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Some Results for a Generalised Integral Transform

A K. MAHATO - K.M. SAKSENA

Ri1ASSUNTO — Si estende ad una classe di funzioni generalizzate una generalis-
zazione della trasformala di Laplace coinvolgente, nel nucleo, le funzioni di Weber del
cilindro parabolico; si studiano inollre le proprield di uno spazio di funzioni di prova
ed il suo duale. Si definiscono funzioni generalizzale trasformabili e si dimostra un
teorema di analilicita per la irasformata inlegrale gencralizzata. Infine viene mostralo
come diverse classi di equazioni differenziali possano essere risolle con l'aiuto della
trasformala inlegrale.

ABSTRACT — In lhis paper a generalisation of Laplace transform involving Weber’s
parabolic cylinder function in the kernel, is exlended to a class of generalized funclions
and the properlies of a tesling funclion space and its dual are studied. Transformable
generalized functions are defined and an analylicity theorem is proved for the gencralised
inlegral transform. It is shown that several class of differential equalions can be solved
wilh the help of the inlegral transform.
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1 — Introduction

The integral transform

F(s) = 2" / (st) e~ 41D, (Vast) f(1)dt

studied by B.M.L. TiwaRI [5], where D, is the Weber's parabolic cylin-
der function, has recently been extended by us to generalized functions
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[3] and inversion and uniqueness thcorems have been given for the trans-
form of generalized functions. In this paper we extend the transform to
a class of generalized functions other than that given in the earlier paper
and study the properties of a testing function space and its dual. First
we define a differential operator and examine the behaviour of the result
of its nth operation on the kernal of our transform as this will be needed
in our study and then given an analyticity thcorem for the generalized
transform. In [3] we have not shown the application of the transform. But
in this paper we have shown in section 6 that several class of differential
equations can be solved with the help of the weber transform.

2 — Differential operator

Let
u= x"e"%‘D‘,(\/ﬂ)
where
12, ~1 ~)(n-2)(n-3
Da(z) = ez {1—”(’;22 )y e )(;424 X )}

Then, 272y = e-%(m)’v,(,,,—,)

%[z"'\u] = % [e‘*(\/ﬂ)zpy( m)]
= (-1)e"{V¥'p,, \(V2z)2-ta-t
since
%".; [e-%"v,(z)] =(-1)"e i D, um(z) m=1,2,3...,
(ErDELYI [2), p.119).
dii-[x"‘u] =(-1)2-¥z-te¥p,, (V22)

ar

:%%[z-*u] = (-1)2-¥e~¥D,,,(V22).
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;;[z%{x—au} = & [~1zbe b, (VB =

= (—1)22_11_ §:Dv+2( \/2_-'5)] .

J:h'*% [zi‘di;{x"‘u}] = %z"e‘i’D,“(\/ﬂ).

Let us now define an operator Ay by
A :4(z) = 24 [D.2d Dz 724(2))}]

where D, = £,

Fron the rule for differentiation of products, we have

(2.1) Ay 4(z) = [A (A + %) z! - (2)\ - %) D. + :cDﬁ] é...

Thus
Ans {(sz)*e-%“p,(\ﬁzE)} = g(st)*e-%"v.,“(\/'z‘si)
and
A2 {(stye D, (Vs)} = (g)’we-%"v,,,,(m)
n ohot b = (5) (st e-tep. ..
oy {0 om0} = (5) rebn, /2

for n=0,1,2,...
For large t,

A:\l,t {(Sl)Ae"}"D,(@)} = (%)“ (sl)ke—}uvy*.zn(\/ﬁ)

N (g)n(st)ge—ble—}.hi(m v+4in
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as D, (z) ~ 2e~¥ for large z and fixed v (ErDELYI 1}, p. 122)
= s"(st)M+¥+e=12/2 < oo provided Re s> 0.

Also for small ¢,

:', {(Sl)'\e'gu'D,(\/{sZ)} = (%)" (8!)*(?*“1),42,.(\/23 =

= (;-)" (31)'\2("+2")/2e"‘¢ (__V +22ﬂ’ %; st)

since D,(z) = 2*/%-1"yp (-2 ¢ 1.12?) where (ERrDELY! [1], p. 267)
¥(a, b; z) is a confluent hypergeometric function.

