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A Capacitability Theorem in Finitely Additive Gambling

A. MAITRA - R. PURVES - W. SUDDERTH®)

R1AsSUNTO - Una casa da giuoco T assegna a ciascuno stalo z, nello spazio discre-
to X, una collczione non vuola I'(z) di distribuzioni di probabilita finilamcnte additive
su X. Un giocatore, partendo da un cerlo stato z, sccglie in T'(z) una distribuzione oo
per il successivo stato z,. Quindi cgli sceglic in ['(z,) una distribuzione condizionale
o3(zy) per lo stalo £3, e cosi via. Egli si propone di massimizzarc la probabilité che la
successione zy,13,... appartenga ad un fissalo insieme A borcliano (o anche soltanto
sousliniano) dello spazio prodolto di una successione di copic di X. Se si dcnola con
T(A)(z) V'estremo superiore di questa probabilita al variare di tullc lc possibili scclte di
00,01,..., allora la funzione T'(-)(z) ha proprictd di regolarita analoghe a quclle di una
capacitd: in particolare, T'(A)(z), é egualc all’cstremo inferiore dci numcri della forma
I'(O)(z), con O insieme aperto conlenente A. Cié permetle di approssimarc un'ampia
classe di problemi di scommessa mcdiante i classici problemi di Dubins e Savage.

ABSTRACT ~ A gambling house T assigns to cach stale z of the discrcle space X a
noncmply collection T(z) of finilcly additive probabdility distributions on X. A playcr in
the house T siarts at some state z. The player chooses the distribution o for the nest
state zy from T(z) and then chooscs the conditional distribution ay(z1) for 3 from
T'(z1) and so on. Suppose the goal is to control the stochastic process £1,13,... so that
it will lie in a certain Borel (or even Souslin) subsct A of the product space XxXx...
and that T(A)(z) is the supremum over all choices of @0,01,... of the probability that
the player attains this goal. Then the sel function T(-)(z) has regularity properties like
those of a capacity and, in particular, T(A)(z) = inf{T(O)(z): O 1s open and O 2 A).
Conscquently, quile general gambling problems can dc approrimated by the classical
problems of Dubins and Savage.
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1 - Introduction

Suppose X is a nonempty set of possible states for a process and
that to each z € X is associated a nonempty collection I'(z) of finitely
additive probability measures defined on all subsets of X'. Then, starting
from any z, one can construct a random sequence z,, z3, ..., by selecting
g, € T'(z) to be distribution of z,, then selecting 0,(z,) € I'(z,) to be
the conditional distribution of z; given z;,z,, and so on. The sequence
0 = {09,0,,...} is a strategy al z in the gambling house I'. As is explained
in DuBINS and SAVAGE [2, pp. 7-21], each strategy o can be regarded as
a finitely additive probability measure defined on the collection of closen
subsets of the set H = X x X x..., where X is given the discrete topology
and H the product topology. In addition, there is a natural extension of
each measure o to the sigma-field gencrated by the clopen subsets of
and even further to the collection of Souslin sets A of the form

A =UﬁB(01,...,a§)

a k=]

where the union is all over the sequences & = (ay,aa,...) of positive
integers and B(ay,...,a;) is a closed subset of H for avery a and every
k (Purves and SupoerTi {8, Theorem 5.3]). (A reader unfamiliar with
finite additivity can assume X is countable and all measurcs are countably
additive to get the gist of the result stated below).

For each z, let §(z) be the collection of strategies o available at z in
T, and, for each Souslin set A, define

(1.1) I'(A)(z) = sup{a(A): o € S(z)}.

Thus ['(A)(z) is the optimal reward for a player starting at = who seeks
to control the process z,,z,,... so that it will lie in A.
Here is our main result.

THEOREM 1.1. For every z € X and every Souslin set A C H,

(1.2) T'(A)(z) = inf{I'(O)(z): O is open O 2 A}.
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The fact that, for every z and A,
I'(A)(z) = sup{T(C)(z): C is closed, C C A}

is immediate from the analogous fact about a single strategy o
(cf. Purves and SuppERTH [8, Theorem 5.3)).

The proof of Theorem 1.1. is based on the study of another operator
I'* which is defined, for z € X and E C H,by

(1.3) I*(E)z) = inf{T(O)(z): O open, O 2 E}.

The operator I'*(-)(z) is a capacity in certain special case such as when
X is countable and all measures under consideration are countably addi-
tive (MAITRA, PuRvEs, and SUDDERTH [4, Lemma 3.1]). In such cases,
Theorem 1.1 follows from the capacitability theorem of CHOQUET [1]. In
general, I'*(-)(z) fails to be a capacity although it will be shown to have
certain properties akin to those of a capacity. For example, the usual
“going up” property fails but there is an analogous result, Proposition
7.1, in which the natural numbers are replaced by the collection of stop
rules.

Here is how the rest of the paper is organized. The next section
introduces some terminology and notation. Section 3 shows that a certain
functional equation is satisfied by each of the operators T' and I'*. The
basic technique for proving equality (1.2) is presented in section 4 and is
used in section 5 to verify the cquality for sets A which are Gy's. The
next step is to verify it for G;,'s in section 6. Finally, alter the going up
property of section 7, the proof is given for Souslin sets in section 8. The
final section of the paper states a result for functions which is analogous
to Theorem 1.1,

We have written a paper [5) parallel to this one which treats the
same sort of regularity questions in a measurable, countably additive
setting. The results are somewhat similar but the proofs are more difficult
because of measurability problems. To overcome these problems we find it
necessary to use effective descriptive set theory. Conventional set theory
is adequate for the purposes of this paper.
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2 - Terminology and notation

Our terminology and notation is based on that of DUBINS AND SAv-
AGE [2] and, for the most part, will be the same as theirs. This section
reviews the essential definitions of [2] and introduces a few additional
items.

