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The Jordan Canonical Form in some 8-groups

S. CAPPARELLI®

RiASSUNTO ~ Si espone un melodo di classificazione delle orbite di un gruppo
lineare algebrico riduttivo dovulo a V. Golli e E. Viniberghi. Lo si applica poi ad
alcuni casi particolari ed, altraverso una serie di riduzioni, si mosira come lali casi
speciali, alcuni esempi di 8-gruppi, coincidano con alcuni casi classici e si recuperano
cosi alcuni risullali noti.

ABSTRACT - We ezplain a method for lhe classification of orbils of a reduclive
linear algebraic group due to V. Galli and E. Viniberghi. We then apply such melhod lo
some special cases, some ezamples of 8-groups, and we show, vig g serics of reduclions,
that these cases are aclually classical. Thus we recover some known resuils.
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- Introduction

In this work we compute and classify the nilpotent orbits in two
examples of @-groups using a method developed in [5].

These groups form a class of connected linear algebraic groups that
generalize the notion of adjoint group of a semisimple Lie algebra.

If @ is a semisimple automorphism of finite order of a reductive con-
nected algebraic group G, and G’ is the set of fixed points of G, we may
consider the connected component of the identity of G*, and denote it

(*)Research supported by NSF Grant No. DMS-8906772.
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Go. Then the automorphism df induces on g, the Lic algebra of G, a

Z,-gradation, g = ] g;» where m is the order of 6. Then the adjoint
i€Zm
representation of G induces a linear representation of G, on cach g,. The

image of Gy in its representation on g, is called a -group.

For m = 1 we have the adjoint group Ad G, and for m = 2 the
isotropy group of the symmetric space associated to G.

It turns out, see [15], {16], [8], that for such groups there exists a
Jordan decomposition, a Cartan subspace and a Weyl group which is
finite and generated by complex reflections. Therefore the classification
of the nilpotent orbits, which are analogous to Iilbert’s “nullforms”, is a
decisive step for the classification of all orbits.

The classification of nilpotent orbits for the adjoint group was ob-
tained by E.B. DYNKIN in [4] and later by P. BALA and R.W. CARTER
in [1), [2], with a method similar to Dynkin’s.

In this work the method used to classify nilpotent orbits in two ex-
amples of @-groups was developed by V. GATTI and E. VINIBERGH! in
[5]. Such method allows one to reduce the classification of the orbits of
the action of a linear algebraic group G on a vector space V to that of
certain special orbits of its linear subgroups.

In the first section, we describe the method in gencral and state the
main result of {5]. Then, in Section 2, we translate the problem to a
combinatorial computation of certain roots and weights.

In Section 3, we introduce the notion of 0-groups and state the the-
orem that allows us to classify the nilpotent orbits in the particular case
of #-groups.

In the last two sections, we finally examine the case of two examples
of #-groups. and recover results of [11] and [13].

1 - Description of the method

We give here a general description of the method devcloped in [5] to
classify the orbits of a linear algebraic group G. We shall assume the
extra hypothesis that G is a reductive group.

In general we shall follow the custom of indicating the group with
the capital letter and with the corresponding small underlined letter its
Lie algebra.



[3) The Jordan Canonical Form in some §-groups 779

DerINITION 1.1. A subgroup H of an algebraic group G is said to
be complete regular if H is the cenlralizer of a semisimple element of
the Lie algebra of G.

DEFINITION 1.2. Let H be an algebraic group and U an H-module.
An element z € U is called semifree if all the semisimple elements of
the Lie algebra of its normalizer h ., = {a € hfaz = Az, ) € C} belong
to the center of the Lie algebra b of H and if U is spanned by H - z.

ProrosiTioN 1.3.  If G is a connccled linear algebraic group,
G C GL(V), g its Lie algebra, T a fized mazimal torus of G, and {
the corresponding Lie algebra, then every x € V is in the G-orbil of a
semifree element of V with respect to a suilable complete regular subgroup
H containing T and a suitable subspace U C V that is II -stable.

Proor. Let z € V. Consider G, = {g € G: gz = Az,A € C°}.
First, we shall prove that there exists an element in the G orbit of X, say
gz, such that T, is a maximal torus in G¢y;5.

This is clear because we can take a maximal torus S in G5, wWhich
is not necessarily contained in T, then § is certainly conjugate to a torus
contained in T, namely, there exists ¢ € G such that ¢Sg=' C T. It
then follows that gSg~! C T¢ges (since if s € 5, gsg~'(gz) = Agz).
Now, since § is maximal in G¢,s, 597! = T¢y,» is maximal in Geges .
Furthermore, £, is maximalin g__ . Set y = gz. Let H be the
centralizer in G of £, and & its Lie a.]gebra Take U to be the linear
span of H - y.

U is clearly H-invariant; also, all the semisimple elements of &,
are in the center of b which we denote Z(h). Indeed: Certainly ¢, C
Z(h) C b, because b = ¢,(Ly5 ); on the other hand if a is a semisimple
element of A, it certainly commutes with ¢ Ley>i lience {a,t.,,} generates
a torusing >’ but, by hypothesis, £, is maximal and soa € {,, C

Z(h). Therefore, y is semifree. 0

Notice that since the semisimple elements of k., are in the center
of A they act as scalar transformations on U and, finally, the set of such
elements coincides with ¢ ..
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DeriNiTION 1.4. A pair {H,U}, where H is a subgroup of G and
U is an H-invariant subspace of V, is called a special pair if it salisfies
the Jollowing conditions:
(1) H is a complete regular subgroup of G which contains T';
(2) H coincides with the centralizer in G of the subulgebra of L consisting
of all elements that acl as scalar transformations on U;
(8) The H-module U has a semifrce orbit (i.e. an orbit made of semifree
elements).

