Certain Classes of Analytic Functions of Complex Order and Type Beta

M.K. AOUF - S. OWA - M. OBRADOVIĆ

RIASSUNTO – Sia $S(1-b,\beta)$ ($b \neq 0$, complesso, $0 < \beta \leq 1$), la classe delle funzioni $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, analitiche in $U = \{z : |z| < 1\}$ che, per $z = re^{i\theta} \in U$, soddisfano la condizione:

$$\left|\frac{\frac{zf'(z)}{f(z)}-1}{2\beta\left(\frac{zf'(z)}{f(z)}-1+b\right)-\left(\frac{zf'(z)}{f(z)}-1\right)}\right|<1.$$

Inoltre, si dice che $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$ appartiene alla classe $C(b, \beta)$ $(b \neq 0$, complesso, $0 < \beta \leq 1$) se e solo se $zg'(z) \in S(1-b, \beta)$. Questo articolo tratta lo studio di alcune proprietà di tale classe di funzioni.

ABSTRACT – Let $S(1-b,\beta)$ ($b \neq 0$, complex, $0 < \beta \leq 1$), denote the class of functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ analytic in $U = \{z : |z| < 1\}$ which satisfy for $z = re^{i\theta} \in U$,

$$\left|\frac{\frac{zf'(z)}{f(z)}-1}{2\beta\left(\frac{zf'(z)}{f(z)}-1+b\right)-\left(\frac{zf'(z)}{f(z)}-1\right)}\right|<1.$$

Further $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$ is said to belong to the class $C(b, \beta)$ ($b \neq 0$, complex, $0 < \beta \le 1$) if and only if $zg'(z) \in S(1-b, \beta)$. This paper investigates certain properties

of the above mentioned classes.

KEY WORDS - Analytic - Starlike - Convex - Complex order.

A.M.S. CLASSIFICATION: 30C45

1 - Introduction

Let A denote the class of functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ which are analytic in $U = \{z : |z| < 1\}$. In [24] WIATROWSKI introduced the class of complex functions of order $b(b \neq 0$, complex) defined as follows:

DEFINITION 1. A function $g(z) \in A$ is said to be convex function of order b ($b \neq 0$, complex), that is $g(z) \in C(b)$ if and only if $g'(z) \neq 0$ in U and

(1.1)
$$\operatorname{Re}\left\{1 + \frac{1}{b} \frac{zg''(z)}{g'(z)}\right\} > 0, \quad z \in U.$$

In [16] NASR and AOUF introduced the class S(1-b), $b \neq 0$, complex, of starlike functions of order 1-b, defined as follows:

DEFINITION 2. A function $f(z) \in A$ is said to be starlike function of order 1-b ($b \neq 0$, complex), that is $f(z) \in S(1-b)$ if and only if $f(z)/z \neq 0$ in U and

(1.2)
$$\operatorname{Re}\left\{1+\frac{1}{b}\left(\frac{zf'(z)}{f(z)}-1\right)\right\}>0\,,\quad z\in U\,.$$

It follows from (1.1) and (1.2) that

(1.3)
$$g(z) \in C(b)$$
 if and only if $zg'(z) \in S(1-b)$.

The class C(b) has been studied by NASR and AOUF [14, 15] and AOUF [2].

Motivated by [7, 1, 13], we in the present paper, introduce the concept of "type" for the classes S(1-b) and C(b), $b \neq 0$, complex, as follows:

DEFINITION 3. A function $(z) \in A$ is a starlike of order 1-b and type β , $f(z) \in S(1-b,\beta)$, if and only if for all $z \in U$, the inequality

(1.4)
$$\left|\frac{\frac{zf'(z)}{f(z)}-1}{2\beta\left(\frac{zf'(z)}{f(z)}-1+b\right)-\left(\frac{zf'(z)}{f(z)}-1\right)}\right|<1,$$

holds for $b \neq 0$, complex and $0 < \beta \leq 1$.

DEFINITION 4. A function $g(z) \in A$ is a convex of order b and type β , $g(z) \in C(b,\beta)$, if and only if for all $z \in U$, the inequality

(1.5)
$$\left| \frac{\frac{zg''(z)}{g'(z)}}{2\beta \left(\frac{zg''(z)}{g'(z)} + b \right) - \left(\frac{zg''(z)}{g'(z)} \right)} \right| < 1,$$

holds for $b \neq 0$, complex and $0 < \beta \leq 1$.

It follows from (1.4) and (1.5) that

(1.6)
$$g(z) \in C(b,\beta)$$
 if and only if $zg'(z) \in S(1-b,\beta)$.

By specializing b and β we obtain several subclasses studied by various authors in earlier papers:

(1) S(1-b,1) = S(b) and C(b,1) = C(b), $S\left(1-b,\frac{2M-1}{2M}\right) = F(b,M)$, $M > \frac{1}{2}$ and $C\left(b,\frac{2M-1}{2M}\right) = G(b,M)$, $M > \frac{1}{2}$, are, respectively, the class of bounded starlike functions of complex order, introduced by NASR and AOUF [17], and the class of bounded convex functions of complex order, introduced by NASR and AOUF [15].

(2) $S(1-(1-\alpha)\cos\lambda e^{-i\lambda},1)=S^{\lambda}(\alpha), |\lambda|<\frac{\pi}{2}, 0\leq\alpha<1, S(1-(1-\alpha),\beta)=S^{*}(\alpha,\beta), 0\leq\alpha<1, S(1-(1-\alpha)\cos\lambda e^{-i\lambda},\beta)=S^{\lambda}(\alpha,\beta), |\lambda|<\frac{\pi}{2}, 0\leq\alpha<1, \text{ are, respectively, the class of λ-spirallike functions of order α, introduced by Libera [10], the class of starlike functions of order α and type β studied by Juneja and Mogra [7] and the class$

of λ -spirallike functions of order α and type β , studied by MOGRA and Ahuja [13]. Also $C(\cos \lambda e^{-i\lambda}, 1) = C^{\lambda}$, $|\lambda| < \frac{\pi}{2}$, $C((1-\alpha)\cos \lambda e^{-i\lambda}, 1) = C^{\lambda}(\alpha)$, $|\lambda| < \frac{\pi}{2}$, $0 \le \alpha < 1$, $C((1-\alpha)\cos \lambda e^{-i\lambda}, \beta) = C^{\lambda}(\alpha, \beta)$, $|\lambda| < \frac{\pi}{2}$, $0 \le \alpha < 1$, are respectively, the class of λ -Robertson functions, studied by Robertson [19], Libera and Ziegler [11], Bajpai and Mehrok [4], the class of functions for which zg'(z) is λ -spiral-shaped of order α , introduced and studied by Chichra [5] and Sizuk [23], the class of λ -Robertson functions of order α and type β , studied by Ahuja [1].

