onlyif: N =0,dF+8AF = 0 and df = 0, where N denoles the Nijenhuis
tensor of J and @ the Lee form of (M,g,J).
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REMARK. Let 9 be the tensor field on (M, g, J) defined by g(¥(X,Y),
Z) = (d6+6 A F)(X,Y,Z). Then the three tensor fields N, 1 and df are
global conformal invariants of the structure.
Moreover, it should be also noted that if we define a tensor field p
on M by the formula (cf. [9]):
1

9(u(X.Y),2) = (VxF)Y,2) - 5= {6F(Ne(X, 2)

—SF(2)g(X,Y) +8F(JY)g(X, 1 2) - SF(I2)g(X,IY )},

for all X,Y,Z € X(M), then (2.2.7) is equivalent to say that 4 =0, and
the following can be proved:

PROPOSITION 2.5. i) The tensor field y is a global conformal in-
variant.

ii) p =0 if and only if N = 0 and dF + § A F = 0, or equivalently,
if and only if VAB € V, VyV € H for all A,B € V, U,V € H, and
dF +8AF =0.

From Propositions 2.4 and 2.5 it follows that any almost parahermi-
tian manifold locally conformally equivalent to a parakihlerian manifold
is in W, @ W,. We also note that the pair (g, df) is the analogous to the
Weyl conformal tensor of riemannian geometry. The examples which we
shall consider in §3 provide in particular examples of manifolds satisfying
4 = 0 and which however are not locally conformally equivalent to any
parakihlerian manifold (see the last remark of the paper).

The following equivalence will be used in §3.

ProrosiTiON 2.6. The condition
(VAF)U,V) = —{SF(U)a(4,V) - SF(V)s(4, U}
forall A€ V,U,V € H
Jor W, is equivalent to the condition
(228) S (ViuonF)(V,W)=0forall A€V U,V,W €H.

The similar equivalence for Ws is also satisfied.
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The proof follows from a simple computation and thus is omitted.
In view of the foregoing, we have the following table of properties of
the primitive classes W), ..., Ws:

Table 1: Primitive classes of almost parahermitian manifolds of dimension > 6

Wi |[Wa | Wi | W | Ws | We | Wr | W,
(VxF)}X,Y)=0 » *

dF =0 . -
§F=0 . .
(VxF)(Y,2) = (1/2(n - 1){6F(Y)9(X, Z)
-6F(2)9(X,Y) :
+6F(JV)e(X, 1) ) )
- 6F(J2)g(X,JY)}
VaisBeV - * . - - -
VvAEY . . . . . -
VUeEN . | » e | s | e | =
VvVEH . - - - - -

If dim M = 4, the classes W), W5, W5 and W; do not exist. According
to the fact that V and H are, respectively, the (+1)-eigenbundle and the
(—1)-eigenbundle associated to J, we will call the manifolds M in the

earlier classes:

(4) -nearly parakdhlerian, if M € Wy,

(=) -nearly parakdhlerian, if M € W,

(4) -almost parakdhlerian, if M € Wy,

(-) -almost parakahlerian, if M € W,

(+) -parahermitian semi-parakahlerian, if M € W,
(=) -parahermitian semi-parakdhlerian, if M € W;.

We have named the last two classes according to the first factor in

the space to which ¢ belongs.
We have not found an appropriate name for the manifolds in the

classes W, and W;.
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2.3~ Characteristic conditions of the 136 essentially different classes of al-
most parahermitian manifolds

In order to obtain the characteristic conditions for each of the 136
essentially different classes, it suffices to consider the following 8 proper-
ties:

1) “S,C(VAF)(B, C)=0forall A,B,CeV.

2) VaA€eVforallAe V.

3) (VAF)U,V)=6(V)g(A,U)-6(U)g(A,V)forall AcV, U,V €H.

4) (VA F) Ui, U) = 0 for all U € M, {A;, Us} being a local adapted
i=1

frame.

8) 8, (VuF)(V,W) = 0for al U,V,W € H.

6) VoUeHforall U e H.

7) (VuF)(A,B) = 0(A)g(U,B) — 6(B)g(U,A) forall A,B€V,U €H.

8) 3°(Vu,F)(Ai,A) = 0 for all A € V, {A;, U} being a local adapted
t=1

frame.

Then the class PK is the class of manifolds which satisfy the above 8
properties; the class W;(i = 1,...,8) is characterized by all these proper-
ties except the corresponding to ¢); the class W; @ W;, by the 6 properties
different from the corresponding to i) and j), and so on. Thus, in partic-
ular, it is immediate that the class PK is characterized by the condition
(VxF)(Y,Z) = 0 for all X,Y,Z € X(M), and the primitive classes W;
by the conditions in Table 1. We shall see some examples of those classes

in §3. The study of the geometric properties of the classes different from
PK, W; and W, and examples of them remains to be done.