REMARK 1.5 In the proof of Proposition 1.3, we have constructed a
special pair.

If We is the Weyl group of G, then Wy acts on the set C of special
pairs of G as follows. If W € Wg ~ Ng(T)/Cs(T), take a representative
w € Ng(T) and define an action

Q:NG(T)XC—’C

by
w-{H, U} ={H"=wHw™,wU}.

We shall now check that we obtain in this way a new special pair
and that a is an action. Let n € Ng(T), we shall sce that n.{H,U} is a
special pair. .

(1) ¥f H centralizes Y € g, Y semisimple, then JI" centralizes Ad n(})
which is again semisimple:

Ad(ngn™')Ad n (Y) = Ad n Ad h(Y) — Ad n(Y).

Observe that if U =< H -z >, (the linear span of H - z), then nU =<
H™ -nz >,

(2) We need to show that if A centralizes l¢ys, then A" central-
izes { nys. Observe that since n € Ng(T), n™'Te,ssn = Tees, and so
Lenrs = Ad n(l.,,). Hence, if Y € {,,,, then ¥ must be equal to
Ad n(X) for some X in ¢, and so:

Ad(nhn™'}(Y') = Ad(nhn"")Ad n(X) = Ad n Ad h(z) = Ad n(X).
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Vice versa, in an analogous way we can show that if an element
centralizes ¢ ., then it is the conjugate of an clement that centralizes
-t-<r>'

(3) If & is the Lie algebra of H", let s € k,,, be a semisimple
element. We shall show that s is in the center of k. Since Ad n(h) = hk,
consider Ad n~(s) € h,... By the hypothesis, Ad n=!(s) € Z(k) and so
s = Ad n Ad n~!(s) € Z(h).

It is easy to verify that « is an action.

Finally, notice that in this action Cg(T') acts trivially hence a induces
an action @ of Wg on C. Indeed: recall that in the case when G is
reductive and T a maximal torus, we have Cg(T) = T. Therefore, since
T CH,HT = H, and tU = U since U is T-stable.

DEFINITION 1.6. We shall denote by H the normalizer of the pair
{H,U}, that is

H={n€eG:nHn" = H,aU = U}.

ProposiTion 1.7. Let {H,U} be a fized special pair of G. Let O
be the set of semifree orbits. Then H acts on O as follows: if Hz C U is
a semifree orbit, p € H, then Hpz is still a semifice orbit in U.

ProoF. To see this, it is enough to show that the semisimple el-
ements of k. lie in the center of k, but this is obvious if we think
that Ad p(he.s) = Repess that the center is mapped into itself by Ad p
and that, by hypothesis, the semisimple elements of A, are in the
center. 1]

We thus arrive at the fundamental theorem of the classification meth-
od of [5].

THEOREM 1.8. Let G C GL(V) be a reductive linear algcbraic
group. Take a pair {H,,U,} in each class of Wg-cquivalent special pairs;
let H, be the normalizer of the pair {H,,U,} in G. Take an orbit in each
class of H,-equivalence of semifree orbits of H, in U, and an element in
each such orbit. Let M, be the set of the clements thus chosen.

Then the set M = |J, M, is a minimal complcte system of represen-
tatives of the orbits of the linear group G.
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Proor. It is clear that M is a complete system of representatives
because of Proposition 1.3.

We shall show that M is minimal. Suppose z, = gz,, for ¢ € G.
Notice that we may assume that

(Ad g)t<2]> = t—(rz)'

Indeed, if
(Ad g-l)-t-<82> = ﬂ(s;) # £(31>

then .  is 2 maximal torus and so it is conjugate to lee,> iee there
exists a g; € G such that

(Ad 91)£<:1> = L’<=,>
hence
(Ad 90 )-t<::1> = l(zz)'

From this observation and from the property (2) of the special pairs, we
obtain

H{ = ]{2.
Since g~!'Tg is a maximal torus in J/f,, there must exist A, € H such
that hyg~'Tgh7! = T, hence ghi' € Ng(T) and so g € Ng(T) - H,. But
then {/,,U,} and {H3, U} are Wg-equivalent, indeed: z» = gz,, U =<
Hy- -z, >, Uy =< Hy- 22 > imply o{H,,U,} = {II{,9U,} = {Ha, U},
where g € Ng(T)H,, i.e. g = nh,. Thercfore
Hy =glhg™' = (nh))H\(RT ™Y = nll 2!
and analogously
gUy =< Hf{ - gz, >=< H} -9z, > .

Now a typical element of < H} - gz, > is of the form

Y ap - nh®n7l e nhyz = Y ounh®hzy = 0 ah®hyz,
k k ¥
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for some scalars a;, and so
< H? - gz, >= nl,.

Hence the special pairs in consideration are equivalent and we may iden-
tify them.