(3) $S\left(1-\cos\lambda \mathrm{e}^{-i\lambda},\frac{2M-1}{2M}\right)=F_{\lambda,M}, |\lambda|<\frac{\pi}{2}, M>\frac{1}{2}, S\left(1-(1-\alpha)\cos\lambda \mathrm{e}^{-i\lambda},\frac{2M-1}{2M}\right)=F_M(\lambda,\alpha), |\lambda|<\frac{\pi}{2}, 0\leq\alpha<1, M>\frac{1}{2}, \text{ and } S\left(1-\cos\lambda \mathrm{e}^{-i\lambda},\frac{2-\cos\lambda}{2}\right)=H(\lambda), |\lambda|<\frac{\pi}{2}, \text{ are, respectively, the classes introduced and studied by Kulshrestha [9], Aouf [3] and Goel [6]. Also <math>C\left(\cos\lambda \mathrm{e}^{-i\lambda},\frac{2M-1}{2M}\right)=G_{\lambda,M}, |\lambda|<\frac{\pi}{2}, M>\frac{1}{2}, C\left((1-\alpha)\cos\lambda \mathrm{e}^{-i\lambda},\frac{2M-1}{2M}\right)=G_M(\lambda,\alpha), |\lambda|<\frac{\pi}{2}, 0\leq\alpha<1, M>\frac{1}{2}, \text{ are the classes introduced and studied, respectively, by Kulshrestha [9] and Aouf [3].}$

(4) $S\left(1-(1-\alpha),\frac{1}{2}\right)=\overline{S}_{\alpha},\ 0\leq\alpha<1,\ S(0,\frac{1}{2})\ \mathrm{and}\ S\left(0,\frac{2M-1}{2M}\right),\ M>\frac{1}{2},$ are the classes introduced and studied, respectively, by WRIGHT [25], MCCARTY [12], R. SINGH [21], and SINGH and SINGH [22]. Also $C(1-\alpha,1)=C(\alpha),\ 0\leq\alpha<1,$ is the class of convex functions of order α , introduced by ROBERTSON [20].

Since our classes includes various subclasses as noticed above, study of its various properties will lead to a unified study of these subclasses. In the present paper, we shall give at first a representation formula for the classes $S(1-b,\beta)$ and $C(b,\beta)$. A sufficient condition for a function to belong to $S(1-b,\beta)$ and $C(b,\beta)$ has been obtained. We maximize $|a_3 - \mu a_2^2|$ over the classes $S(1-b,\beta)$ and $C(b,\beta)$. Distortion theorems are obtained for the classes $S(1-b,\beta)$ and $C(b,\beta)$. Also we obtain the sharp radius of starlikeness for the class $S(1-b,\beta)$ and the sharp radious of convexity for the class $C(b,\beta)$.

2 - The representation formulas

Let Q denote the class of functions $\phi(z)$ which are analytic in U and which satisfy $|\phi(z)| \leq 1$ for all z in U. We first give the following lemma.

LEMMA 1. If a function $H(z) = 1 + \sum_{n=1}^{\infty} d_n z^n$, analytic in U, satisfies the condition

(2.1)
$$\left|\frac{H(z)-1}{2\beta(H(z)-1+b)-(H(z)-1)}\right|<1,$$

for some $b \neq 0$, complex, $0 < \beta \le 1$ and for all $z \in U$, then

(2.2)
$$H(z) = \frac{1 - ((1 - 2\beta) + 2\beta b)z\phi(z)}{1 + (2\beta - 1)z\phi(z)}$$

for some $\phi(z) \in Q$. Conversely, a function H(z) given by (2.2) for some $\phi(z) \in Q$ is analytic in U and satisfies (2.1) for all z in U.

PROOF. The first half of the lemma is obtained immediately by an application of Schwarz's Lemma [18]; and the converse part follows from the observation that the function

$$w = \frac{1 - ((1 - 2\beta) + 2\beta b)z}{1 + (2\beta - 1)z}$$

maps |z| < 1 onto the disc

$$\left|\frac{1-w}{2\beta(w-1+b)-(w-1)}\right|<1$$

in the w-plane.

THEOREM 1. A function $f(z) \in A$, is in the class $S(1-b,\beta)$ if and only if

(2.3)
$$f(z) = z \exp \left\{ -2\beta b \int_{0}^{z} \frac{\phi(t)}{1 + (2\beta - 1)t\phi(t)} dt \right\},$$

for some $\phi(z) \in Q$.

PROOF. First suppose $f(z) \in S(1-b,\beta)$. Noting that $\frac{zf'(z)}{f(z)}$ satisfies the hypothesis of the first part of Lemma 1, we see that

$$\frac{zf'(z)}{f(z)} = \frac{1 - ((1 - 2\beta) + 2\beta b)z\phi(z)}{1 + (2\beta - 1)z\phi(z)}$$

for some $\phi(z) \in Q$. Thus we have

(2.4)
$$\frac{f'(z)}{f(z)} - \frac{1}{z} = \frac{-2\beta b\phi(z)}{1 + (2\beta - 1)z\phi(z)} .$$

An integration from 0 to z in (2.4) followed by an exponentation leads to (2.3).

Conversely, if (2.3) holds, then

$$\frac{zf'(z)}{f(z)} = \frac{1 - ((1 - 2\beta) + 2\beta b)z\phi(z)}{1 + (2\beta - 1)z\phi(z)}.$$

Now the theorem follows by the converse part of Lemma 1.

From Theorem 1 and using (1.6), we get:

COROLLARY 1. A function $g(z) \in A$, is in the class $C(b,\beta)$ if and only if

$$g'(z) = \exp \left\{-2\beta b \int_0^z \frac{\phi(t)}{1 + (2\beta - 1)t\phi(t)} dt\right\},\,$$

for some $\phi(z) \in Q$.