~ (-;;)n(st)'\ fn _"{""——L—r( I_;_(.,)_ ] +0(|st|)%}

I['(1-¢) &
e et T) +0)z | (ERDELYI [1], p. 262) < 00 as

t— 0 for Res > 0.

since ¥(a,c;z) =

3 ~ Testing function space and its dual

Let us define functionals 83 ,4,; n = 0,1,2,... on certain smooth
functions ¢(t)(0 < 1 < oo) by

0 pa(8)= sup |etP*" A7 4(0)|.

Let us define K, s(I) to be space of all those complex-valued smooth
functions ¢(t) defined on I(0,00) for which 9 ;5 .(¢) is finite for all n =
0,1,2,... where a,f are suitably fixed real numbers and A, a complex
number with ReA > 0.

For any complex number 7, we have

ai,ﬂ,n(7¢) |7l a.f, n(¢) ¥
a:.p.n(¢ + 11b) S a B, n(¢) + aa ﬂn(w)! ¢7¢ € I(a.ﬂ(f)
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& 5, isaseminormon K, s(I).

Again

a:,p,o(¢) =0
=> ¢(t) is the zero element in K, 4(J). Hence @ 5, is a norm. So the
collection

= {a:rﬁ»"}:o:o

is a countable multinorm on K, s(I) and equipped with the topology
generated by M, K, 5(]) is a countably multinormed space.

LeEMMA 3.1. For every fized s such that Res > a and f+ ReA > 0,
w(st) € Ko p(1) where w(st) = 2"/3(st)*e~1/2'D,(V/2st).

Proor. We have from (2.2)
A2 wo(st) = 2712 ( ) (16~ 4D, 400 (VD)

forn=0,1,2,..
Hence

B palo(ot)] = sup |61+ A3 o(at)|

attﬂ+n2—"l2( ) (st)e *"‘Dvna(\/?_"—)l

= sup
0<t<eoo

Now, for large t and fixed s i.e. st — o0,

126 (5) P (stPem 11D, 0 (VES)

’2_,,, aatyftn (_) (3,)1 ~4at -}(2::)(\/2?)#2"

| st 4\+f'+-ﬂtﬂ (a—s)t
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which tends to zero as t — 00, since s is fixed with Res > a. For small ¢

-rl2gatyPin (i) " (st)e 4D, 4o (V251)

2-3[2 (;_) ea:tp+n(8t)»\e-%rl2¥+ne— %”‘d) (_V +22n, %; st) |

= [P (sty+ne-tr-on {———P — o(lsu)”’}

ri-

= afinite numberas ¢t —+0,Res>a and F+ReA>0.

Hence 3} 5, [w(s)] < 00, n=10,1,2,...
This shows that w(st) € K, 4(I).

TueoreM 3.1. K, (I} is a complete counlably mullinormed space
i.e., a Frechet space.

Proor. Let {¢.,}:°=l be a Cauchy sequence in K, s{7). Let §2 denote
any arbitrary compact subset of J(0, c0).
Let us define an operator D™! by

t
D“:/dz

where 7 is the fixed point in J. Thus for any smooth function #(?) on
(0,00)
D7 Dip(t) = $(t) - ¥(7).

By the definition of A, ; we have
Arvadi(t) = 7DD, (1),

In view of seminorm 8} ,,, we sce that A, ¢,(t) converges uniformly on
Q as v — oo. Moreover, we have

iD= 4, o) = D A R D DA g, (1)
(3.1)

T

= Dit™ ¢, (1) - (;)* D.r7*¢u(1)
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and
tD-4~¥D-1"4-2 4, 6.(0)
(3.2) A
=0 (1) 81~ LOD.64(1)

where [,(f) = 207 (tdr-% - 1).