Next, we have to see that z, and z; give rise to two equivalent
semifree orbits under the action of H,. This is true since

Ad g(‘-<:1>) = L<:1>

implies g € Ng(H,), b_y hypothesis gz, = z, is semifrce and this suffices
to conclude that g € H, and that the semifree orbits are equivalent. 0O

2 — Weight System of special pairs

Let G be a reductive, connected, linear algebraic group and A the
root system of its Lie algebra g with respect to a maximal torus ¢. Let II
be a set of simple roots and A the weight system of the g-module V.

We shall indicate by g_ and V) respectively the root space corre-
sponding to a € A and the weight space corresponding to A € A.

Let {H,U} be a special pair of the group G. Then JI, being a com-
plete regular subgroup of G, is reductive. Let A be the system of roots
of i with respect to {. A system of simple roots Il; C Aq is Wg-equivalent
to a subsystem of II. Consider the subspace

E:{zeVs.t.gL_o:r=0,aEH0}.

P is a {-invariant subspace of V', and it consists of minimal weight vectors
of V. Let II; be the sct of weight of { on P.

DEeFINITION 2.1. The pair of subsets {Tlo, 1}, where Ny C A, and
M, C A, constructed in the previous section for a special pair {H,U} is
called the weight system of that special pair,
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Our aim is now to study the properties of such weight systems so as
to characterize the weight systems obtainable from special pairs.
Let’s observe that, if we denote by II{ the sct of diffcrences of all

the elements of II;, then the property (2) of the Definition 1.4 may be
rewritlen as

(A) <ML UIT] > NA C A,.

In fact, since H# = Ceg(l,,,), we have that a(t) = 0, for all ¢ € L .,
a € [Tp; furthermore, since L¢z> coincides with the scalar transformations
on U, we have that {.., acts as zero on Uy_y, il A\, N € I;:

)~ (A = X)()() = (A() ~ N(D))u = 0

being A(t) = constant for all A € ;. On the other hand, by definition,
the only roots @ € A such that oft) = 0, for all t € ¢, are those of H,
i.e. A,

Other necessary properties of the weight systems are:
(B) The weight system of 2 on P is II,;
(C) g_ LB =0, forall o€l
(D) The H-module < HP. > has a semifree orbit.

We claim that properties (A)-(D) are sufficient to reconstruct the
special pairs.

H is the complete, regular subgroup that has Il, as single roots. Also,
U =< HP >: given a special pair {H,U}, U is a completely reducible

H-module, say
U=U,
X

where U, is an irreducible H-module. Then U, contains the minimal
vector vy, hence U, N P # (0), but then this intersection generates U,,
because this is irreducible. Repeating the argument for each x, we get
<HE>=U.

REMARK 2.2 In the case when all the weights of the G-module V are
of multiplicity 1, given a special pair {H U}, U =@V, Ain a subset I

A . .
of A, P is just the direct sum of the vy where A is 2 minimal weight in T.
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So, with the additional hypothesis that the weights have multiplicity
1, we have

ProrosiTion 2.3. Let G C GL(V) be a reductive linear alge-
braic group for which all weights have multiplicily one. Then the map
that assigns to every special pair ils system of weighls induces a bijec-
tion between the set of Wg-equivalent classes of special pairs and the set
of Wg-equivalent classes of pairs of subsets {IIy,I1,},1I, C I,1I; C A,
which satisfy the following properties:

(i) {ILUII{}NA C A,

(i) —adAifrell;,, a€ll,

(iii) The H-module U has a semifree orbit, where Il is a complele regular
subgroup of G that has Il, as simple root system and U =< HV,,\ €
H1 >. '

REMARK Observe that (i) and (ii) imply
(iv) M= A g Aif A M €104

Indeed, if A;, Az € 7; and A —A; € A then (i) implies that A\ -\; = &
where a € Ag, but this contradicts (ii).

3 - f-groups

We shall introduce an important class of lincar groups. Let g be a
simple Lie algebra over C. Let @ be an automorphism of g of period
m € N. 0 is semisimple and induces on g a Z,-gradation

Let G be a connected group that has g as its Lie algebra and G,
the connected subgroup corresponding to the subalgcbra g,- From the
property [g,, g,] C g, it follows that the adjoint representation of G
induces, by restriction, a linear representation p; of G, on g, for each
k € Z,. In particular, we shall have p;. We shall say that the linear
group p1(Go) is associated to the graded Lie algebra g.

DeriNiTioN 3.1.  The linear groups oblained in this fashion are
callcd 8-groups.
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REMARK 3.2 Suppose that 8 is induced from an automorphism of G
which we denote again by 6 and consider

G'={geG:0g=g}.

If G is a semisimple simply connected group, then G’ is connected
and coincides with Gj.

REMARK 3.3 Let z € g, and consider its Jordan decomposition as
an element of g, z = z, + 2,. It is not difficult to sce that z,,z, lie in
g,- Because of this fact, we can reduce the classification of orbits to the
classifcation of the nilpotent orbits. We shall return to this fact later.

DEFINITION 3.4. A special pair {H,U} is said to be of conic type,
if the Lie algebra of H contains a nonzero scalar trunsformation of U.

ProrosITION 3.5. Let G be a 8-group. Then

(a) The map that assigns to each special pair of conic type its weight
system induces a bijection between the Wg-equivalence classes of special
pairs of conic lype and the Wg-equivalence classes of pairs salisfying the
conditions (i)-(iv) of Proposition 2.3 and such that the set Il UII, consists
of linearly independent vectors.