An immediate consequence of Theorem 1, and a representation theorem for functions in $S^{\bullet}(0,\beta)$ given by JUNEJA and MOGRA [7] may be shown in the following corollary:

COROLLARY 2. $f(z) \in S(1-b,\beta)$ if and only if there is a function $f_1(z) \in S^*(0,\beta)$ such that

$$f(z)=z\left[\frac{f_1(z)}{z}\right]^b.$$

Also an immediate consequence of Corollary 1, and a representation theorem for functions in $C^0(0,\beta)$ given by Ahuja [1] may be shown in the following corollary:

COROLLARY 3. $g(z) \in C(b,\beta)$ if and only if there is a function $g_1(z) \in C^0(0,\beta)$ such that

$$g'(z) = [g'_1(z)]^b$$
.

REMARK ON THEOREM 1 AND COROLLARY 1

- (1) For $\beta = 1$ in Theorem 1 and Corollary 1, we obtain, respectively, a representation formulas for the classes S(1-b) and C(b).
- (2) For $\beta = \frac{2M-1}{2M}$, $M > \frac{1}{2}$ (or $\beta = \frac{1+m}{2}$, $m = 1 \frac{1}{M}$, $M > \frac{1}{2}$) in Theorem 1 and Corollary 1, we obtain, respectively, a representation formulas for the classes F(b, M) an G(b, M).
- (3) For $b=(1-\alpha)\cos\lambda e^{-i\lambda}$, $|\lambda|<\frac{\pi}{2}$, $0\leq\alpha<1$, and $\beta=\frac{2M-1}{2M}$, $M>\frac{1}{2}$ (or $\beta=\frac{1+m}{2}$, $m=1-\frac{1}{M}$, $M>\frac{1}{2}$) in Theorem 1 and Corollary 1, we obtain, respectively, a representation formulas for the classes $F_M(\lambda,\alpha)$ and $G_M(\lambda,\alpha)$.
- (4) Putting $b = 1 \alpha$, $0 \le \alpha < 1$, in Theorem 1, we obtain a representation formula for the class $S^*(\alpha, \beta)$ determined by JUNEJA and MOGRA [7].
- (5) Putting $b = (1 \alpha) \cos \lambda e^{-i\lambda}$, $|\lambda| < \frac{\pi}{2}$, $0 \le \alpha < 1$, in Corollary 1, we obtain a representation formula for the class $C^{\lambda}(\alpha, \beta)$ determined by AHUJA [1].

3 - The sufficient conditions

We now establish a sufficient condition for a function to be in $S(1-b,\beta)$ and $C(b,\beta)$.

THEOREM 2. Let $f(z) \in A$. Then $f(z) \in S(1-b,\beta)$, if for $b \neq 0$, complex,

(3.1)
$$\sum_{n=2}^{\infty} \left\{ 2n(1-\beta) - 1 + |1 - 2\beta(1-b)| \right\} |a_n| \le 2\beta |b|,$$
whenever $\beta \in (0, \frac{1}{2}]$,

(3.2)
$$\sum_{n=2}^{\infty} \left\{ (n-1) + \left| (2\beta - 1)(n-1) + 2\beta b \right| \right\} |a_n| \le 2\beta |b|,$$
whenever $\beta \in \left[\frac{1}{2}, 1 \right],$

holds.

PROOF. Let |z| = r < 1. Noting that

(3.3)
$$|zf'(z)-f(z)|<\sum_{n=2}^{\infty}(n-1)|a_n|r,$$

and

$$|2\beta(zf'(z) - (1-b)f(z)) - (zf'(z) - f(z))| \ge$$

$$\ge \left\{ 2\beta|b| - \sum_{n=2}^{\infty} (1-2\beta)n|a_n| - \sum_{n=2}^{\infty} |1-2\beta(1-b)||a_n| \right\} r,$$

we see that

$$|zf'(z) - f(z)| - |2\beta(zf'(z) - (1-b)f(z)) - (zf'(z) - f(z))| \le$$

$$\left[\sum_{n=2}^{\infty} \left\{ 2n(1-\beta) - 1 + |1 - 2\beta(1-b)| \right\} |a_n| - 2\beta|b| \right] r,$$

provided $0 < \beta \le \frac{1}{2}$. The last quantity is ≤ 0 by (3.1), so that $f(z) \in S(1-b,\beta)$. For the second part, we assume that (3.2) holds for $\beta \in [\frac{1}{2},1]$. In this case,

(3.5)
$$|2\beta(zf'(z) - (1-b)f(z)) - (zf'(z) - f(z))| \ge$$

$$\ge \left\{ 2\beta|b| - \sum_{n=2}^{\infty} |(2\beta - 1)(n-1) + 2\beta b| |a_n| \right\} r.$$

Now the theorem follows, as before, from (3.3), (3.5) and (3.2).

COROLLARY 4. Let $g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in A$. Then $g(z) \in C(b,\beta)$ if for $b \neq 0$, complex,

(3.6)
$$\sum_{n=2}^{\infty} n \left\{ 2n(1-\beta) - 1 + |1 - 2\beta(1-b)| \right\} |b_n| \le 2\beta |b|,$$
whenever $\beta \in (0, \frac{1}{2}]$,

(3.7)
$$\sum_{n=2}^{\infty} n \left\{ (n-1) + |(2\beta - 1)(n-1) + 2\beta b| \right\} |b_n| \le 2\beta |b|,$$
whenever $\beta \in \left[\frac{1}{2}, 1\right]$,

holds.

PROOF. The function g(z) is in $C(b,\beta)$ if and only if $zg'(z) \in S(1-b,\beta)$. Now, since

$$zg'(z)=z+\sum_{n=2}^{\infty}nb_nz^n,$$

by replacing a_n by $\{nb_n\}$ in Theorem 2, we have the theorem.

REMARKS ON THEOREM 2 AND COROLLARY 4

(1) For $\beta = 1$ in Theorem 2 and Corollary 4, we obtain, respectively, a sufficient condition for a function to be in S(1-b) and C(b).

