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Some Estimates of Integral Operators with respect
to the Multidimensional Vitali #-variation,
and Applications in Fractional Calculus

C. BARDARO - G. VINTI

RIASSUNTO - Si considerano disuguaglianze per composizioni di operatori inte-
grali con nuclei omogenei rispelto alla ¢- variazione di Vitali in R},. L‘?plicazionc
principale é una disuguaglianza rispelto alla p-variazione frazionaria in .

ABSTRACT - We consider inegualilies for composition of integral operators with
homogeneous kernels, with respect to the Vitali g-variation in IRY,. The main applica-
tion is an inequadlity with respect to the fractional p-variation in R*.
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— Introduction

In this paper we continue the study started in [4] on inequalities
for integral operators with homogeneous kernels. These inequalities can
be used in approximation theorems, because they give "boundedness”
properties for the operators.

Here we consider inequalities for composition of integral operators
with respect to Musielak-Orlicz ¢-variation [14], [16], using a new concept
of homogencity for the kernel of one of the component operator.
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The main application is an interesting inequality with respect to the
“fractional p-variation of order o” of f € L} (R*).
This concept, which is based on the Riemann-Liouville fractional integral
of f, was introduced in [17], {18], in the special case of ¢{u) = u.

Thus our theorem 2 below extends the “a-variation diminishing prop-
erty” for the moment operator, proved in [18).

For a sake of generality we work on multidimensional case and use
the Vitali y-variation of f in R}, N > 1, (see section 1).

For the variation we adopt the construction given in [11], [12], and for
a sake of simplicity, we will distinguish the functions which are equivalent.
That is a function f € L. _{IR};) is not considered as an “equivalence
class”, but just a function which is defined everywhere in IR},.

1~ Notations and definitions

In the following we will put R} = (J0,+oo[)¥, N e N, N > 1,
Moreover by L. (R}) we will denote the class of the (real) locally inte-
grable functions on IR}, (i.e. the functions which are integrable on every
“bounded” set in RY). R*stands for IR} and RF denotes the interval
(0, +o0f.

Itz = (21, - zn),t = (-, dx) € R, we set 2t = (,2,,-+,251x),
< rO>= n'-=1 ;= ZI1X2 TN, and t-! = (trl,"',tﬁl).
Let ¢ : Ry — IR} be a function verifying the following assumptions:

i) @ is convex and non decreasing in IRJ;
i) ¢(0) = 0 and ¢(u) > 0 for u > 0.

We introduce now the ¢-variation in the sense of Vitali for functions
§ € LL.(IRY). We use the construction given in [11], [12].

For a = (@1, +,an),b = (), ,by) E R}, we define a < b & g, <
byi=1,---,N and [2,0] = {z € R}, : a € = < b}; for example for
N =2,1a, bl is a rectangle.

Moreover, we set:
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Cor[a,b]={z€R}:z; =a;0orz; =b;, 1 <i< N},
v(z,e)={i€ {1,---,N}:z; = a;}, for z,a€R},
= —1)r(z.a
Aflat) = _F (1),

Next, we define the Vitali ¢-variation of f in IR};by means of the
equation

V(1) = sup S 0lIA( 10,5

where the sup is taken over all the finite collections of non overlapping
intervals [a®,5®)] c RE.

We remark that for N = 1 we have A(f,[a,8]) = f(b) — f(a),
a,b € R*, and so Vp" reduces to the one-dimensional Musielak-Orlicz
p-variation V,(f) in R*.

For ¢(u) = u, N > 1 we obtain the Vitali variation in R}.

If VV(f) < +oo, we say that f is a function with bounded Vitali

¢-variation on IR}.
Let now K™ be the class of all the measurable functions K : R} X

R}, = IR] such that

(K.1)xy There exists a measurable function 7 : R* — R* (depending on
K) such that for every A € R}, and (z,t) € R} x Ry, we have

(< At>)

,’(< t >) K(z’t)’

K(\z,\t) =

(K.2)n The integral operator,

(TN = [ KOs
o

maps Dy into LL.(R},), where

Dr = {f € Lb(RE) : T(1f1)(2) < +oo, for every z).
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REMARK 1

(2) As a particular case, we can consider 7(z} = 27, z€ R*,7 € R, to
obtain a definition of homogeneous kernel of degree 7, i.e.:

KAz, A\t) =< A >7 K(z,1).