(b) If {H,U} is a special pair of conic type, then all the semifree
elements of U form an open subset Q C U.

(¢) Taking a complele system of nonequivalen! special pairs of conic
type {H,,U,}, and taking an element in the open orbit of each group H,
acting on U,, we obtain a minimal complete system of representatives of
nilpotent orbits of G.

Proor. Let {H, U} be a special pair of conic type of G. Up to Wg-
equivalence, we may assume that the simple roots Ilg of & is in I. By
definition, there exists an element ¢t € { that acts as the identity on U
and whose centralizer is h. Let {ITp,Il,} be the weight system of {H,U}.
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(a) Since {H,U} is conic, II; does not contain the zero weight (because
then any scalar transformation is zero). But then all the weight in II,
have multiplicity 1 (see [8]). Hence the pair {H, U} can be reconstructed
by the weight system.

Clearly the pair {Il,,II,} satisfies (i) and (ii) and hence (iv). From
(ii) and (iv) it follows that (A\,a@) < 0if A € I, € Mg, and (A,u) < 0
if A,z € M, (see [9]). Also, we know that {(a,8) < 0 if a,8 € Tl,.
Therefore, Ilo U Iy is a set of vectors in the Euclidean space ¢* with
pairwise nonpositive inner product, hence if they are dependent there

must exist a linear combination with nonnegative cocflicients equal to
zero,

(3.1) Za;a,- + Eb,)t, = 0,
i

a; € nﬂ’ ’\j € Hh ai!bj 2 0.
Applying both sides of this equality to ¢ we obtain:

Z:a,-ai(t) + Z bJAJ(t) =0

but a;(t) = 0 for all i because h centralizes t and X;(t) = 1 by the choice
of t and so 3 ;b; = 0, therefore, all b; are zero. Hence (3.1) can be

rewritten as
Ed,‘&; =10,

Since IT, is a set of linearly independent vectors, all the a; are zero. Hence
Ilo U, is a linearly independent set of vectors.
(b) The linear subgroup H of G is observable since G is. (See [15], [5),

[8]). (We recall that if G is a reductive group acting on a vector space V,
the morphism

ClV)* —clv]

induces a morphism of affine algebraic varieties
r:V—=V/G

where V/G is the quotient variety. G is said to be observable if each fiber
of 7 contains only a finite number of orbits).
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Since all the elements of U are nilpotent with respect to H, then
H has only a finite number of orbits, in particular it has a dense open

orbit Q, CU (ifU = 0 U;, then U = 0 U, and, since U is irreducible,
=1

. i=1
U; = U for some i). Obviously, ; has maximal dimension among the
orbits, which must be equal to the dimension of U.

Let z € U C g,, a semifree element of the H-module U. Set A =

@ A,, where
€2

A, ={z € gs.t. [t,z] = sz}.

A is a reductive subalgebra of the Lie algebra g. For this, it is encugh
to see that the restriction to A of the Killing form K is nondegenerate;
this is true, because ¢ induces on g a decomposition g = ®g,.g is simple
and so I is nondegenerate on g. On the other hand, if z € I YE G,
we have

(it 2l y) = —(=,[t,9])
and so
Az,y) = ~n(z,y)
hence
A+ p)(z,y) =0.

If X # —pu, then (z,y) = 0. But then if there is the equivalence A there
must exist the eigenvalue ~X and the restriction of K to 9,®g ,is
non-degenerate. Also, Ag =4, A, D U.

The element z is nilpotent and is contained in the reductive algebra
A, hence, by the Morozov-Jacobson theorem (see [1], [8]), we may view
z inside a simple three-dimensional Lie algebra < z,h,y >, where A is
a semisimple element belonging to A, = A which normalizes z. Since 2z
is semifree, h is in the center of k (see Def. 1.2). Ilence the Lie algebra
h, = centralizer of z, centralizes the pair (kh,z) and so k., coincides with
the centralizer in A of the reductive subalgebra < z,h,y >. Therefore,
b, is reductive.

On the other hand, z being semifree implies that k. is nilpotent: if
z is a semisimple element of A, C h.,,, we have z € Z(h) andso 2 =0
on U =< H -z >. This means that b, has no nontrivial semisimple
elements and so h, is nilpotent. Hence h, is zero on U. Therefore the
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orbit of z has maximal dimension, and since H has an open orbit {,, we
get z € Q.

(c) Thanks to Theorem 1.8, it is enough to show that the conic pairs, up to
Wgs-equivalence, are in a bijective correspondence with nilpotent orbits;
for this it is sufficient to show that if z € V is a nilpotent element, then
it is, up to conjugation, a semifree element of a suitable conic pair. This
is true since there are only a finite number of nilpotent orbits, therefore
C*z is contained in the orbit of z; and so there exists g € G such that
gz = az, a € C°, but then the semisimple part g, of g sends z in a
nonzero scalar multiple. Take the torus § generated by g, which, up to
conjugation, we may think contained in T. Let I be the centralizer in
G of the Lie algebra of §, and U the subspace < /fz >. Then {H,U} is
the desired conic pair. 0

4 — A first example of §-group
Consider the simple Lie algebra g = s{(n,C), and the matrix

(e 0
P= ( 0 —ln—k)
for a fixed integer k, 1 < k < n — 1, where 1, is the identity on C*. We
note that P = P!,
Consider the automorphism
6 :sf(n,C) — sf(n,C),
A PAP™!