- (2) For $\beta = \frac{2M-1}{2M}$, $M > \frac{1}{2}$, in Theorem 2 and Corollary 4, we obtain, respectively, a sufficient condition for a function to be in F(b, M) and G(b, M).
- (3) For $b = (1 \alpha)\cos \lambda e^{-i\lambda}$, $|\lambda| < \frac{\pi}{2}$, $0 \le \alpha < 1$, and $\beta = \frac{2M-1}{2M}$, $M > \frac{1}{2}$, in Theorem 2 and Corollary 4, we obtain, respectively, a sufficient condition for a function to be in $F_M(\lambda, \alpha)$ and $G_M(\lambda, \alpha)$.
- (4) Putting $b = 1 \alpha$, $0 \le \alpha < 1$, in Theorem 2, we obtain the sufficient condition determined by JUNEJA and MOGRA [7].
- (5) Putting $b = 1 \alpha$, $0 \le \alpha < 1$, and $\beta = \frac{1}{2}$, in Theorem 2, we obtain the sufficient condition determined by McCarty [12].
- (6) Putting $b = (1 \alpha)\cos \lambda e^{-i\lambda}$, $|\lambda| < \frac{\pi}{2}$, $0 \le \alpha < 1$, in Theorem 2 and Corollary 4, we obtain, respectively, the sufficient condition determined by MOGRA and AHUJA [13] and AHUJA [1].

4 - Coefficient bounds

Let Ω denotes the class of bounded analytic functions w(z) in U, satisfying the conditions w(0) = 0 and $|w(z)| \le |z|$ for $z \in U$. We need in our discussion the following lemma:

LEMMA 2 [8]. Let $w(z) = \sum_{n=1}^{\infty} c_n z^n \in \Omega$, if ν is any complex number, then

$$|c_2 - \nu c_1^2| \le \max\{1, |\nu|\}.$$

Equality may be attained with the functions $w(z) = z^2$ and w(z) = z.

THEOREM 3. If $f(z)=z+\sum\limits_{n=2}^{\infty}a_nz^n\in S(1-b,\beta),\ \beta\neq\frac{1}{2},\ and\ \mu$ is any complex number, then

$$(4.2) |a_3 - \mu a_2^2| \le \beta |b| \max \{1, |2\beta b(2\mu - 1) - (2\beta - 1)|\}.$$

This inequality is sharp for each μ .

PROOF. Since $f(z) \in S(1-b,\beta)$, (2.3) gives

(4.3)
$$\frac{zf'(z)}{f(z)} = \frac{1 + [(2\beta - 1) - 2\beta b]w(z)}{1 + (2\beta - 1)w(z)},$$

where $w(z) = z\phi(z) = \sum_{k=1}^{\infty} c_k z^k \in \Omega$.

We get from (4.3) after expanding and equating coefficients that

$$(4.4) a_2 = -2\beta bc_1$$

(4.5)
$$a_3 = -\beta b \left\{ \left[1 - 2\beta - 2\beta b \right] c_1^2 + c_2 \right\}.$$

Using (4.1), (4.4) and (4.5) we get the result. Since (4.1) is sharp, (4.2) is also sharp.

COROLLARY 5. If $g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in C(b,\beta)$, $\beta \neq \frac{1}{2}$, and μ is any complex number, then

$$\left|b_3 - \mu b_2^2\right| \leq \frac{\beta|b|}{3} \max\left\{1, \left|3\beta b\mu - 2\beta b - 2\beta + 1\right|\right\}.$$

This inequality is sharp for each μ .

THEOREM 4. Let $f(z) \in S(1-b,\beta)$, and $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, $z \in U$.

(a) If
$$\beta [|b|^2 + (k-1)\text{Re}\{b\}] > (1-\beta)(k-1)[k-1+\text{Re}\{b\}]$$
, let

$$N = \frac{\beta [|b|^2 + (k-1) \operatorname{Re}\{b\}]}{(1-\beta)(k-1)[k-1+\operatorname{Re}\{b\}]}, \quad k = 2, 3, \dots, (n-1).$$

Then

$$|a_n| \leq \frac{1}{(n-1)!} \prod_{k=2}^n \left| (2\beta - 1)(k-2) + 2\beta b \right|,$$

for n = 2, 3, ..., N + 2; and

$$(4.7) |a_n| \leq \frac{1}{(N+1)!(n-1)} \prod_{k=2}^{N+3} |(2\beta-1)(k-2)+2\beta b|, \quad n > N+2.$$

(b) If
$$\beta[|b|^2 + (k-1)\text{Re}\{b\}] \le (1-\beta)(k-1)[k-1+\text{Re}\{b\}]$$
, then

$$|a_n| \leq \frac{2\beta|b|}{n-1}, \quad \text{for} \quad n \geq 2.$$

The bounds in (4.6) and (4.8) are sharp for all admissible β , $b \neq 0$, complex, and for each n.

PROOF. Since $f(n) \in S(1-b,\beta)$, (4.3) gives

(4.9)
$$[(2\beta - 1)zf'(z) - (2\beta - 1)f(z) + 2\beta bf(z)] w(z) =$$

$$= f(z) - zf'(z), \quad w \in \Omega.$$

Now (4.8) may be written as

$$\left\{ 2\beta bz + \sum_{k=2}^{\infty} \left[(2\beta - 1)(k-1) + 2\beta b \right] a_k z^k \right\} w(z) =$$

$$= \sum_{k=2}^{\infty} (1-k)a_k z^k,$$

which is equivalent to

$$\left\{2\beta bz + \sum_{k=2}^{n-1} \left[(2\beta - 1)(k-1) + 2\beta b \right] a_k z^k \right\} w(z) =$$

$$= \sum_{k=2}^{n} (1-k)a_k z^k + \sum_{k=n+1}^{\infty} b_k z^k,$$

where $\sum_{k=n+1}^{\infty} b_k z^k$ converges in U. Then, since |w(z)| < 1,

$$\left| 2\beta bz + \sum_{k=2}^{n-1} \left[(2\beta - 1)(k-1) + 2\beta b \right] a_k z^k \right| \ge$$

$$\ge \left| \sum_{k=2}^{n} (1-k)a_k z^k + \sum_{k=n+1}^{\infty} b_k z^k \right|.$$

Writting $z = re^{i\theta}$, r < 1, squaring both sides of (4.10), and then integrating, we get

$$4\beta^{2}|b|^{2}r^{2} + \sum_{k=2}^{n-1} \left| (2\beta - 1)(k-1) + 2\beta b \right|^{2} |a_{k}|^{2}r^{2k} \ge$$

$$\ge \sum_{k=2}^{n} (k-1)^{2} |a_{k}|^{2}r^{2k} + \sum_{k=n+1}^{\infty} |b_{k}|^{2}r^{2k}.$$

Let $r \longrightarrow 1$, then on some simplification we obtain

$$(4.11) (n-1)^2 |a_n|^2 \le 4\beta^2 |b|^2 + \sum_{k=2}^{n-1} \left\{ |(2\beta - 1)(k-1) + 2\beta b|^2 - (k-1)^2 \right\} |a_k|^2, \quad n \ge 2.$$

Now there may be following two cases:

Let $\beta[|b|^2 + (k-1)\text{Re}\{b\}] > (1-\beta)(k-1)[k-1+\text{Re}\{b\}]$. Suppose that $n \le N+2$; then for n=2, (4.11) gives

$$|a_2| \leq 2\beta |b|,$$

which gives (4.6) for n = 2. We establish (4.6) for $n \le N+2$, from (4.11), by mathematical induction.

