On a Conjecture of Multiplicative Partitions

H.Z. CAO

RIASSUNTO – Si indichi con f(n) il numero dei fattori essenzialmente diversi del numero intero n > 1. In questo lavoro si dimostra che se $P_1(n) > 3$, allora $f(n) \le n/\log n$, dove $P_1(n)$ indica il più piccolo fattore primo di n.

ABSTRACT – Let f(n) denote the number of essentially different factorizations of the integer n > 1. In this paper, we prove that if $P_1(n) > 3$, then $f(n) \le n/\log n$, where $P_1(n)$ denotes the smallest prime factor of n.

KEY WORDS - Multiplicative partitions - Prime factorization.

A.M.S. CLASSIFICATION: 05A15 - 11B34

1 - Introduction

In this paper, n, m_i denote integers > 1; P(n) denotes the largest prime factor of n, $P_1(n)$ the smallest prime factor of n and w(n) the number of different prime factors of n. Let logarithm be with the base e. Consider the set $T(n) = \{(m_1, m_2, \ldots, m_s) \mid n = m_1 m_2 \ldots m_s\}$, where we identify those partitions which differ only by the order of the factors. We define f(n) = |T(n)| and f(1) = 1. For example, f(12) = 4, since $12 = 6 \cdot 2 = 4 \cdot 3 = 3 \cdot 2 \cdot 2$ are the four multiplicative partitions of 12.

In 1983 HUGHES and SHALLIT [2] have proved that $f(n) \leq 2n^{\sqrt{2}}$ and made two conjectures:

Conjecture 1. $f(n) \leq n$.

Conjecture 2. $f(n) \le \frac{n}{\log n}$ for $n \ne 144$.

In [2], they point out that the second is more doubtful. In 1986 and a year later, MATTICS and DODD [3] and CHEN XIAO-XIA [1] have proved the conjecture 1 independently. Six years have elapsed, but the conjecture 2 has not been proved.

In this paper, we shall prove the following

THEOREM. If
$$P_1(n) > 3$$
, then $f(n) \le \frac{n}{\log n}$.

Note that $f(144) = f(2^43^2) > 144/\log 144$.

2 - Some Lemmas

To prove the theorem, we need the following lemmas.

LEMMA 1. If
$$P_1(n) > 3$$
 and $w(n) \ge 2$, then $\sum_{d \mid \frac{n}{p(n)}} 1 \le \frac{16}{25} n^{\frac{1}{3}}$.

PROOF. Let $n = \prod_{i=1}^r p_i^{\alpha_i}$, $p_1 < p_2 < \ldots < p_r$ be the prime factorization of n. If r = 2, we have

(1)
$$\frac{\sum_{\substack{d \mid \frac{n}{p(n)} \\ n^{\frac{1}{3}}}} 1}{n^{\frac{1}{3}}} = \frac{\alpha_2}{p_2^{\frac{1}{3}\alpha_2}} \frac{\alpha_1 + 1}{p_1^{\frac{1}{3}\alpha_1}} \le \frac{\alpha_2}{7^{\frac{1}{3}\alpha_2}} \frac{\alpha_1 + 1}{5^{\frac{1}{3}\alpha_1}}.$$

If $r \ge 3$, since $(\alpha + 1)/11^{\frac{1}{3}\alpha} < (\alpha + 1)/2^{\alpha} \le 1$ and $2^{\alpha} \ge 2\alpha$, where α is any natural number, we have

$$(2) \frac{\frac{\sum_{j=1}^{n} 1}{n^{\frac{1}{3}}}}{n^{\frac{1}{3}}} = \frac{\alpha_r}{p_r^{\frac{1}{3}\alpha_r}} \frac{\alpha_1 + 1}{p_1^{\frac{1}{3}\alpha_1}} \prod_{i=2}^{r-1} \frac{\alpha_i + 1}{p_i^{\frac{1}{3}\alpha_i}} \le \frac{\alpha_r}{11^{\frac{1}{3}\alpha_r}} \frac{\alpha_1 + 1}{5^{\frac{1}{3}\alpha_1}} \frac{\alpha_2 + 1}{7^{\frac{1}{3}\alpha_2}} \le \frac{\alpha_2 + 1}{7^{\frac{1}{3}\alpha_2}} \frac{\alpha_1 + 1}{5^{\frac{1}{3}\alpha_1}} \le \frac{\alpha_2}{7^{\frac{1}{3}\alpha_2}} \frac{\alpha_1 + 1}{5^{\frac{1}{3}\alpha_1}}.$$