0 is clearly an automorphism and has finite order
9 =1,

Hence @ is semisimple, and it decomposes the Lie algebra sf(n,C) as
follows:

£=£o®£1'

where, using block matrices,

2={(0 a)eq)
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and

w9 ed

This is a Z,-gradation of sf(n, C), and 4, is a subalgebra of g.

Consider the group Gy obtained by exponentialing the matrices of
g, It is well-known that the connected component of the identity of a
group G that has L as Lie algebra is generated by exp X, with X € L,

cf. [3). Then
10 a 0\, 1/a 0\* 1/a 0)\° _
0 1)*(0 d)+§(0 d)*ﬁ(o d) teee =
10)
01

a 0
exp(o d)
a 0\ 1/a% 0 1/a® O
+(0 d)+§(o d2)+5‘!(0 d3)+"'=

I
—

Set
_[exp a 0
z= ( 0 exp d) )
Recalling that
det(exp a) = exp(tr a)
we have

det z = det(exp a)-det(exp d) = exp(tra)-exp(trb)

= exp(tra + trb) = exp(0) = 1.

Gy = {(; 2) tdetzdety = 1}.

The representation that we want to study is the action of Gy on g,
by conjugation

Gngl—*gl

(Z,2) — Zz2Z7.
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We need to make some preliminary observations,
We may think of g, as pairs of homomorphisms; more precisely if

0 b
(¢ o)es
where b is a k X (n — k) block and ¢ is a (n — k) x k block, we may view
this matrix as the pair of linear maps
)
D —— W
where dimV =n—k, dimW = k.
Also, since the scalar matrices CI acts trivially, the G-orbits of g,
are the same as the G x C orbits of g, .
We may consider the homomorphism

p:GXC — GL XGLy_;

which maps the pair (g, a) into (aX, aY’) where g = (}g 3) =XeY.
Then
Kero = {(ali ® al,y, o t);a” =1},

and ¢ is surjective, because if (Z,W) € GLy X GLp_, w = det W #£ 0,
z = det Z # 0, we may consider 2w and one of its n-th roots a. Then the
pair (X,Y) where X = (a7'1;)Z,Y = (a'1,_x)¥ maps onto (Z,W).

H
ence GxC
Ker ¢

~GLy X GLy_s-

We can then reduce our problem to the study of the action of GL(k, C) X
GL(n — k,C) on the space hom(V"~%, W*) x hom(IV*,V"~*), given as
follows

(5 %) o= )G o) ¥h)=
=(Y130x-1 XA:-I)’

((X,Y),(A,B))— (XAY-LYBX™!).

or
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REMARK The above can be restated as the problem of studying pairs
of linear maps between two fixed vector spaces V, W up to change of bases
inVand W.

REMARK In general, if # : g — g is an automorphism of order m of
a semisimple Lie algebra g then 4 induces a Z,-gradation of g

9=9,94,0--04,_,.

Observe that if = € g, then its semisimple and nilpotent parts z, and
z, lie again in g, Indeed, if

T=2z,+Z,
and if ¢ is the fixed root of unity, then
bz = (z = (z, + (=,

gives the Jordan decomposition of 8z so by the uniqueness we must have

bz, = (z,

bz, = (z,.
The decomposition

r=2,4+z,

can then be viewed as the Jordan decomposition in our example of 6-
group.

Thanks to this and to the fact that we have a Cartan subspace and a
finite Weyl group (see [15], [16]), we can reduce ourselves to the problem
of classifying niipotent orbits. Indeed, let z = z, + 2, and ¥ = y, + yn
and suppose gz = y. Then gz, + gz, = y, + y. and, by the uniqueness
of the decomposition, gz, = y,,9%Z, = y,. Assuming to have classified
the semisimple elements, we take two elements X and ¥ with the same
semisimple part

X=X3+Xn
Y=X,+Y,
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and in the same G-orbit, then

Xl = QX:
Y, =gX,.

Hence we see that it is sufficient to classify the nilpotent orbits with
respect to the centralizer of a semisimple element.

For the classification of the semisimple elements, we shall recall here
some well-known facts.

If z, is semisimple, then it is in some maximal torus and two elements
in a maximal torus are conjugate with respect to the adjoint group if and
only if they are conjugate via the Weyl group. Indeed: if they are conju-
gate by the Weyl group W, they are obviously conjugate by G because,

for example, W = Ng(T) / Cs(T). Vice versa, if z,y € t are conjugate by
G, then f(z)= f(y) for all f € P(g)¢ = the set of polynomial functions
on g invariant under G, but

P(g)® ~ P()*

(see [6], [3]), hence f(z) = f(y) for all f € P(t); but W is a finite
group hence all the orbits are closed and so the invariants parameterize
the orbits; therefore z and y are W-equivalent.

Back to our example. Observe that the elements of g, can be thought
of as endomorphism

X: VoW —VoeW
with the property X = —~PXP = —0(z), i.e.

PX =-XP.
If X is an eigenvalue of z, then —A is an eigenvalue as well, because
X(v +w) = Mo, + wy)
§0

PXP(v,—w) = PX(vi +twy) = PA(vy + wy) = Moy — wy)
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i.e.
X (v —w)) = =Av, —wy).