Suppose (4.6) is valid for k = 2, 3, ..., (n-1). Then it follows from (4.11)

$$(n-1)^{2}|a_{n}|^{2} \leq 4\beta^{2}|b|^{2} + \sum_{k=2}^{n-1} \left\{ \left[|(2\beta-1)(k-1) + 2\beta b|^{2} - (k-1)^{2} \right] \frac{1}{\left((k-1)!\right)^{2}} \prod_{p=2}^{k} \left| (2\beta-1)(p-2) + 2\beta b \right|^{2} \right\} =$$

$$= \frac{1}{\left((n-2)!\right)^{2}} \prod_{k=2}^{n} \left| (2\beta-1)(k-2) + 2\beta b \right|^{2}.$$

Thus, we get

$$|a_n| \leq \frac{1}{(n-1)!} \prod_{k=2}^n |(2\beta-1)(k-2)+2\beta b|,$$

which completes the proof of (4.6).

Next, we suppose n > N + 2. Then (4.11) gives

$$(n-1)^{2}|a_{n}|^{2} \leq 4\beta^{2}|b|^{2} + \sum_{k=2}^{N+2} \left\{ \left| (2\beta - 1)(k-1) + 2\beta b \right|^{2} - (k-1)^{2} \right\} |a_{k}|^{2} + \sum_{k=N+3}^{n-1} \left\{ \left| (2\beta - 1)(k-1) + 2\beta b \right|^{2} - (k-1)^{2} \right\} |a_{k}|^{2} \leq$$

$$\leq 4\beta^{2}|b|^{2} + \sum_{k=2}^{N+2} \left\{ \left| (2\beta - 1)(k-1) + 2\beta b \right|^{2} - (k-1)^{2} \right\} |a_{k}|^{2}.$$

On substituting upper estimates for $a_2, a_3, \ldots, a_{N+2}$ obtained above, and simplifying, we obtain (4.7).

(b) Let
$$\beta[|b|^2 + (k-1)\text{Re}\{b\}] \le (1-\beta)(k-1)[k-1+\text{Re}\{b\}]$$
, then it follows from (4.11)

$$(n-1)^2 |a_n|^2 \le 4\beta^2 |b|^2$$
, $(n \ge 2)$

which proves (4.8).

The bounds in (4.6) are sharp for the functions given by

(4.12)
$$f(z) = z(1-(2\beta-1)z)^{(-2\beta b)/(2\beta-1)}, \quad \beta \neq \frac{1}{2}.$$

The bounds in (4.8) are sharp for the functions given by

(4.13)
$$f_n(z) = z \left(1 - (2\beta - 1)z^{n-1}\right)^{(-2\beta b)/[(2\beta - 1)(n-1)]}, \quad \beta \neq \frac{1}{2};$$

whereas for $\beta = \frac{1}{2}$,

(4.14)
$$f_n(z) = z \exp\left(\frac{b}{n-1}z^{n-1}\right), \quad (n \ge 2).$$

COROLLARY 6. If $g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in C(b, \beta)$.

(a) If
$$\beta [|b|^2 + (k-1)\text{Re}\{b\}] > (1-\beta)(k-1)[k-1+\text{Re}\{b\}]$$
, let

$$N = \left[\frac{\beta \left[|b|^2 + (k-1) \operatorname{Re}\{b\} \right]}{(1-\beta)(k-1)[k-1+\operatorname{Re}\{b\}]} \right], \quad k = 2, 3, \dots, (n-1),$$

where N is the greatest integer of the expression within the square bracket. Then

$$|b_n| \leq \frac{1}{n!} \prod_{k=2}^n \left| (2\beta - 1)(k-2) + 2\beta b \right|,$$

for n = 2, 3, ..., N + 2; and

$$(4.16) |b_n| \leq \frac{1}{n(n-1)(N+1)!} \prod_{k=2}^{N+3} |(2\beta-1)(k-2)+2\beta b|, n > N+2.$$

(b) If
$$\beta [|b|^2 + (k-1)\text{Re}\{b\}] \le (1-\beta)(k-1)[k-1+\text{Re}\{b\}]$$
, then

$$|b_n| \le \frac{2\beta|b|}{n(n-1)}, \quad n \ge 2.$$

The estimates in (4.15) are sharp for the function given by

(4.18)
$$g'(z) = (1 - (2\beta - 1)z)^{(-2\beta\delta)/(2\beta-1)}, \quad \beta \neq \frac{1}{2},$$

where $\beta[|b|^2 + (k-1)\text{Re}\{b\}] > (1-\beta)(k-1)[K-1+\text{Re}\{b\}]$, while the estimates in (4.17) are sharp for the functions given by

(4.19)
$$g'_n(z) = \left(1 - (2\beta - 1)z^{n-1}\right)^{(-2\beta b)/[(2\beta - 1)(n-1)]}, \quad \beta \neq \frac{1}{2};$$

whereas for $\beta = \frac{1}{2}$

(4.20)
$$g'_n(z) = \exp\left(\frac{b}{n-1}z^{n-1}\right), \quad (n \ge 2).$$

REMARKS ON THEOREM 4 AND COROLLARY 6

- (1) Putting $b = 1 \alpha$, $0 \le \alpha < 1$, in Theorem 4, we obtain a Theorem of JUNEJA and MOGRA [7].
- (2) Putting $b = (1 \alpha)\cos \lambda e^{-i\lambda}$, $|\lambda| < \frac{\pi}{2}$, $0 \le \alpha < 1$, in Theorem 4 and Corollary 6, we obtain, respectively, a Theorem of MOGRA and AHUJA [13] and AHUJA [1].
- (3) By choosing $b = \cos \lambda e^{-i\lambda}$ and $\beta = \frac{2-\cos \lambda}{2}$, $|\lambda| < \frac{\pi}{2}$, in Theorem 4, we get the result of GOEL [6].
- (4) By choosing $\beta = 1$ and $\beta = \frac{2M-1}{2M}$, $M > \frac{1}{2}$, in Theorem 4 and Corollary 6, we get the results obtained by NASR and AOUF [14, 15, 16, 17], respectively.
- (5) The coefficient estimates determined by Kulshrestha [9], Zamarski [26], Wright [25], McCarty [12], R. Singh [21], and many others can be obtained from Theorem 3 and Corollary 6 by taking different values of β and b.

