Rendiconti di Matematica, Serie VII
Volume 11 , Roma (1991), 715-728

Second-order Differential Equations and

Degenerate Lagrangians

M. DE LEON - P.R. RODRIGUES®

RiASsUNTO ~ Si studiano le equazioni differenziali del secondo ordine ed i sistemi
lagrangiani degeneri ulilizzando le nozioni di sirultura quasi langenle e quasi prodotio
sulle varietd.

ABSTRACT - We give a conlinuation lo an article of Sarlel el al. using results pre-
viously presented by us. Second order differential equations and degenerale Lagrangian
syslems are sludied in the framework of almost tangent and almost product gesmeltries.
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1 - Introduction

It is known that it is possible to develop in a geometric manner
the Lagrangian formalism with the help of a special structure — called
almost tangent — which is an intrinsical property of every tangent
bundle TM of a manifold M (for further details see [13]). This kind of
formalism shows that if L : TM —— R is a regular Lagrangian, that
is, the Hessian matrix of L with respect to the velocities variables has
maximal rank, then there is a symplectic form w on TM such that there
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is a unique vector field £ on TM solving the equation
(*) tew, =dE,

where Ej, is the energy associated with L. Moreover, £ is a 2"? order
differential equation, called Lagrange vector field.

Sarlet et al. ([16]) proposed a different approach to the study of
regular Lagrangian systems. Their basic idea was to start the study
directly with a 2"/ order differential equation £ on TM and then giving
some conditions to find a regular Lagrangian such that £ is precisely a
Lagrange vector ficld. For this it was considered a special set of one-forms,
denoted here by A and defined by

A¢ = {a € ATM); (Le 0 J)(e) = al,

where £ is a 2"¢ order differential equation, A'(TM) is the set of all one-
formsonTM, L is the Lic derivative and J* is the adjoint endomorphism
on A'(TM) induced by the almost tangent structure J : T(TM) —
T(T M) on the double tangent bundle T(TM) of M.

If we associale with each ¢ an appropriate one-form a belonging to
A} then we obtain the Euler-Lagrange equations of motion. For this a
must be exact, a = dL, with L being regular. The interest on A led
the quoted authors to obtain some geometric results like the invariance
of Ag under the action of some tensors. The results were extended for
the non-conservative case in de Len & Rodrigues [7].

More recently the authors of the present article ([8,9]) proposed a
geometrical study of degenerate Lagrangian systems suggested by the
theory of lifts of tensor ficlds on manifolds, which may be summarized
as follows. As we are dealing with degenerate Lagrangians, the form wy
is presymplectic and so we may decompose the tangent bundle of TM
into a direct sum of Ker Sw, and a complementary distribution. This
distribution may be characterized by a couple of projectors on T(TAM)
in such a way that one of them projects onto the Ker 3y,. This gives
the possibility of solving (*) along a distribution defined by the other
projector. Now, this solution is not of 2"¢ order type. So we consider
a couple of projectors (P, Qo) on the base manifold M and then we
lift (FPo, Qo) to TM, using the theory of lifting vector fields, forms and
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tensors. We suppose that the lifted projector of Qo projects onto Ker s,,, .
We consider an integral constraint submanifold Sp of Im P in M in such
a way that wy restricted to the tangent bundle T'S, is symplectic. As in
this case when the restriction of the original Lagrangian to the bundle
TS, is regular, we may solve the corresponding equation of motion for
this restricted Lagrangian.

The purpose of the present article is to go on with our procedure
now using the method suggested by Sarlet et al. We may study the rela-
tion between 2"¢ order differential equations and degenerate Lagrangians
defining sets analogous to the above A;. We will use the projectors to
examine the Sarlet et al. results for the degenerate situation. Finally, we
remark to the reader that throughout the text we will keep in mind some
results of our previous article as well as the notation and terminology.

2 — Degenerate Lagrangian vector fields

Let (P, Q) be an almost product structure on TM which commutes
with the almost tangent structure J, that is,

JP=PJ,
(also we have JQ = QJ, since @ = Id - P).

DEFINITION 2.1. A vector field £ € Im P is called a P-semispray
(or P-second order differential equation) if J{ = PV, where V is
the Liouville vector field on TM.

With each P-semispray § on TM we now associate two R-linear op-
erators on one-forms E¢ and E; defined by

E€=Id—££0.]‘,

Ee =P.OE£,

respectively.