Considering the two equalities

X(‘D| + w;) = A(vl + wl),
X (v - wy) = ~\(v, — wy),

adding and subtracting, we obtain

X”l = )\wl
le = Avl.

Setting U = V @ W, and indicating with U, the eigenspace corre-
sponding to A, we have

(N Uo=(Vnl)s(Wnl,)
Q) UseU=(UhdU\)NV)® (U U_)NW).
Set

(U,\ (7] U._,\) NV = Wy,
(Ur ® U)W = Wiy,

Let X be semisimple. Then U is the direct sum of the spaces Ur@®U_»,
and the centralizer Cx of X in GL(U) is the direct product

[IGL(wy).

Analogously to the classical theory of the Jordan canonical form, we can
limit our consideration to the block relative to the cigenvalues £, and,
as a first case, let us assume A # 0. Let us consider the restriction of X
to U, & U..,, which we may write as

A

Vir —— Wi
B

Choose a basis of U, ®U..., of eigenvectors of X: {v, +wy,--+,v,+w,}
in U, and {v, — wy,---,v, — w,} in U_5. Then it is casy to see that
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{v1,-++,v,} is a basis of Vi, and {w,---,w,} is a basis of Wy,. With
this choice of bases, we have Av; = dw; and Bw; = Av; so that

AB=)?
BA = )%,
and the matrix of X can be written as
( 0 AI )
Al 0.
The problem we are reduced to study is that of the nilpotent orbits
of the linear maps between the spaces Vi), Wi, under the action of the

centralizer Cx of X = (A, B). For this, recall that (Z,Y) € Cx if and
only if Z € GL(V4,),Y € GL(Wy,) and

YA=AZ
ZB = BY.
So
Cx={(Z,Y)st. Y = AZA'Y}),
hence
Cx ~GL(s,C),
where

s =dim V*A = dim W:b\-

Let us take a nilpotent pair (A,, B,) which commutes with the semi-
simple pair (4, B). In the basis chosen above, (A, B) = (Al,, AL,) hence
we must have A, = B, as matrices with respect to the chosen basis.
Also, if (2,Y) € Cx, Z = Y as matrices. Hence our action reduces to
the action of GL(s,C) by conjugation on the set of nilpotent matrices
and we know that such a problem is solved by the theory of the Jordan
canonical form, i.e. we know that each nilpotent orbit is represented by
a partition of the integer s, that is to say a sequence of integers

(ph Pa: spl))
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whose sum is s and such that p, > p, > --- > p,. The parts p; will be
equal to the dimension of the i-th block in the Jordan canonical form.

Let us consider now the case of the eigenvalue A = 0. We shall classify
the nilpotent pairs

A

V—/—/WwW

B

under the action of the group GL(V) x GL(W). Recalling the isomor-
phism

hom(V, W)= V' @W

we can write
hom(V,W) x hom(W, V)~ (V' @ W) (W* @ V).
Our aim is to compute the weights of the module
g=2(Vew)e(W oV).

Let {v),---,v,} be the basis of V and {v',--+,v"} a dual basis of
V*. Analogously, let {w,,-+,w,} be a basis of W and {w!,---,w™} its
dual. Then

{v‘®wj,i= 1,---’n;j= 1,.-.m}
and
{woui=1 =1, m}

are basis of V* @ W and W* ® V respectively.
Take the torus T C G,T = D, x D,,, consisting of diagonal (n +
m) X (n + m) matrices with nonzero determinant. For 7 € T', we have

(v ® w;) = Bie; {(v' @ wy)
(v ® )= Oliﬁ,-'l(wj ® v;)

and so the weights are

A= {ﬁ) _a"’a"-"ﬁi;i= 1!"'1n$j= ly"'am}‘
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In this case, the Weyl group W is isomorphic to the direct product
of the two symmetric groups S, and S,, which act as permutations of the
a’s and the B's. Recall that the root system of g is

A = {ay - aj,i # 5, fn — P, h # k).

Proposition 3.5 allows us to obtain the desired classification by taking
the classes of W-equivalence of the pairs of subsets {IIo,II;} of {II,A}
satislying properties (i)-(iii) of Proposition 2.3, and such that ITo U IT; is
a linearly independent sect.

We can represent IIg U I, with a Dynkin diagram as is done in the
classification theory of semisimple Lie algebras. Comparing such dia-
grams with the list of their classifications contained in {1], [2], (see also
(17], [4]) we can sce that in the case in which g is of type Ay, as in the
case we are considering, Iy =¢ andso H =T and P=U.

So we can state the following.

ProrosiTION 4.1. We can obtain a complele classification of the
nilpotent orbits of our 8-group as follows: make a list of the subsets I, C
A up to W-equivalence such that
[1] the elements of T, are linearly independent;

[2] the difference of two elements in I, is not an element of A.

In this way each set II, determines a subspace U C V,

U=V

x€m
If z € V is a veclor such that  has a nonzero component in each V,,

then z has a dense orbil in U and so this is a semifrce orbit. The set of
z thus oblained, is the required representative sysicm.