(b) A typical example of Tf is the one-dimensional “moment operator”
or “average operator” with kernel

Mi(z,1) = Az xg (1), A > 1,(z,1) € RT x R*,

which is homogeneous of degree —1. In this case (1) = t~!. For
references on this operator see e.g. 5], [8], (9], 6], [17], [18], [1], (2],

3], [4)-

2- An inequality for Tf

The result below extends theorem 1 in [4] in various directions. Here
we assume N > 1.

THEOREM 1. Suppose that K € K~ and
0< Af = f {n(< 2>)}™! < 2>~ K(1,2)dz < +o0,
R}
for a fired § € R. Then for [ € Dy, it resulls:
(1) VE(< - >P(TH)) S VIAF <> nl< - 2)]())-

PROOF. We can suppose that VV[AX < - > ip(< - 5)f(-)) < +oo.
By (K.1)ywe have
< x> (Tf)(z) =<z>ﬁ+1/ o< 22> < 2>)) T K(1,2)f(2z)dz =
B}

= [ <)) <> 00K (1, 2datae)i,
i
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where g(t) < t >P+! n(<1>)f(1),t € R},.
Now, let [a®), 5], i = 1,..-,r, a finite collection of non overlapping
intervals in IR};; we have by Jensen inequality

z0l) 2>)} 1<z >-(B+Y) 2)g(zz)dz
25 ol n{{n« )} <> PHIK(L, g(ze)dz)

<T ol [ K(1,2)<z>" 04 (< 2>)) 1| A(g(2),[a®, b))l dz2)
=1 n};

=Ll [ K(1,2)<2> 0 n(<>)) (s, [2a, 5)id2)
=1 R

/K(l 2)< 2>~ (< 2>)} VN (AN g)dz = V) (Af 9)
g

and so the assertion follows.
As a particular case, for 8 = 0, (1) becomes
(2 VI(T)) S VY (A< - >n(< - >)())-

Moreover, if N = 1, (1) becomes
3) V(P (TF))) < Vil AF P (VO

+00
where Af = / {n(2)}~ 1z~ P K (1, 2)dz < +oc0.

If N =1,8 = 0, K homogeneous of degree 7 € IR, theorem 1 reduces
to theorem 1 in [4].

REMARK 2 Condition (K.2)nis not used in theorem 1; we can con-
sider all the domain of T (the set of the measurable functions for which
Tf exists as Lebesgue integral for every x).
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3 — Composition of integral operators

Here we consider the following integral operators:

(ThHE = [ Kanswa
R,

N = [ Aenso.
"t

We will assume that H,K € K", and that H is homogeneous of
degree § € R. We also assume T'(|f]) € Dy.
We use the following

LEMMA. For f € Dr, let us put g(t) =< t > n(<t>)f(t); then we
have

(4) (UoT)f(z)=<x>¥ _/{n(< 1>)} <t >~ CH K (2, 1) (Ug)(t)dt
RE
whenever ¢ € Dy.
Proor. By property (K.1)y, we have
(T)(z) =<z> [ n(< 2z >){m< 2>)} K (1,2) f(z2)dz
R}

= f{q(<z))}"(z)“fi’(l,z)g(z:)dz.
RY

By property (K.2)y, since T(|f|} € Dy, it is possible to apply the Fubini-
Tonelli theorem and thus we write

WoTME) = [ R (Tt =
R},

=/ { / {q(<z>)}“<z>"K(1,z)H(z,!)g(tz)dt}dz.
RY, R,
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Making use of the substitution tz = v (i.e. {;z; = v, 4= 1,---,N) in the
inner integral, we deduce

(UoT)f(z)= /{/ {<z>)} < 2 >"K(1,z)H(z,vz"‘)g(v)dv}dz.
RE RE
As H(zz,v) = <z>°H(z,vz"") we have also

(U o TYf(z) = / { / {17(<z>)}"1<z>’(“")K(1,z)H(zz,v)g(v)dv}dz

R} RY

= / {<2>)} < z>"HK(1, z)(Ug)(zz)dz.
R%
Next, we put zz = t, and obtain
(Uo T)f(z):/{n(<tz“>)}"<t>"’+‘)<z>‘+‘K(1,tz")(Ug)(t)dt.
R}
By (K.1)n, we have
<tz >} K(1,1271) = p(<t>) K(z,1),

and so

(UoT)f(z) = <z>'* / n(<t>) " <t>" K (z,t)(Ug)(t)dt.
R}

Now, we are ready to prove the main theorem of this paper.