ReMARK. If P = Id, then £ is a semispray (or second order dif-
ferential equation) on TM and E¢ = E is the Euler-Lagrange operator
introduced by Sarlet, Cantrijn and Crampin [16].
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We can associate with £ two sets of 1-forms A¢ and [&; defined by

Al = Ker E,
A} = Ker E,

respectively.
A-é and A are in fact, vector spaces over R, by the linearity of Eg¢
and E;. We also have A C A},

Let us remark that A; and AE‘ are not modules over the ring of
functions; however, they are modules over the ring of constants of motion,
that is, functions f satisfying £f = 0. In fact

E(fa)=(f) o + f(Eca)

and X N
E¢(fa)=(£f)(PJ) a+ f(Ea).

Next, we shall compute the local expressions of E¢ and EE- First,
since PJ = JP, we deduce that

IN_pid 50
P(c’)q‘) =h dq' th i’

8 9
2.1 — | = P! —
(2.1) P (au-') ™
where
(2.2) P; = P[Pf; P} = PiP} + PP},

because of P? = P, and (¢',2") are the natural bundle coordinates on
TAM. From (2.1), we easily obtain

(2.3) P'(d¢) = Pjdg, P"(dv') = Pidy + Pdv'.

Then, if £ = PX, where

0 .2
X=x'5;[-,-+x%,
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we have
d d
j J "'
(2.4) §= xP.a,+(tP X Pz
; 8
(2.5) PV = o' P} o~
From (2.4) and (2.5), we deduce that
(2.6) XYP =vP,1<j<m
since J§ = PV.
Hence, if @ = o;dq + a;dv', we have
_ 0P AP\,
(2.7) Eea = (o — €(a:) — —aq*’—a L)dg' + (& - ——-ﬁ"—a,)dv'
- j pk Oy P*
Eea = [(ﬂi £(a) - (Y ) ) P; + (& —%J—) a:)P{| dg*
o P} .
(2.8) +(@ - (’})v‘J ) ) Pidvt,

If P = F§ is the complete lilt of an almost product structure Py on
M, then (2.7) and (2.8) become

(2.9) Ecax = (o — £(a) - ( ) ag)dq + (& - Pk&k)d”

pt
E€a= (o {(m)_-(_Jl_).ak)pl_}_(a' g\ Pl-- 2 ,3]"]dq

(2.10) + (& - %—TP*G )Pidvt,

‘ 8P
because P} = Pj(q") and Pi = vt
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From (2.7) and (2.8), we deduce that a belongs to A} (resp. A}) if
and only if

o\’ Pt
€(a;) = a; — i’g“;}'{_)'ah
i pk
(2.11) 6£=ﬂXTL)ak
(resp.,
o P . BB
€(@)P: = (oo - 23 api + (a0~ B Na
. ip .
(2.12) a,—P,':a(—’;v.—.L)&kP;).

DEerINITION 2.2,

(1) a€ A} is called P-regular if w, = —d(J"«) is a presymplectic form
and P is adaptcd lo w,.

(2) £ is called a P-regular Lagrangian vector field if there erists a
P-reguiar a € AE which is ezxact, that is, a = dL, for some function
L:TM — R

REMARK. Tt is clear that the Lagrangian involved in the definition
must be degenerate, otherwise we will be in the presence of a regular
situation and in such situation we will take P = Id, obtaining the results
of Sarlet et al. So throughout the text L, such that dL = a, is assumed
to be degenerate.

Let us suppose that £ is a P-regular Lagrangian vector field and
a = dL. Then we have w, = wg, where wy, = —dd;L is the usual
Poincaré-Cartan form. Furthermore, the condition

P*(Le(J°(dL))} = P*(dL),
which characterizes @ = dL, can be rewritten in the form

(2.13) tew, = P*(dEy),
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where £ = (PV)L — L is the energy function. So, (2.13) is the mo-
tion equation corresponding to the degenerate Lagrangian L (see
[619])‘

Moreover, if we suppose that P is the complete lift to TM of an
integrable almost product structure P, on M, then we can choose local
coordinates (¢') on M such that

d d

ImPo =< 3_41‘""’5;

>

where rank Py = r. Therefore,

ad a 0 ad

ImPo —<a ,6q avi,...,a?>

and PfV = Y[, v'&:. So, from (2.4) and (2.6), £ is locally given by

(2.14) - £= Z” Zx Foe

where ¥' = ¥'(¢q,v), 1 <i<r.
Hence, (2.9) and (2.10) becomes

(2.15) Ea= Z(a. £(a@))dd + Z &;dv’
i=ri1

and

(2.16) Eea = i(ai - &(a;))dg'.