By (1), (2), we get

$$\frac{\sum_{\substack{d \mid \frac{n}{p(n)}}}{1}}{n^{\frac{1}{3}}} \le \frac{\alpha_2}{7^{\frac{1}{3}\alpha_2}} \frac{\alpha_1 + 1}{5^{\frac{1}{3}\alpha_1}}.$$

Consider $g(x) = x/7^{\frac{1}{3}x}$ for x > 0. We have

$$g'(x) = \frac{7^{\frac{1}{3}x} \left(1 - \frac{\log 7}{3}x\right)}{7^{\frac{2}{3}x}}.$$

If g'(x) = 0, we get $x = 3/\log 7$, $1.5 < 3/\log 7 < 2$. Obviously, g'(x) > 0 for $0 < x < 3/\log 7$; g'(x) < 0 for $x > 3/\log 7$. Hence we get $g(\alpha) \le \max\{g(1), g(2)\}$ for α which is any natural number. Since $\frac{1}{7^{\frac{1}{3}}} < \frac{1}{7^{\frac{1}{3}}} < \frac{2}{7^{\frac{1}{3}}} = \frac{2}{7^{\frac{2}{3}}}$, we get $\frac{\alpha_2}{7^{\frac{1}{3}\alpha_2}} \le \frac{2}{7^{\frac{1}{3}\cdot 2}}$. By similar method, we easily get $\frac{\alpha_1 + 1}{5^{\frac{1}{3}\alpha_1}} \le \frac{2}{5^{\frac{1}{3}\cdot 1}}$. So, we get

$$\frac{\sum_{\substack{d \mid \frac{n}{p(n)}}}{1}}{n^{\frac{1}{3}}} \le \frac{2}{5^{\frac{1}{3}}} \frac{2}{7^{\frac{2}{3}}} = \frac{4}{\sqrt[3]{245}} < \frac{4}{6.25} = \frac{16}{25} \,.$$

LEMMA 2. If $P_1(n) > 3$, then $\sum_{\alpha \mid \frac{n}{p(n)}} \alpha \le \frac{1}{4}n$.

PROOF. Let $n = \prod_{i=1}^t p_i^{\beta_i}$, $p_1 < p_2 < \ldots < p_t$ be the prime factorization of n, we have

$$\sum_{\alpha \mid \frac{n}{p(n)}} \alpha \leq \frac{n}{p_t} \sum_{d \mid \frac{n}{p(n)}} \frac{1}{\alpha} \leq \frac{n}{p_t} \prod_{i=1}^t \left(1 - \frac{1}{p_i}\right)^{-1} .$$

If t = 1, we have

$$\sum_{\alpha\mid\frac{n}{p(n)}}\alpha\leq\frac{n}{p_1}\left(1-\frac{1}{p_1}\right)^{-1}=\frac{1}{p_1-1}n\leq\frac{1}{4}n.$$

If $t \ge 2$, we have

$$\sum_{\alpha \mid \frac{n}{p(n)}} \alpha \leq \frac{n}{p_t} \prod_{i=1}^{t} \left(1 - \frac{1}{p_i} \right)^{-1} = \frac{n}{p_t} \prod_{i=1}^{t} \frac{p_i}{p_i - 1} = \frac{n}{p_t} \frac{p_t}{p_1 - 1} \prod_{i=1}^{t-1} \frac{p_i}{p_{i+1} - 1} \leq \frac{n}{p_1 - 1} \prod_{i=1}^{t-1} \frac{p_i}{p_i} = \frac{1}{p_1 - 1} n \leq \frac{1}{4} n.$$

LEMMA 3. If n > 1, then $f(n) \le \sum_{\substack{d \mid \frac{n}{p(n)}}} f(d)$.