Since multiplication by a power of { or multiplication by D=! pre-
serves the property of convergence of a converging function, the left hand
side of (3.1) and (3.2) also converges uniformly on Q as v — oo. Thus
we sce that the left hand side and the first two terms of the right hand
side in (3.2) converges uniformly on Q. Hence as () # 0, D,7~*¢(7)
must converge as v — oo. This with (3.1) implies that D,t=*¢,(2) also
converges uniformly on every  which, in turn, implies that D,¢,(t) does
the same. Next, by virtue of (2.1), it follows that D2¢(t) also converges
uniformly on every compact subsect of 1.

We repeat this argument with ¢, replaced A3¢, and Ay¢, replaced
by A3*!'¢,. This shows that for every non-negative integer n, D"¢,(t)
converges uniformly on every . Consequently there exists a smooth
function ¢(f) on I such that for each n and ¢, D"¢,(t) — D"¢(l) as
v — 0. It now follows easily that

(33) 0p.(d—9)—>0 as v— oo n=0,12,...
Finally, there exists a constant C,, not depending on v such that

8 pn(dy) < Cn  (since ¢ € Kop(T)).
therefore, from (3.3),

a:.ﬂ.n¢ < a:,ﬂ,n¢v + a:.ﬂ.n(qs - ¢u) < Cph+e.
This implies that ¢ € Ka (/) and is the limit in K. 5(7) of {qt;.,}"‘:l
Thus K, s(I) is a sequentially complete countably muitinormed S[:&;ce
or a Frechet space.
Thus (i) members of K, () are complex valued smooth function
defined on I, (ii) K, (I) is a complete countably multinormed space,
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(i) if {4}
integer m{ D"’¢‘,}°: converges to zero function uniformly on every com-
pact subset of I, and so K, p(I) is a testing function space satisfying all
the necessary condilions for it to be such a space. The collection of all
continuous linear functionals on K, 4(7) is called the dual of K, (1) and
is denoted by K 4(1). Members of A7, 5(I) are generalized functions.
Since Ko g(I) is complete, K, 4(I} is also complete.

| converges in I(, s(I) to zero, then for every non-negative

4 - Properties of K, 5(1)

As in (ZEMANIAN {6], pp. 32-36) D(I) is the space which contains
those complex-valued smooth functions ¢(¢) defined on 0 < t < o
which have compact supports and E(J) is the space of all complex-valued
smooth functions on I. We now compare K, g(I) and K, ,(I) with D(I),
E(I) and their duals and list some properties.

PROPERTY 4.1. Fron the definition of the spaces D(I) and E(I) we
see that D(I} C K, 4(I) C E(I). Since D(I) is dense in E(I), it follows
that K, g(I) is dense in E(I).

Let {¢.,}m_l converges to ¢ in D(I). Let the supports of ¢, and ¢
be containdes in the closed interval [a,b], 0 < a < b < 0o, we have

Dopnlty = @) = sup [e4747 (4, - 9)|
0<t<oo

2n
= sup {e*t? Y B.t"D'($, ~
sup jet? 3 (4.~ )|

(B.s being some constants)

< i sup Ie“'t"B,t'D'(qS,, - ¢)|

r=0a<t<b

= f: sup Ie‘”t”""B,D'(cﬁ., — ¢)| .

r=p a<f<b
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e?'Ptr g,

If we take C, = max , we see that
ai<h

n
Bopn(® =)< 3G sup [D(4 - 9)

< e for v> N, where N is a large pc()gitive integer. This is true from the
property of the convergence of {q&.,} - in D(I).

We see that convergence in D(I) implies convergence in K, ().
Consequently, the restriction of f € K, ,(I) to D(I) is in D'(I).

PROPERTY 4.2. If @) < a3 then Ko, 5(I) C Kqa, s(I) and the topol-
ogy of Ko, (1) is stronger than the topology induced on it by the topology
of Ka,5(I). Hence the restriction of any f € K, 4(I) to Ko, p(I) is in
K, 5(1).