3 — Examples
3.1- Examples of parakahlerian manifolds
3.1.a) The paracomplez projective space of LIBERMANN [13].

This is the product P,(IR) x P,(R) of two real projective spaces of
the same dimension, endowed with the structure specified in {13, p. 89).
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3.1.b) The “paracomplez projective space” P,(B) and the “reduced para-
complez projective space” P,(B)/Z, of GADEA and MONTESINOS AMILI-

BIA [5], [6)-
These are the spaces Pa(B) = Glo(n+1,R)/(Gto(1,R)x Gts(n, R))

and P(B)/Zy = Gto(n +1,R)/((G{(1,R) X G¢(n, R)) , endowed with
the structure specified in [6]. They are diffeomorphic to TS" and TF,(IR),
respectively, and they are spaces of constant paraholomorphic sectional
curvature, which are called paracomplex projective spaces by its analogy
as symmetric spaces with the complex projective spaces P,(C).

REMARKS. 1) Of course, all the parahermitian symmetric spaces
corresponding to the symmetric pairs in the infinitesimal classification of
KANEYUKI and KozAl [11] belong to the class PK. Specifically, the space
P,(B) and P,(B)/Z, correspond to the case m = 1 of the symmetric pair
(sf(n+ m,R), si(n,R) + sl(m,R) + R). For more examples, see [11,
p. 92-93].

2) The relation between examples 3.1.a) and 3.1.b) considered as
symmetric spaces will be studied in a forthcoming paper.

3.1.c) The parakihlerian tangent bundle of CRUCEANU (3]

This is a particular case of a general structure studied by Cruceanu
on the tangent bundle TM of a riemannian manifold M endowed with a
linear connection V, which we shall consider in the next scction. When
V is the Levi-Civita connection of the riemannian metric g of M, and g
has no curvature, then TM is parakdhlerian.

3.2— The structure of Cruceanu. Examples of manifolds in the primitive
classes
Let M be a riemannian n-manifold with metric g, and let V be a
linear connection on M. Let XV be the vertical lift of X € X(M) and
XH_ g# the horizontal lifts of X and g with respect to V to the tangent
bundle T'M, in the sense of [21]. Then (see [3]), we have that (TM, g% ,J)
is an almost parahermitian manifold, where J is defined by

(3.2.1) JXVY=xv, JX¥)=-x%.
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From [21, pp. 12, 98, 100, 101] we have:
i) The expression of g/ in an adapted local frame on TM is:

(3.2.2) g" = (g g) ;

ii) We have the following formulas:
[x¥,Y']=0,

(3.2.3) (X", Y¥] = -(VaY)",

(X, Y¥) = [X,Y|"H - yR(X,Y),

where R denotes the curvature tensor of the linear connection on M
defined by VxY = Vy X +[X,Y](X,Y € X(M)).

Let V be the Levi-Civita connection of g#. We first consider the
properties of parallelism with respect to ¥ of the distributions V and H
on T M corresponding to the eigenvalues +1 and —1 of J, respectively.
They will be called vertical and horizontal distributions, respectively.

From (3.2.2), (3.2.3) and Koszul formula ([12, p. 160]), it follows
that

(3.2.4) VuBeV forall A,BeV.

In a similar way we obtain

(3.2.5) VyAeV forall A€V, UeH.

By virtue of (3.2.4) we have that V is autoparallel, and accordingly,
it is integrable. The integral manifolds are totally geodesic. Taking into
account (3.2.5), it follows that V is parallel. Consequently (see Table 1),

the structure of Cruceanu provides examples of the classes Wj, W,, Ws
and W;.

0
Let V be the Levi-Civita connection of g, and A the difference tensor

A=V- %. Computing as in the earlier cases, and from [12, p. 160,
Cor. 2.4), we obtain: V,U € Hforall A € V, U € H il and only if
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9(A(X,Y),2) = g(A(X, 2),Y), for all X,Y,Z € X(M). Similarly, it
can be proved that

(3.2.6) VoVeH forall UVeH

if and only if R=o.

For (TM,g",J) to belong to W; we must have: 1) That V be parallel,
which is always the case; 2) that X be autoparallel, i.e., according to
(3.2.6), that R = 0; 3) that 6F = 0. It suffices to evaluate §F on A € V
and on U € M. In an adapted frame, from (3.2.2), we have

()= (2 %)

As a calculation shows, for (TM,g",J) we always have: §F(A) =
0 for all A € V. Moreover, from the symmetries of VF, (3.2.3), the
expression for A X and [12, p. 160, Cor. 2.4, we obtain §F(U) = 0 for all
U € H if and only if b(c;24) = ¢} A, where ¢]A denotes the contraction
of the contravariant index with the first covariant index of A, ¢;2A the
metric contraction (see [19,p.82]) and b denotes the musical isomorphism
b: TM — T* M associated to g. We note that the linear connections on
M fulfilling the above condition constitute an affine subspace.