THEOREM 2. Under the previous condilions and notations, suppose
that

(i) 0 < AK, = [ {n(<2>)}'<2z>"C+IK(1,2)dz < +oo,
Rt

N
(i) 0 < A¥ = [ <2>~0+DH(1,2)dz < +o0.
R}
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Then, for every f € Dy, such that g € Dy, we have

(5)
V(U o T)f) S VU (AK.(U)() S VY (AT A < - > (< - >) S (1)),

where g(t) =<t> n(<t>)f(1).
PROOF. As in theorem 1, we can suppose that
VY (AF AK < - > n(< - >) () < +oo.

Let us put g(t)=<t> p(<t>)f @), h(t) = {n(<t>)} 1< t>"CH¥)(Ug)().
By lemma 1, h belongs to the domain of T', and by theorem 1 and remark

2, we have (for = 6+ 1):
V(U T)f) = V(< - >™(Th)()) <
SV (A< - >™n(< - >)h())) =

= VN(A6+1(U9)('))-

Moreover, again by theorem 1 applied with § =0, T =U, f = AKX 19
and taking into account that the kernel of U is homogeneous of degree 4,

we have

VI(AK.(U9)() < VY (AT AL < - > on(< - >) ().

For the special case N = 1, (5) reduces to the following:

(6) V,((UoT)f) < Vy(AK(Ug)(")) < Vil AF AR (V' n(< - >)I())

where

400
A= [ () MK, 2,

and +o0
Al =:/ 2~ (+9 H(1, 2)dz.
0
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4 — Applications to the fractional calculus

Let f: R*—IR be a locally integrable function and let a €]0,1[ be
fixed.

Following [17], [18], we define the “generalized fractional primitive of
order 1 — a of f ” by means of the equation

M e =ra-at [ ae e,

We remark that (7) is well-defined for each f € Lj,.(R*) and Dy C
L. (R*), where we will put Uf = fu_a).

The following result is an easy consequence of theorem 1 and relates
the ¢-variations of f and f(1-a).

COROLLARY 1. For every f € Dy, we have

(8) Vol fa-a)) < Vo(T(@)() ™ ())-

PROOF. Putting H(z,t) = {T(1 — @)} }(z — 1) "Xjo,c((t), we can
write

+00
Ja-a)(2) =/o H(z,t)f(t)dt.

As H is homogeneous of degree —a, the result follows by theorem 1
with N = 1,6 = —a,taking into account that A} =I(a).

According to the definition given in [17], [18], we define the “fractional
@-variation of order a” of f € Dy by means of the equation

(9 Vo () = Vo(Jo-a)-
With this definition, (8) of corollary 1 becomes
V() S VelT(@)()' ™" f()), f € Do
Now, using theorem 2, we can obtain estimates of the integral op-

erator Tf with respect to the fractional -variation. We will use the
notations of theorem 2, for N = 1.
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CoRrOLLARY 2. Leta€]0,1], K € K; if

+o
Arog = j {21222 K (1, 2)dz < +oo,
then, for every [ € Dr, such that (-}u(-)f(-) € Dy, we have

V(TS V(A ())
< V(M{a)A,_o{) () ().

Proor. Putting H(z,t) = {T(1 - a}}~(z - {)""xjo.((t), we have
Al = T(a), AK, = Ai-a, and the result is an easy consequence of
theorem 2.

For the moment type operators (see section 1):

Maie)= [ Mate) S

we obtain in particular Dy, = LL(R"}, and

VWM V(5= /OD
(10)

< (el g (IO,

for every f € Dy, and a €]0,1]. Indeed, in this case we have 7{2) = ¢-1

wd e = a1

REMARK 3.

(a) If ¢(v) = ©v,Yu € R}, the first inequality in (10} is a result proved
in [18].
(b) For the “modified moment kernel” (see [18]):

Mi () =0+ 1)3-“”)‘;)(]0.:[(1)' A>0, >0,
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Aty

we obtain A;_, = and so, for ¥ < a, we have the “a-variation
diminishing property” for M, e

Ve(M3 ) SVE(Constf(-)), Const<1.
If ¢(u) = u, we obtain in particular a result of [18], namely

Ve(Mi,,f) < ConstVe(f), Const < 1.

Obviously, it is possible to introduce other concepts of fractional vari-
ation by introducing some generalization of the integral f(;_,)(Riemann-
Liouville fractional integral). For example, we may consider (see [7], [10]):

fo-a®) = = M/(rdr%“vma 1>1, aell

or (see [15]),

2z 2 _ ,2)-a,20+1 1
fi-ae) = S gy |, @ - W) s, a>0, 0> -3
The kernels of f{,_,) and f{\"_,), are homogeneous of degree —1.

For these different types of fractional variations, we can state similar
inequalities.
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