PROPERTY 4.3. K, ps(I) is a dense subspace of E(I), whatever
be the choicees of a and 8. Indeed D(I) C K, 4(I) C E(I), and since
D(I) is dense in E(I) so in K, 5(I). Moreover, in the proof of Theorem
8.1, we have seen that convergence of any sequence in K, 5(I) implies its
convergence in E(I). Consequently, by corollary 1.8 2a (ZEMANIAN [6],
p-21), E'(1) is a subspace of K, 4(I) for any permissible values of a and
B.

PROPERTY 4.4. The differential operator t" A} (r = 1,2,...) are
continuous linear mappings of K, g(I) into itself. For, we have

ea!tﬂ+nA§.'[tr ;.l]¢|
=eotP4n 4" [ag + aytD + ... + a,nt’"nzﬂ]z'A;_,(¢)|

=[e®t?[{ag + a1tD +...+ a2t D™"big}t"] A} (@) + ™' PH" T AT (&)

IA

e!t? [flo +ray+r(r—1)az+...+ ra,.]tr ;-'(¢)| +

eattﬂ+n+rA;:!‘-r¢| .
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Hence for every ¢ € Kq p(]), we have

sup
0<t<oo

e 1P+n A3 [ 45 (9)] |

PV BAL @)+ sup |e 1P A3 (4)

where B, is a constant, < oo, for alln =0,1,2,...; r=0,1,2,...

The adjoint operator B} of t" A] is a generalized differential operator
on K. 5(I) into K, 4(7) and is defined by

(B;.tf?d’) = (f' t :\,t(¢))

5~ The generalized Weber transformation

All elements in K, 4(I) for some real numbers o and B are called
Weber transformable generalized function. From property 4.2 we sece
that if f is a member of K z(I) for some real a, f is then a member
of K, 4,(I) for all o’ > a. This implies that there cxists a real number
oy (possibly o; = —o0) such that f € K ,4(I) for every & > o, and
[ ¢ K. g(I) for a < oy.

DeFINITION 5.1.  Let f € K, 4(I) for some fized real numbers a
and B with Res > a and (A+ f) > 0. The Weber transformation F(s)
of [ denoled by D .(f), is defined by

(5.1) F(s) = (Dauf)(s) = {f(1),w(st))
where
w(st) = 271 (st e 4D, (V2s1) and se Q.
The region §; is defined by ‘
(5.2) Q,:.-{ises>a,,s¢0,—%1r<arg.s<3—475} .

Ifa; <0, Q is a cut half plane obtained by delcling all real non-
ncgative values of s.



{11) Some Results for a Generalised Integral Transform 771

LEMMA 5.1. Let a,o' be real numbers with a < o/, then for Rez >
o;2#0, —ir <argz < 3r and 0 <t < oo, we have

e"‘(zt)“"*"e‘*"D.,“,.(\/ﬂ)' <C(1 4 ZMw)

where C),, is a consiant wilh respect to z and { and

p:,\+ﬂ+g+2n.

. 3 3 :
PROOF. Since z # 0 and LA argz < —45, from the series represen-

tation and asymptotic properties of Weber’s parabolic cylinder function,
we see that for |z] < 1, there exists a constant M, , independent of 2,
such that

Iz"+‘a+"e'}"l),+g,,(\/2—2)| < ﬂfx',,

and another constant N, , independent of z, such that for |2] > 1,

lzhﬂﬂe-*,p"“"(@)l < Ny, zReA48+§42n),~ Res

= N, 2 0e Mt

where gy = A+ 8+ v/24 2n.

Consequently for Rez > o and 0 < t < oo, there exist constants
B, ., independent of z and ¢, such that

ecl(zt))-l'ﬂ-l-ﬂe"it'DH_.m(\/ta)' < Bx,y(l + |z|l'be,.|)(1 +tm”)e(a-m‘) .

Also for Rez > o' > a, (1 + tR¢#)el®=Re1) is uniformly bounded on
0 <t < oo by another constant and so

e°'(zt))‘+ﬂ+"e-*"D,...-_p,,(\/a)l < C,\_.,(l + lz‘Ren)

where C),, is a constant.
Hence the lemma.
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THEOREM 5.1.  Analiticity Theorem: Let F(s) = (Da,f)(8) for
s € Q. Then F(s) is an analytic function on §; and

(5.3) D,F(s) = (f(t), Dyw(st))

where

a
D,—a

PRroOF. Let s be an arbitrary but fixed point in §};. Let us choose
real numbers a,a’ and positive r and r;, such that

a<a =Res—r; <Res—r < Res.