5 - Distortion Theorems

THEOREM 5. Let $f(z) \in A$. If $f(z) \in S(1-b,\beta)$, then for |z| = r, 0 < r < 1, and for all $\beta \in (0, \frac{1}{2})U(\frac{1}{2}, 1]$, $b \neq 0$, complex,

$$|f(z)| \le r \left[\frac{\left(1 + (2\beta - 1)r\right)^{\left(1 - \frac{\operatorname{Re}\{b\}}{|b|}\right)}}{\left(1 - (2\beta - 1)r\right)^{\left(1 + \frac{\operatorname{Re}\{b\}}{|b|}\right)}} \right]^{\frac{\beta|b|}{2\beta - 1}},$$

and

(5.2)
$$|f(z)| \ge r \left[\frac{\left(1 - (2\beta - 1)r\right)^{\left(1 - \frac{\operatorname{Re}(b)}{|b|}\right)}}{\left(1 + (2\beta - 1)r\right)^{\left(1 + \frac{\operatorname{Re}(b)}{|b|}\right)}} \right]^{\frac{\beta|b|}{2\beta - 1}};$$

whereas for $\beta = \frac{1}{2}$, $b \neq 0$, complex,

$$(5.3) |f(z)| \le r \exp(|b|r),$$

and

$$|f(z)| \ge r \exp\left(-|b|r\right).$$

All these estimates are sharp for all admissible values of β , b.

PROOF. Since $f(z) \in S(1-b,\beta)$, the condition (1.4) coupled with an application of Schwarz's Lemma [18], implies

$$\label{eq:xi} \begin{split} \left|\frac{z\,f'(z)}{f(z)} - \xi\right| < R\,, \quad \text{where} \\ \xi = & \frac{1 - (2\beta - 1)\Big[2\beta(1 - \mathrm{Re}\{b\}) - 1\Big]\,r^2 + i2\beta(2\beta - 1)\mathrm{Im}\{b\}r^2}{1 - (2\beta - 1)^2r^2}\,, \end{split}$$

and

$$R = \frac{2\beta |b|r}{1 - (2\beta - 1)^2 r^2}, \quad (|z| = r).$$

Hence we have

$$\frac{1 - 2\beta |b|r + (2\beta - 1) \left[2\beta (\operatorname{Re}\{b\} - 1) + 1\right] r^{2}}{1 - (2\beta - 1)^{2} r^{2}} \leq$$

$$\leq \operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} \leq$$

$$\frac{1 + 2\beta |b|r + (2\beta - 1) \left[2\beta (\operatorname{Re}\{b\} - 1) + 1\right] r^{2}}{1 - (2\beta - 1)^{2} r^{2}}.$$

Noting

$$\log\left(\left|\frac{f(z)}{z}\right|\right) = \operatorname{Re}\left(\log\frac{f(z)}{z}\right) = \operatorname{Re}\int_{0}^{z} \left[\frac{f'(s)}{f(s)} - \frac{1}{s}\right] ds =$$

$$= \int_{0}^{z} \frac{1}{t} \operatorname{Re}\left[te^{i\theta} \frac{f'(te^{i\theta})}{f(te^{i\theta})} - 1\right] dt,$$

and using (5.5), we see that

(5.6)
$$\log\left(\left|\frac{f(z)}{z}\right|\right) \leq 2\beta |b| \int_{0}^{r} \frac{1 + (2\beta - 1)^{\frac{\operatorname{Re}\{b\}t}{|b|}}}{1 - (2\beta - 1)^{2}t^{2}} dt.$$

Now suppose $\beta \in (0, \frac{1}{2}) \cup (\frac{1}{2}, 1]$ and $b \neq 0$, complex. Then from (5.6), we get

$$\log\left(\left|\frac{f(z)}{z}\right|\right) \leq \frac{\beta|b|}{2\beta-1}\log\left\{\frac{\left(1+(2\beta-1)r\right)^{\left(1-\frac{\operatorname{Re}\left(b\right)}{|b|}\right)}}{\left(1-(2\beta-1)r\right)^{\left(1+\frac{\operatorname{Re}\left(b\right)}{|b|}\right)}}\right\},\,$$

which gives (5.1). For the case when $\beta = \frac{1}{2}$, and $b \neq 0$, complex, (5.6) immediately proves (5.3). In view of

$$\log\left(\left|\frac{f(z)}{z}\right|\right) = \operatorname{Re}\left(\log\frac{f(z)}{z}\right) = \int_{0}^{r} \operatorname{Re}\left(\frac{\partial}{\partial t}\left(\log\frac{f(t)}{t}\right)\right) dt =$$

$$= \int_{0}^{r} \frac{1}{r} \operatorname{Re}\left(\frac{tf'(t)}{f(t)} - 1\right) dt,$$

and with the aid of (5.5) we may write

(5.7)
$$\log\left(\left|\frac{f(z)}{z}\right|\right) \ge -2\beta|b| \int_{0}^{r} \frac{1-(2\beta-1)\frac{\text{Re}\{b\}t}{|b|}}{1-(2\beta-1)^{2}t^{2}} dt.$$

If $\beta \neq \frac{1}{2}$, then carrying out the integration in (5.7), we obtain (5.2). Further, when $\beta = \frac{1}{2}$, then we immediately get (5.4) from (5.7). The extremal function for all the inequalities is given by