We shall now sketch the explicit computation of such a set.
If A’ is the set of those weights in A of the form a — g, then

A=A U(-A).
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Let us write the weight of A’ in a matrix form

o~p a—Pf ... a.—p
ar—p2 az—fy ... a,—pa
ay—fs ar—fs ... a,—ps

al_ﬂm a2_ﬂm (R an_ﬂm'

Condition (2) of Proposition 4.1 is translated by saying that we must
not choose two weights in the same row or column, and, because of (1),
we must not choose twice the same weight. Also, because of the action
of the Weyl group which permutes the a’s among themselves and the A’s
among themselves, we can further restrict the number of choices. Arguing
this way, we can see that cvery possible set II; is obtained as union of
disjoint parts of the following type

I = {a, - B1,81 ~ az, 00 — Bay -+, g — B, Br — arya },
H(,z) ={fy - a1,01 — B3, B2~ @2, , B, ~ a,, a, — B 11 },
P = {ay - fuofy - 0z, - Bi),
I = (8, ~ avse ~ oo o — ).

To such weight systems correspond the following semifrece elements:

M =v'Q@ui+uw' @uat -+ 1" Quy + w* @ vy,
D =w'@o +v'Qus+ @1, + v @ w4,
P =v'Quw + -+ ' Qwy,

=0 Qv+t B,

ProposiTiON 4.2. IfV and W are finite dimensional complez
veclor spaces, then every nilpotent pair of endomorphisms (A, B)

A
V——w
B
is equivalent under the action of G = GL(V) x GL(W) to a direct sum

of pairs of type (1), (3, 2(3), z(),



{23} The Jordan Canonical Form in some #-groups 799

REMARK These four possibilities are indicated in [11] by means of
“ab-diagrams” as follows:

V) = abab---aba
=) = paba - bab
z® = gbab---ab
) = baba - - - ba

and in [13] with respectively,
M0 =[CH — C")

Mn,n-H = [C" : C"+1]
"
M, =[C" ——= C"]
in(0)
Jn(0)

M,l = [C" ——cC"j
id

where id = 1,

0 1
Jﬂ(o) = 1 *
0
01 1
.= 0 1 . =
n-= H 1y 9 & ]
0 1 0 0
5 ~ The orthosimplectic case
0 LY p_ (1t O _ o
Let E= (-I, 0 ), P= ( 0 E) and consider again g=s¢(n,C),

with n = s + k. Consider the automorphism

b:9—g
A —P A'PL,
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Notice that §24 = P2AP? and P? = ((1) _(_)1

automorphism we studied in the previous section.
So 6* = 1 and g decomposes into the sum of four cigenspaces

), so that 82 is the

92={(; (b)) Eg_s.t.a:-a‘,b=_Eth-1}’
0 b

g;={(iEb, 0)},

(¢ Yenrsaese s

L= {(—ig‘,‘b‘ g)}

Now we must observe that g, can be interpreted as follows: Let
(W,<,>) be 2 vector space equipped with a symplectic form and (V(,))
a vector space with an orthogonal form. Given a linear map

gz

b:W—V
we can define its adjoint b* by
(bw,v) =< w,b*v >,
b :v—w.
If the'symplectic form has matrix —F in some basis, we can write
(bw)'v = w'b'v = W' E"'Eb'v =< w, Eb'v > .

So
b= EW.

2={(s o)}

Hence we have
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and the map
g1 ~ hom(W, V) = hom(W, V) x hom(V, W)
br—s (b,0°).

Similarly to what we saw in the previous case, the automorphism &
is the differential of the automorphism

8: §L(n,C)— SL(n,C)
A P(AT)P.

Then 0
G=G"'={ (; y) ,X orthogonal,Y symplectic}.
Hence our problem is to classify the pairs
A.
V—/Ww
4
where V is orthogonal, W symplectic under the action of SO(V')x Sp(W).
Once again we can reduce to classify the nilpotent orbits.
REMARK It is easy to see that

ALV YV

and
A'A:W—W
are antisymmetric endomorphisms i.e.
(AA*) = —AA°
(AA) = —-A"A.
REMARK If U is a vector space with a form (,) which may be orthog-

onal or symplectic and Y a semisimple antisymmetric endomorphism,
then U = @U*; and, if 4 # 0, U¥ and U~# are dually paired.
a
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If (X,X") is a secmisimple pair, then XX* is a semisimple elemerft
of End V and X*X is a semisimple element of End W. By the analysis
done in the previous section, we know that we may reduce to the case

X3a
Viy ——— Wy
X4

when A # 0, and we know that XX* and X*X both have cigenvalue A%
In the notation of the previous observation, we have

Via=V¥  and Wiy = WY,

Notice that X3, is not the adjoint of X,, since the form is degener-

ate on Vy,, but if we consider V** i.e. Viy @ Viix and Wiy @ Wiix then
X;‘\ %) X;:i.\ is the adjoint of X*,\ 57] Xi,',\.
To simplify the notation, let us set

V=V ® Vi, W = Wy, @ Wy,
Xia® X, = Ay @ Aix = A,
B = B\® Biy = X1 ® Xiix.