i=1
From (2.15) and (2.16) (or from (2.11) and (2.12)) we deduce that
a € Ag (resp., @ € A}) if and only if
ai=£(ai)1 ISiSTa al':ai:D; "+IS ISm

(resp., oy = £(&;), 1< i<r).
Now, let us suppose that ¢ : 5S¢ — M is an integral manifold of
ImP,. Then T¢ : TSy — TM is an integral manifold of ImP§. So J
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and V restrict to T'Sy and J/TS, = Jo, V/TS, = Vq, where Jy and V,
are the almost tangent structure and Liouville vector field, respectively,
corresponding to TS, Furthermore, (T¢) w, is a symplectic form on
IS4, &0 = €/TSy is a semispray on TS, and Lo = L o (T¢) is a regular
Lagrangian on TS,. Hence (2.13) becomes

(2.17) i(T) we = d(EL 0 T9),
on TSy, where (T¢) w, = —dd;, Ly = wy, and E o T¢ = Vol — Lo =
Ey,.

Obviously, (2.16) is equivalent to (2.17) when & = dL; then we have

arL oL
— <
E((’)v") 6 = 1<i<r,

and, consequently,

0Ly\ _ Lo
(2.18) E(av') W y1<igr

Thus, if (1) is a curve in S¢ which is a path of &, then (2.18) becomes
the Euler-Lagrange cquations corresponding to Ly:

d aLg 3LD
di(a(j‘) Bq' =0,1<t<r

(see [8]).

3 - Actions preserving A} and 5;

In this section, we find a kind of tensor fields which preserves Ag and
L.

ProposiTiON 3.1.  Let R be a tensor field of type (1,1) on TM
which commutes with J and satisfies J o LeR=0. Then

(3.1) R oE; =E oR".
If, moreover R commules with P, then

(3.2) R ] Ef Ec ] R .
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ProoF. Let a € AY(TM). Then
R (Eca)=R'(a-L(J'a)) =ao R~ L(J°a)o R.
On the other hand, we have
E¢(R'a)= Ra— L(J*(R'a)) =ao R— L((J* o R*)a).

But

(Le(J7a)o R)(X) = Le(J"a)(RX) = {a(JRX) - aJ[(, RX] =
= {a(RJX) - o(RI[£, X])

(because JR = RJ and J({(L:R)X) = J[€, RX] — JR[¢, X] = 0)
= (Le((RI) ) (X).

Therefore (3.1) follows. Finally, (3.2) is a direct consequence of (3.1). 0

From Proposition 3.1, we easily obtain the following.

COROLLARY 3.2. . Lel R be a lensor field of type (1,1) on TM which
commutes with J and P and satisfies J(L¢R) = 0. Then R* preserves A;

<1
and A¢-

Next we shall find tensor fields of type (1,1) on TM satisfying these
conditions. We only consider the most interesting case in which P is the
complete lift of an integrable alinost product structure Fy on A.

PROPOSITION 3.3. . Let Ay be a tensor ficld of type (1,1) on M which
commutes with Py. Then the complete lift A of Ag to TM commules with
J and F§ and satisfies J(LcAG) = 0. Hence (AG)” preserves Ay and Aé
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PRrOOF. In fact,
A = J A= A3,
and
AgPy = (Ao PR) = (PoAo) = Ps Ag.

Moreover, we have
(J(LeAQ))X© = JIE, (AX )] - J AGlE, X°].

But [¢, Z°] is vertical for any Z € x(M), (see [4)). Then we deduce
that J[£, (AX )] = 0. Furthermore, JAS = A% and A3[¢,X°] = 0. 0

4~ Conservation of energy, point symmetries and Noether’s
theorem

Let £ a P-semispray on TM. We have the following:
PROPOSITION 4.1. Let a be a P-regular element of A}. Then

(4.1) iP'(a-d < PV,a>)=0.

Proor. In fact, we have

P (Le(J*a)) = P*(i¢d(J"a) + dig(J*a)) = Pra.

Hence,

ted(J°a) = P'(a-d<§Ja>)= P(a-d< PV,a >),
since
P*igd(J*a) = igd(J*a) and J¢ = PV.

Therefore, we deduce

iP'(a—d< PV,a>)=0. )

If £ is a P-regular Lagrangian vector ficld and a = dL, then dL —
d(PV,dL) = —dE;. Thus (4.1) becomes i¢dE; = 0, and, hence, L¢Ep =
0, that is, E, is constant along the integral curves of €.
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If P is the complete lift of an integrable almost product structure
P, on M and S, is an integral manifold of I'mP,, then (4.1) becomes
Le¢Er, = 0. Thus (4.1) represents a generalization of the usual law of
conservation of energy.