We now consider the class W,. In this case, condition (2.2.8) be-
comes: U§w(6gn(U,A)F)(V, W)=0forall A €V, U,V,W € H, which

can be written in terms of A as
5, 96 {g(AX,), 2) - g(A(X, 2), W)} = 0,
X,Y,Z,W e X(M).

As for the classes W; and W;, from Table 1 we obtain the com-
mon conditions: i) VAU € H for all 4 € V, U € H, or equivalently
9(A(X,Y),2) = g(A(X,2),Y) for all X,Y,Z € X(M); ii) there exist
U,V € H such that VyV ¢ M, or equivalently R # 0. Furthermore, for
Ws we have (VxF)(X,Y) =0 for all X,Y,Z € X(TM), and dF = 0 for
We.
) According to CRUCEANU (3, Th. 3), we know that (TM, g, J) is
almost parakahlerian (i.e., dF = 0) if and only if the cotorsion 7 of
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(9, V) vanishes. In terms of A, 7 = 0 is equivalent to g(A(X,Y),Z) =
9(A(2,Y),X) for all X,Y,Z € X(M). But it is immediate that this
condition together with the earlier i) on A is equivalent to A(X,Y) =
A(Y, X).

The condition (VxF)(X, Y).= 0 for Ws is equivalent to VU €
H for all U € H, or even to g(R(X,Y)Z,T) = g(R(T,X)Z2,Y) for all
X,Y,Z,T € X(M). Hence, we can give the following table of properties
of manifolds (T'M,g",J) in order to belong to Wi, Wy, W5 or Ws:

Table 2

J! Wy | we | ws | we
(a) | clA=b(cr2A4) -
® [ 5, 9(XY)HelAX, W),2) - g(A(X, 2),W)} =0 .
(¢) | A(X,Y)=A(Y,X) .
@) | o(R(x,Y)2,T) = o(R(T,X)2,Y) .
10) 9(A(X,Y), 2) = g(A(X, 2),Y) - -
(n | R=o . .

REMARKS. 1) Let us suppose the manifold (T M, g, J) belongs to
W3 N W,. The property g(A(X,Y),2) = g(A(X, Z),Y) for all X,Y,Z €
X (M) implies (a) and (b). Conversely, if we assume properties (a) and
(b), then g(A(X,Y),Z2) = g(A(X, 2),Y). In fact, we polarize (b) with
respect to X in (b); we then make the transvection with g~! (summing in
the indices corresponding to X and W), and finally we apply (a). Thus,
the families of manifolds (TM,g",J) in W5 in W, are disjoint, because
they have the common property that there exist X,Y,Z € X(M) such
that g(A(X,Y),2) # g(A(X, 2),Y).
2) Let us suppose the manifold (TM,g¥, J) belongs to Ws N Ws. From
property (c) for Wy we have T = —T =0, T and T being the torsions of
V and V¥, respectively, and hence we obtain S R(X Y)Z = 0 (Bianchi

identity). Moreover, R also satisfies g( B(X, Y)Z T) = —g(R(Y,X)Z,T)
and property (d). Taking into account these properties, it can be proved
that R = 0, which is not possible because of the common property R #0,
thus showing that Ws and W are disjoint classes indeed.
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3) We note that by changing the roles of V and H in the structures of
Cruceanu (see (3.2.1)) so that J(X#) = X#, J(XV) = —X", we obtain
examples of the “dual” classes W;, W,, W; and W;s. The structures
(TM,g",J) thus furnish examples of all the primitive classes, and also
of the class PK, as we have seen in 3.1.c).

4) Finally, we consider some examples of Cruceanu’s structures such that
g = 0 but which are not locally conformally parakihlerian. For this,
consider manifolds in the class Wy, Then u = 0. Let @ be the Lee form of
(TM,g",J). Since in this case we always have (A) = 0 and [A,U] € V
forall A € V, U € H, we deduce that d0(A,U) = A8(U). By a calculation
we prove that the condition 40(U) = 0 is equivalent to the following

2":{9(-'4(3/ dz;,0/0z4),8/0z;)
(327) i=1

~ 9(A(8/92:,8/9:),9/01)} = 0

forevery k=1,...,n.
But R = 0 is equivalent to say that there exist a local frame ¢; =

%; f;i(8/8z;)(i = 1,...,n) such that ﬁ,‘e,- = 0. If we take adequate
functions f;. it can be proved that at a point 2 € M the conditions
(3.2.7) are not satisfied.
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