(5.8)
$$f(z) = \begin{cases} z(1 - (2\beta - 1)\varepsilon z)^{(-2\beta b)/(2\beta - 1)}, |\varepsilon| = 1, & \beta \neq \frac{1}{2}, \\ z \exp(b \in z), & |\varepsilon| = 1, & \beta = \frac{1}{2}. \end{cases}$$

COROLLARY 7. Let $g(z) \in A$. If g(z) is in $C(b,\beta)$, then for |z| = r < 1 and for all $b \neq 0$, complex, $\beta \in (0, \frac{1}{2})U(\frac{1}{2}, 1]$,

(5.9)
$$|g'(z)| \leq \left[\frac{\left(1 + (2\beta - 1)r\right)^{\left(1 - \frac{\operatorname{Re}(b)}{|b|}\right)}}{\left(1 - (2\beta - 1)r\right)^{\left(1 + \frac{\operatorname{Re}(b)}{|b|}\right)}} \right]^{\frac{\beta|a|}{2\beta - 1}},$$

and

$$|g'(z)| \geq \left[\frac{\left(1 - (2\beta - 1)r\right)^{\left(1 - \frac{\operatorname{Re}\{b\}}{|b|}\right)}}{\left(1 + (2\beta - 1)r\right)^{\left(1 + \frac{\operatorname{Re}\{b\}}{|b|}\right)}} \right]^{\frac{\beta|b|}{2\beta - 1}};$$

whereas for $\beta = \frac{1}{2}$, $b \neq 0$, complex,

$$(5.11) |g'(z)| \leq \exp(|b|r),$$

and

$$|g'(z)| \ge \exp(-|b|r).$$

The extremal function for all the inequalities is given by

(5.13)
$$g'_0(z) = \begin{cases} (1 - (2\beta - 1)\varepsilon z)^{(-2\beta b)/(2\beta - 1)}, |\varepsilon| = 1, & \beta \neq \frac{1}{2}, \\ \exp(b \in z), & |\varepsilon| = 1, & \beta = \frac{1}{2}. \end{cases}$$

REMARK ON THEOREM 5 AND COROLLARY 7

- (1) For $\beta = 1$ in Theorem 5 and Corollary 7, we obtain, respectively, the bounds for |f(z)| and |g'(z)|, where $f(z) \in S(1-b)$ and $g(z) \in C(b)$.
- (2) For $\beta = \frac{2M-1}{2M}$, $M > \frac{1}{2}$ (or $\beta = \frac{1+m}{2}$, $m = 1 \frac{1}{M}$, $M > \frac{1}{2}$) in Theorem 5 and Corollary 7, we obtain, respectively, the bounds for |f(z)| and |g'(z)|, where $f(z) \in F(b, M)$ and $g(z) \in G(b, M)$.
- (3) For $b = (1-\alpha)\cos \lambda e^{-i\lambda}$, $|\lambda| < \frac{\pi}{2}$, $0 \le \alpha < 1$ and $\beta = \frac{2M-1}{2M}$, $M > \frac{1}{2}$ (or $\beta = \frac{1+m}{2}$, $m = 1 \frac{1}{M}$, $M > \frac{1}{2}$) in Theorem 5 and Corollary 7, we obtain, respectively the bounds for |f(z)| and |g'(z)|, where $f(z) \in F_M(\lambda, \alpha)$ and $g(z) \in G_M(\lambda, \alpha)$.
- (4) Putting $b = (1 \alpha) \cos \lambda e^{-i\lambda}$, $|\lambda| < \frac{\pi}{2}$, $0 \le \alpha < 1$, in Theorem 5 and Corollary 7, we obtain, respectively, a Theorem of MOGRA and AHUJA [13] and AHUJA [1].

6 - The radious of starlikeness and convexity

THEOREM 6. The sharp radius of starlikeness of the class $S(1-b,\beta)$, $\beta \neq \frac{1}{2}$, is given by

(6.1)
$$r_s = \left\{ \beta |b| + \sqrt{\beta^2 |b|^2 - (2\beta - 1)^2 \left[\frac{2\beta}{2\beta - 1} \operatorname{Re}\{b\} - 1 \right]} \right\}^{-1} .$$

The expression in (6.1) is real and finite (< 1) only when $\beta \neq \frac{1}{2}$ and such that

(6.2)
$$\beta^{2}|b|^{2} \geq (2\beta - 1)^{2} \left[\frac{2\beta}{2\beta - 1} \operatorname{Re}\{b\} - 1 \right].$$

PROOF. From (5.5), we have

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} \geq \frac{1 - 2\beta|b|r + (2\beta - 1)^2 \left[\frac{2\beta}{2\beta - 1}\operatorname{Re}\{b\} - 1\right]r^2}{1 - (2\beta - 1)^2r^2}.$$

where |z| = r.

Thus $\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > 0$ for $|z| < r_s$, where r_s is given by (6.1) provided that the expression under the radical sign in (6.1) is non-negative, i.e.,

$$\left.eta^2 \left| b
ight|^2 \geq (2eta-1)^2 \left[rac{2eta}{2eta-1} \mathrm{Re}\{b\} - 1
ight]$$

which gives (6.2).

To show that (6.1) is sharp, we let

$$f_{\bullet}(z) = z \left(1 - (2\beta - 1)z\right)^{(-2\beta b)/(2\beta - 1)}, \quad \beta \neq \frac{1}{2} \text{ and}$$

$$t = \frac{r\left[(2\beta - 1)r - \sqrt{\frac{b}{b}}\right]}{1 - (2\beta - 1)r\sqrt{\frac{b}{b}}},$$

and obtain

$$\frac{tf'_{\bullet}(t)}{f_{\bullet}(t)} = \frac{1-2\beta|b|r+(2\beta-1)^2\left[\frac{2\beta}{2\beta-1}b-1\right]r^2}{1-(2\beta-1)^2r^2}\,,$$

which has a zero real part at r given by (6.1). This completes the proof of the theorem.

REMARKS ON THEOREM 6

- (1) $\beta = 1$ and $\beta = \frac{2M-1}{2M}$, M > 1, $m = 1 \frac{1}{M}$, leads, respectively, to the results obtained by NASR and AOUF [16,17].
- (2) $b = \cos \lambda e^{-i\lambda}$, $|\lambda| < \frac{\pi}{2}$ and $\beta = \frac{2M-1}{2M}$, M > 1, $m = 1 \frac{1}{M}$, leads to the result obtained by Kulshrestha [9].