PROOF. Let $n = \prod_{j=1}^{q} p_{j}^{c_{j}}$, $p_{1} < p_{2} < \ldots < p_{q}$, be the prime factorization of n. Consider the sets: $T_{j_{1}j_{2}\ldots j_{q}}(n) = \{(p_{q}p_{1}^{c_{1}-j_{1}}p_{2}^{c_{2}-j_{2}}\ldots p_{q}^{(c_{q}-1)-j_{q}}, m_{2},\ldots,m_{r}) \mid n = p_{q}p_{1}^{c_{1}-j_{1}}p_{2}^{c_{2}-j_{2}}\ldots p_{q}^{(c_{q}-1)-j_{q}}m_{2}\ldots m_{r}\}, \ 0 \leq j_{i} \leq c_{i}, 1 \leq i \leq q-1; \ 0 \leq j_{q} \leq c_{q}-1, \text{ where we also identify those partitions which differ only by the order of factors.}$

We easily see that

$$|T_{j_1j_2...j_q}(n)| = f(p_1^{j_1}p_2^{j_2}...p_q^{j_q})$$
 and
$$T(n) = \bigcup_{j_1=0}^{c_1} \bigcup_{j_2=0}^{c_2} \cdots \bigcup_{j_q=0}^{c_{q-1}} T_{j_1j_2...j_q}(n).$$

So we have

$$f(n) = |T(n)| \le \sum_{j_1=0}^{c_1} \sum_{j_2=0}^{c_2} \cdots \sum_{j_q=0}^{c_{q-1}} |T_{j_1 j_2 \dots j_q}(n)| =$$

$$= \sum_{j_1=0}^{c_1} \sum_{j_2=0}^{c_2} \cdots \sum_{j_q=0}^{c_{q-1}} f(p_1^{j_1} p_2^{j_2} \dots p_q^{j_q}) = \sum_{\substack{d \mid \frac{n}{p(q)}}} f(d).$$

0

LEMMA 4. $f(n) \le \frac{n}{15}$ for n with $P_1(n) > 3$ except n = 5, 7, 11, 13, 25.

PROOF. We first find out all n with $P_1(n) > 3$ not exceeding 60 and satisfying n < 15 f(n). Let n, with $P_1(n) > 3$ and n < 60, be of the form $n = \prod_{i=1}^{s} p_i^{\alpha_i}$, $p_1 < p_2 < \ldots < p_s$. Since $5 \cdot 7 \cdot 11 > 60$, we have $s \le 2$. If s = 1, since $5^3 > 60$, then n can only be expressed in one of the forms p_1 , p_1^2 . If s = 2, since $5^2 \cdot 7 > 60$, then n can only be expressed in the form p_1p_2 . If $n = p_1$, then f(n) = 1. All prime numbers n with 3 < n < 15 are 5,7,11,13. If $n = p_1^2$ or p_1p_2 , then f(n) = 2. The only value of n with $P_1(n) > 3$ and $n = p_1^2$ or p_1p_2 not exceeding 30 is 25. So, all n with $P_1(n) > 3$ not exceeding 60 and satisfying n < 15 f(n) are 5,7,11,13,25.

We shall prove that $f(n) \leq \frac{n}{15}$ for n with $P_1(n) > 3$ and n > 60.

We arrange all n with $P_1(n) > 3$ and n > 60 in increasing order to obtain the sequence $\{n_i\}$, i = 1, 2, ... When i = 1, we have $f(n_1) = f(61) = 1$.

Suppose that $f(n_j) \leq \frac{n_j}{15}$ for j with $1 \leq j \leq i-1$, where $i-1 \geq 1$. We shall prove that $f(n_i) \leq \frac{n_i}{15}$.

By Lemma 3 and Lemma 2, we have

$$f(n_i) \leq \sum_{\substack{d \mid \frac{n_i}{p(n_i)}}} f(d) \leq f(1) - \frac{1}{15} + f(5) - \frac{5}{15} + f(7) - \frac{7}{15} + f(11) - \frac{11}{15} + f(13) - \frac{13}{15} + f(25) - \frac{25}{11} + \frac{1}{15} \sum_{\substack{d \mid \frac{n_i}{p(n_i)}}} d \leq$$

$$\leq 7 - \frac{62}{15} + \frac{1}{15} \frac{1}{4} n_i = \frac{43}{15} + \frac{1}{60} n_i < \frac{1}{15} n_i,$$

since
$$\frac{43}{15} + \frac{1}{60}n < \frac{n}{15}$$
 for $n > 60$.