Let C be a circle with centre at s and redius equal to r;. We restriet
r; and hence o' and r, in such a way that C lies entirely within ;.
Let As be a non-zero complex increment such that |[As| < r and let us
consider the expression

F(s+ AA.sz — F(s) (f(t), D,w(st)) = (f(1), ¥as(t))

(54)

w(s + Ast) — w(st)

where 1,,(1) = — D,w(st)

The differentiation formula (SLATER [4), p. 25), the series expansion
and the asymptotic behaviour of D,(2) show that D,w(st) is a member
of Ko s(I) and hence equations (5.3) and (5.4) are meaningful.

To prove the theorem, we will have to show that ¥a,(f) — 0 in
K.p(I) as |Asj — 0. Using Canchy’s integral formula we can write
A} ¥a,(t) in the form of a closed integral on C as

aa¥al(t) = 5%,‘1?_/2-"/2 (;‘) (zz)"e'i"'pyﬂn(\/ﬁ)-
c

(& (=m) el
As\z-s-As z-s] (z-3s)?

— _éi j 2—u/2 (‘5)" (Zt)"e'*"'D,,',?n(ﬁ_:z_t-)dz .

- 2m'c (z~ 8)%(z-s- As)
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Hence

e+ AT (1)

As /2_”2 a‘tﬂZ'n(Zt)H" _%“'DH?n(‘/z_z‘)

21 J (z—38)}(z—s— As)
| A 3| 9-¥[2-n, —peal( zt)p“*'" —&"Dv+2n(\/27
21r (z—38)*(z— 8- As)

Let Q) be the constant bound on

et (zt) et D, (V22l)

for 0 < t < o0 and z € C [Lemma 5.1]. Then we may write

atypin |A3[ /‘ 9-vf2-n,
e™ 1P " AL .¢A.(i)| QM (z 3)2(2_3_
IAlel.V —-¢[2=n _=p
= 2xrd(r, - r)21rr; fgg 2 ‘ |

which — 0 as |As| — 0.
This proves the theorem.

6 — Solution of a class of differential equations

The Weber transform can be used to solve certain coundary value
problems. From property 4.4, we see that the operator "4}, (r =
0,1,2,...) is a continuous linear mapping of K, s(7) into itself. Its ad-

joint operator B is a continuous linear mapping K, »(I) into itself and
is defined by

(6.1.) (B3S, @) = ([t A (6(1))
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Se we see that
Dan{ B3/} = (B3 f,27*(st) e 1D, (V2st)) by (5.1)
= (f,00 4 271 (st) e 1D, (V2st)) by (6.1)
= (22 (2) (P D00 (VESD)
= (f,27 %5 (st e 41D, 0 (VEs1))

= Dx+r,v+2r(f)

Thus

(6.2) DA,y{Brf} = DA+r,v+2r(f)

We can exploit the relation (6.2) to solve a differential equation, with
certain boundary conditions, of course, of the type

(6.3) B(f) =

where g is a known generalized function belonging to K, 4(J) and is to
be determined.
On applying Weber transform to (6.3) and using (6.2), we get

Dk+r,v+2r(f) = DA.U(g)
= G(s), say.
Hence
f = D:\.-ll-r,v+2r[G(3)]

which gives a solution of (6.3); where

A-l-r v+2r[G(3)] -

C+ioo

T(A+2-£_)
TA+r—s+1)L(A+r—s+3)

1
=57

®(s)ds ,

C—-ico
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in which ®(s) = c,f“a:"‘ff‘(a:)dz, 8=C+iT;Cbearcal witho, < C < o0
0
and
F(z) = (f(u),w(z,v)}.

Here we have not given the form B;. However, these can be calculated
by the method of integration by parts. For » = 1, BY is given by

BY(f) = [t2D7+ (2A+ %) D+ (A+ %) (A + 1)] f.
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