Let {v),--+,v,} be a basis of V, and {w,,---,w,,} be a ba.sis of
Wi, such that Ay; = Aw;, Bw; = Av,. Then in these bases the matrix of

AA@B,\ is
0 )\I)
Al 0)°

Analogously, we can choose dual bases so that A @ B restricted to
V:HA @ “’i:i)« is

(1) (igl igf) '

In these bases the matrix of the symplectic form is given by

(4.2) (3 '(;’ ) .
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Indeed:

1 1
< w,.,wi > =L x Av,.,w; >= (X v,.,A'w;

1 1 . :
= (X v,,,—BwL) = (X vln—'AvL) = _16"1

where primes denote dual bases.
Normalizing Wy = iw;, we can assume that the matrix of the sym-

plectic form is
( - )
10

0 i
(-—iAI o )
while (4.2) stays the same.
Let (X,Y) € GL(V) x GL(W) be an element of the centralizer of
(A, B), then X centralizes BA and Y centralizes AD.
In the chosen bases we have

(o \

Az

but then (4.1) changes into

AB

]
|
>
'Y

\ mLy

So il g € GL(W) centralizes AB then

(i

(with block notations). If g is a symplectic matrix then

o= (3 (09,),).
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Analogously, the centralizer of BA in SO(V) is

= (g (ﬂf’l),)}.

Finally, if (g,%) is to centralize (A, B), then an easy calculation shows
that o = #. So the desired centralizer is isomorphic to GL(n, C) where
n = dim Vir = dim Wy, = dim Vi, = dim Wy, Next, we want to
classify under the action of this group, the nilpotent orbits of elements
that commute with the fixed semisimple pair (A,,4;). Such nilpotent
elements must be of the form

0 A0
0 -A!
A 0
0 -—A! 0

which we may think of as A, € gf(n,C). Hence we are back to the
classical case of the Jordan canonical form.

Let us examine now the case A = 0.

We know that the restriction of the forms of V and W to Vo and Ws
respectively give rise to new orthogonal and symplectic spaces.

We want to classify nilpotent orbits of homomorphisms (X, X*) €
hom(V, W)x hom(W, V) under the action of SO(V)x Sp(W) = G. Recall
that there is a canonical isomorphism

hom(V, W)~V @W~V@W,

where the last isomorphism is due to the existence of the orthogonal form
onV.

Assume dimV = 2k, k € N. We know that dim W must be even,
say dim W = 2h. Fix bases {v1,.., U, v},..,0}} and {wy, .., wn, W},.., w}}
of V and W respectively such that

(vivvj) = 61'}1

< w,-,w;- > = Jij-
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Take T to be the direct sum of the tori of SO(V) and Sp(V):

(ar )
Ty = o y o =a},
k ot
( By \
h B
T, = { o et = ).
Br
\ i

Then on an element of the basis of V @ W we have

(a, ﬂ) - ® w,- = a,-ﬂ,-(v,- ® w,-)
(e,8) v} ® w; = a7 B;(v; @ w;)
(o, ) - v: @ w} = aif5 (v @ W)
(2,8) - v; ® v} = (i)' (v} ® w}).
So the set of weights is
A = {(ai + B;), £(es - §;)}.

The Weyl group is given by the direct product of the Weyl group of
SO(V) and that of Sp(W), namely,

WO o~ (z:)k-1 X Sg,
WSp o~ (z;)h X SA.
The group W is generated by the transformation ¢;;,0;; defined as fol-
lows
v — v} v Y
e.-,-:{v,--——tvﬁ a;j:{ijv;

id elsewhere id elsewhere
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while Wy, is generated by 7;; defined analogously to o;; and by

v — U]
Lk id elsewhere.

Notice that if dimV is odd, we have the case of odd orthogonal
space and the Weyl group is analogous to the one in the symplectic case.
Finally, we want to apply Proposition 2.3. We find out that IT, = ¢ and
8o P=U (see [1], [2], [17], [4].)

ProrosiTION 5.1.  We list the subsets I, of A, up o W-equivalence,
such that
(1] T, is a linearly independent set,
[2] the difference of two elements of I, is not in A.

Each such set II; determines a subspace U C V,

U= P V.

X€I,

Let z € U be a vector with nonzero component in each weight space of U.
Then z is in the semifree orbit of U. The set of = thus oblained, is the
desired set of representations of orthosymplectic orbits.

An algorithm for obtaining this list is sketched here. Let us represent
each element of A with a dot and let us connect two dots if the corre-
sponding weights have nonzero inner product. We obtain a graph. II;
will be a disjoint union of connected subgraphs. Let us be concerned only
with the connected parts.

If ﬂ(l” is a connected component of the graph and it satisfies (1) and
(2) of Proposition 5.1, then the only possibilities for the dimensions of
dim W and dim V are so that

|dimV - dim W| < 2.

The claim now is that each of the five possibilities exists, and gives a
unique orbit. For example, if we start with a; + 8, we obtain the string

Hgl) — {a1+ﬂh—(ﬁ1+az), a2+ P2 —(P2+as),- -+, @+ P, _(ﬂn+an+!)}



{31] The Jordan Canenical Form in some #-groups 807

and any other is W-equivalent to this.

REMARK In the notation of [11] the indecomposables with respect to
O(V) x Sp(W) are

(1) abab-.-ab
bab---ba
(2) aba - --aba
(3) aba---aba
aba-.-aba
(4) bab- - bab
(5) " bab---bab
bab---bab

The final result can then be stated as follows:

THEOREM 5.2. IfV is an orthogonal space, W a symplectic space,
every nilpolent pair of homomorphisms is equivalent under the action of
G = O(V) x §p(W) lo a direct sum of pairs of type (1)-(5). Also, a
G-orbit splits into two orbils with respect to SO(V') x Sp(W) if and only
if in every row of the ab-diagram the number of the a’s is even and there
are an even number of rows (see [11]).
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