COROLLARY. $f(n) \le \frac{n}{\log n}$ for n with $P_1(n) > 3$ and $n \le e^{15}$.

PROOF. It is easy to verify that $f(n) \le \frac{n}{\log n}$ for n = 5, 7, 11, 13, 25 (or see [2]). If $n \ne 5, 7, 11, 13, 25, P_1(n) > 3$ and $n \le e^{15}$, by Lemma 4, we have

$$f(n) \le \frac{n}{15} \le \frac{n}{\log n}$$
 for $n \le e^{15}$.

So, our assertion has been proved.

3 - Proof of the theorem

We arrange all n with $P_1(n) > 3$ in increasing order to obtain the sequence $\{n_k\}$, $k = 1, 2, \ldots$. Let n_{k_0} be the largest number which belongs to the sequence and does not exceed e^{15} . By the Corollary, we know that $f(n_i) \le \frac{n_i}{\log n_i}$ for $1 \le i \le k_0$. Suppose that $f(n_i) \le \frac{n_i}{\log n_i}$ for $1 \le i \le k - 1$, where $k - 1 \ge k_0$. We shall prove that $f(n_k) \le \frac{n_k}{\log n_k}$.

Since $f(n) \le \frac{n}{\log n}$ holds for n with w(n) = 1 (see [1]), we may suppose that $w(n) \ge 2$.

By Lemma 3, we have

(3)
$$f(n_k) \leq \sum_{\substack{d \mid \frac{n_k}{p(n_k)}}} f(d) = \sum_{\substack{d \mid \frac{n_k}{p(n_k)}}} f(d) + \sum_{\substack{d \mid \frac{n_k}{p(n_k)}} \\ d \leq n_k^{\frac{1}{3}}}} f(d) = S_1 + S_2.$$

By $f(d) \leq d$ and Lemma 1, we get

(4)
$$S_1 \leq n_k^{\frac{1}{3}} \sum_{\substack{n_k \\ p(n_k)}} 1 \leq \frac{16}{25} n_k^{\frac{1}{3} \cdot 2}.$$

Since $n_k > e^{15}$, we have

(5)
$$\frac{n_k^{\frac{1}{3}}}{\log n_k} > \frac{e^5}{15} > \frac{64}{25} \quad \text{or} \quad \frac{16}{25} n_k^{\frac{2}{3}} < \frac{1}{4} \frac{n_k}{\log n_k}.$$

By the induction hypothesis and Lemma 2, we get

(6)
$$S_2 \leq \sum_{\substack{d \mid \frac{n_k}{p(n_k)} \\ d > n_k^{\frac{1}{3}}}} \frac{d}{\log d} < \frac{3}{\log n_k} \sum_{\substack{d \mid \frac{n_k}{p(n_k)}}} d \leq \frac{3}{4} \frac{n_k}{\log n_k}.$$

By (3)-(6), we get

$$f(n_k) \leq \frac{n_k}{\log n_k}.$$

Our theorem is now proved by induction.

Editor's Note

Conjecture 2 has been proved in general by F.W. DODD and L.E. MATTICS, Extimating the number of multiplicative partitions, Rocky Mountain Journal of Mathematics 17 (1987), 797-813. However, the direct proof for the special case $P_1(n) > 3$, presented here by the Author, is more accessible.

REFERENCES

- [1] C. XIAO-XIA: On multiplicative partitions of natural number, Acta Mathematica Sinica, 30 (1987), 268-271.
- [2] J.F. Hughes J.O. Shallit: On the number of multiplicative partitions, Amer. Math. Monthly, 90 (1983), 468-471.
- [3] L.E. MATTICS F.W. DODD: A bound for the number of multiplicative partitions, Amer. Math. Monthly 93 (1986), 125-126.

Lavoro pervenuto alla redazione il 28 novembre 1989 ed accettato per la pubblicazione il 1 marzo 1991 su parere favorevole di P.V. Ceccherini e di F. Succi

INDIRIZZO DELL'AUTORE:

Hui-Zhong Cao - Department of Mathematics, Shandong University - Jinan 250100, Shandong - P.R. China