COROLLARY 8. Let $g(z) \in A$ and g(z) is a member of $C(b,\beta)$. Then the sharp radius of convexity of the class $C(b,\beta)$, $\beta \neq \frac{1}{2}$, is given by (6.1). The radius is real and finite (< 1) if $\beta \neq \frac{1}{2}$ and (6.2) is satisfied. The result is sharp for the function

$$g_0'(z) = (1 - (2\beta - 1)z)^{(-2\beta b)/(2\beta - 1)}, \quad \beta \neq \frac{1}{2} \text{ and}$$

$$t = \frac{r\left[(2\beta - 1)r - \sqrt{\frac{b}{b}}\right]}{1 - (2\beta - 1)r\sqrt{\frac{b}{b}}}.$$

REMARKS ON COROLLARY 8

- (1) Putting $b = (1 \alpha) \cos \lambda e^{-i\lambda}$, $|\lambda| < \frac{\pi}{2}$, $0 \le \alpha < 1$, in Corollary 8, we get a theorem of Ahuja [1].
- (2) Putting $\beta = 1$, in Corollary 8, we get a theorem of NASR and AOUF [14].
- (3) Putting $b = \cos \lambda e^{-i\lambda}$, $|\lambda| < \frac{\pi}{2}$ and $\beta = 1$ in Corollary 8, we get a theorem of LIBERA and ZIEGLER [11].
- (4) Putting $b = (1 \alpha)\cos \lambda e^{-i\lambda}$, $|\lambda| < \frac{\pi}{2}$, $0 \le \alpha < 1$ and $\beta = 1$ in Corollary 8, we get a theorem of CHICHRA [5].
- (5) On taking the appropriate values to b and β the above corollary can give the corresponding radius of convexity for the functions in the classes G(b, M), $G_{\lambda, M}$ and $G_M(\lambda, \alpha)$.

REFERENCES

- O.P. Ahuja: Certain generalization of the Robertson functions, Yokohama Math. J. 31 (1983), 5-11.
- [2] M.K. AOUP: p-Valent classes related to convex functions of complex order, Rocky Mountain J. Math., 15 (1985), 853-863.
- [3] M.K. AOUP: Bounded p-valent Robertson functions of order α, Indian J. Pure Appl. Math., 16 (1985), 775-790.
- [4] S.K. BAJPAI T.J.S. MEHROK: On the coefficient structure and growth theorems for the functions f(z) for which zf'(z) is spirallike, Publ. Inst. Math. (Beograd) (N.S.), 16 (1975), 5-12.
- [5] P.N. CHICHRA: Regular functions f(z) for which zf'(z) is α-spirallike, Proc. Amer. Math. Soc. 49 (1975),151-160.
- [6] R.M. Goel: A subclass of α-spiral functions, Publ. Math. Debrecen, 23 (1976), 79-84.
- [7] O.P. Juneja M.L. Mogra: On starlike functions of order α and type β, Rev. Roumaine Math. Pures Appl., 23 (1978), 751-765.
- [8] F.R. KEOGH E.P. MERKES: A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12.
- [9] P.K. KULSHRESTHA: Bounded Robertson functions, Rend. Mat., (6) 9 (1976), 137-150.
- [10] R.J. LIBERA: Univalent α-spiral functions, Canad. J. Math., 19 (1967), 449-456.
- [11] R.J. LIBERA M.R. ZIEGLER: Regular functions f(z) for which zf'(z) is α -spiral, Trans. Amer. Math. Soc. 166 (1972), 361-370.
- [12] C.P. McCarty: Starlike functions, Proc. Amer. Math. Soc., 43 (1974), 361-366.
- [13] M.L. MOGRA O.P. AHUJA: On spirallike functions of order α and type β, Yokohama Math. J.,29 (1981), 145-156.
- [14] M.A. NASR M.K. AOUF: On convex functions of complex order, Mansoura Science Bull. Egypt 9 (1982), 565-582.
- [15] M.A. NASR M.K. AOUF: Bounded convex functions of complex order, Mansoura Science Bull., Egypt, 10 (1983), 513-527.
- [16] M.A. NASR M.K. AOUF: Starlike functions of complex order, J. Natur. Sci. Math. 25 (1985), 1-12.
- [17] M.A. NASR M.K. AOUF: Bounded starlike functions of complex order, Proc. Indian Acad. Sci. (Math. Sci.) 92 (1983), 97-102.
- [18] Z. NEHARI: Conformal Mapping, McGraw-Hill, New York, 1952.
- [19] M.S. Robertson: Univalent functions f(z) for which zf'(z) is spirallike, Michigan Math. J., 16 (1969), 97-101.

- [20] M.S. Robertson: On the theory of univalent functions, Ann. Math., 37 (1936), 374-408.
- [21] R.Singe: On a class of starlike functions, J. Indian Math. Soc., 32 (1968), 208-213.
- [22] R. SINGH V. SINGH: On class of bounded starlike functions, Indian J. Pure Appl. Math., 5 (1974), 733-754.
- [23] P.I. Sizuk: Regular functions f(z) for which zf'(z) is θ -spiral shaped of order α , Sibirsk. Math. Z., 16 (1975), 1286-1290, 1371.
- [24] P. WIATROWSKI: The coefficients of a certain family of holomorphic functions, Zeszyty Nauk. Univ. Lodzk. Nauk. Math. Przyrod. Ser. II, Zeszyt (39) Math. (1971), 75-85, MR # 3115.
- [25] D.J. WRIGHT: On a class of starlike functions, Compositio Math., 21 (1969), 122-124.
- [26] J. ZAMORSKI: About the extremal schlicht functions, Ann. Polon. Math., 9 (1962), 265-273.

Lavoro pervenuto alla redazione il 12 ottobre 1989 ed acceltato per la pubblicazione il 4 settembre 1990 su parere favorevole di A. Ossicini e di P.E. Ricci

INDIRIZZO DEGLI AUTORI:

M.K. Aouf - Dept. of Math. - Faculty of Science - Univ. of Mansoura - Mansoura - Egypt S. Owa - Dept. of Math. - Kinki University - Higashi - Osaka, Osaka 577 - Japan M. Obradović - Dept. of Math. - Faculty of Technology and Metallurgy - 4, Karnegieva Street - 11000 Belgrade - Yugoslavia