PROPOSITION 4.2. Suppose that P is the complete lift to TM of an
integrable almost product structure Py on M and let f € C*(M). Then
ifa € A} we have & = a +d(£f) € AL

PRroOF. We can choose local coordinates (¢‘) on M such that I, P, =
(%1—,.. . %,—). Then £ is given by (2.14) and we have (P{)*(J*d(¢f)) =
(Fs) (df).

Hence, we deduce
(Pe) Le(J7a) = (Po) Le(J ) + (oY LeJ d(ES) = (F5) at+

+ (P5) Le(df) = (P5) (e + d({f)) = (F)a'. D
Now, let ¢ : S — M be an integral manifold of I, P,. Proposition
4.2 shows that if f € C®(M), then Lo = Lo T¢ and Ly + &(f o ¢) are
equivalent Lagrangians on T'S,. Thus Proposition 4.2 may be considered
as a gencralization of the usual gauge freedom.
The next result concerns with point symmetries of £.

DEFINITION 4.3. A vector field Y on M is called a point sym-
metry of £ if the complete lift Y¢ of Y to TM commutes with £, that is,
[Ye,€] = 0.

ProrosiTION 4.4.  Let us suppose that P is the complete lift FP;
to TM of an almost product structure Py on M and lct Y be a point
symmetry of € which is an infinitesimal aulomorphism of Py, that is,
Ly Py, =0. Then Ly preserves Aé.

ProoF. Let a € 5}. Then
((Fs)'(Lyea))Z° = ((Lyca)(FoZ) = Ya(PoZ)" - af[Y, P, Z)))
=Ya(RZ) - a(P(Y,2)) = (Ly<((P5) a))Z¢,

since Ly Py = 0.
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Hence, we have
(P5) (Lyea) = Ly<((F5) @) = Ly<((Fy) Le(J" @)
= (F5) (Lye(Le(J"a)))
= (F5)* (Le(Ly<(J°a))) (since [Y*,£] = 0)
= (F7) (Le((Ly<T) a)) + (F5) (Le(I" (Lye(a)))
(since (Ly<J) = LycoJ* —J* 0 Lyc)
= (Ps) Le(J*(Lyea)) (since LyeJ =0).

Therefore,

.Cyca € A; 0

CoROLLARY 4.5. Lel Y be a veclor field on M such that PyY is an
infinitesimal automorphism of P, and a point symmetry of £, simultane-
ously. Then Lipr)(A'€) C A'E.

Now, let us suppose that £ is a Fj-regular Lagrangian vector field
with a = dL and P, is integrable. Let S, be an integral manifold of
ImPy and Ly, Er,, Jo, Vo, & as above. Then Corollary 4.5 tell us that the
restriction of PpY to S lifts to TSp and produces a Lagrangian cquivalent

to Lo.
Finally, we now prove a generalization of Noether’s theorem.

ProprosiTION 4.6. Let a be a P-regular element of A;. IfY €
x(TM) satisfies

(4.2) (1) P Ly(JTa)= P (d), for f € C=(TM)
(4.3) (2) iy(P(a—d< PV,a>))=0,

then F = f— < Y,J*a > is a first inlegral of €. Conversely, lo each first
integral F of & there corresponds a veclor field salisfying (4.2) and (4.3).

Proor. From (4.2) we have
iyd(J'a) = P*(df -d < Y,J"a >) = P*(df),

since P*iyd(J"a) = iyd(J*a).
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Now, we have
L¢F = ig(dF) = i P*(dF)
= igiyd(J"a) = —iyicd(J"a)
= —~iy(P'(a—d < PV,a >)) =0,

since 1ed(J*a) = P*(a — d < PV,a >) (see Proposition 4.1).
Conversely, let F be a {irst integral of £. Then, there exists a unique
vector field Y € Im P such that

iyd(J"a) = P*(dF).
Hence, we have
P'Ly(Ja) = P (iyd(J"a)) + P*(diy (J a))
=iyd(J a)+ P*(d<Y,J a >)
= P(d(F-<Y,J a >)).

Therefore, if we put f = F— < ¥,J*a >, we obtain (4.2). Further-
more, since L F = 0, we have

0 =i¢(dF) = i P*(dF) = i¢iyd(J a)
= —iyigd(J a) = —iy (P (a —d < PV,a >)),
from which (4.3) follows. 0
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