A slopping time is a mapping t from H to {1,2,...} U{oco} such
that, if #(h) = n < oo and A’ agrees with A in the first n coordinates,
then (k') = n. A stop rule is a stopping time which is everywhere finite.
(Stopping times were called “incomplete stop rules” in [2]).

Let X* be the set of all finite sequences of elements of X including
the empty sequence. Let p,g € X* and h € H. Then pq is the member of
X* whose terms are the terms of p followed by the terms of ¢ and ph is
the member of /f whose terms are the terms of p followed by those of A.
ITAC H,Ap = {h: ph € A} and pA = {ph: h € A}. If g is a function
defined on H, gp is the function on H defined by (gp)(h) = g(ph),h € H.
If t is a stopping time, h = (h;,h,,...) € H, and t(h) = n < oo, then
hi(h) = hn, pe(h) = pa(h) = (hy,...,h,), Ap, is the sct valued function
defined by (Ap)(h) = Ap,(h), and gp, is the function-valued function
defined by (gp.)(h) = gpi(h).

Let p = (2;,...,20) € X* and let t be a stopping time and o be a
strategy. Define t[p](h) = t(ph)-n, h € H. If t(z4,...,Zn,...) > 7, then
{[p] is again a stopping time and corresponds to the additional waiting
time given that the first n coordinates are p. Define the conditional
strategy o(p] by setting o[plo = 04(p) and o[p}n(q) = Fn+m(pq) for each
m = 1,2,... and ¢ € X™. If 0 is a strategy available at z in the house
T, then o{p] is available at z,,, the last coordinate of p. Define op,] at h
to be o[p,(h)] whenever #(h) < co.

Two strategies o and o’ agree prior to a stopping time t if oo = 0}
and whenever h € IT and t(h) > n, then a,(pa(h)) = o', (pu(h)).

Let K C H, g be a function with domain H, and let ¢ be a stop
rule. Say that K (respectively, g) is determined by time t if, whenever
h,h’ € H and t(h) = ((h'), then cither h, k' are both in K or both are
in the complement of K (respectively, g(k) = g(h’)). Those sets K which
are determined by some stop rule ¢ are precisely the clopen subsets of H
[2, Corollary 2.7.1].

It is not difficult to see that the open subsets of I/ are those sets of
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the form [t < oo] for some stopping time t. Thus (1.3) can be rewritten
as

(2.1) T*(E)(z) =inf{I]t < o](z): t a stopping time, E C [t < o]}

for ECH.

3 - Functional equations for I' and I

Each of the operators I' and I'* satisfies a functional equation which
is a version of the optimality equation of dynamic programming. These
functional equations will be used repeatedly in our proof of Theorem 1.1.

Here is the equation for T.

ProrosITiON 3.1. Let B be a Borel subset of Il and let t be a
stopping time such that B C [t < 00). Then, for every z,

(3.1) I(B)(z) = sup { / T(Bp)(h)do: o € S(z)} .

PRrOOF. Let o € S(z). By Lemma 5.1 of PURVES and SUDDERTH (9],

o(B)2)= [ olpBp)do< [ T(Bp)hodo.

t<oo (<oo

Take the supremum over ¢ in §(z) to get that the left side of (3.1) is less
than or equal to the right side.

To prove the reverse inequality, let ¢ € S(z), € > 0, and, for each
P = (21,...,24) € X°, choose a(p) € S(za) such that o(p)(Bp) >
['(Bp)(z,) — €. Now define the strategy & € S(z) to be the strategy
which agrees with o prior to t and satisfies a[p,) = o(p;) on [t < 00]. Use
[9, Lemma 5.1] again to get

MB)2)26(8)= [ olp)(Bp)ic 2 [ T(Bp)h)do -

<00 (<00

Take the supremum over o € S(z) to complete the proof. 0
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Here is an immediate corollary which corresponds to Lemma 2.2 of
(9.

COROLLARY 3.2. If B is a Borel subset of H, r is a stop rule and
z € X, then

(3.2) I(B)(z) = sup { / [(Bp,)(h,)do: o € S(:c)} :

The operator I'* satisfies the same functional equation as I' and it
holds for arbitrary sets rather than just Borel sets.

ProrosITION 3.3. Let A C H and let t be a stopping time such
that A C [t < 00]. Then, for every z,

33)  I*(A)z)=sup { / I*(Ap)(h,)do: o € S(z)} .

PRrooF. Let £ > 0. For each p = (z4,...,2,) € X°, use (2.1) to
choose a stopping time T(p) such that Ap C [F(p) < o0] and I'[T(p) < o0]
(zn) < T*(Ap)(za) + €. Define a stopping time 7 by setting

(k) = {‘(h) + 7(ph))(heayars hugyaas .-} i 2(R) < o0,
o0 if () = oo.

Notice that,if h € A, then {(h) < oo and (hynys1, heqny42,...) € Api(h) s0
that 7(p,(h))(hecaye1s heaya2...) < 00. Hence, A C [T < oc]. Notice also
that [r < oo)p(h) = [F(pi(h)) < 0] if t(h) < 00. So, for every o € S(z),

olr < 0] = / olp R)[F(pdh)) < oo)do <
100
< [ T (p)ho +e

t<oo

By (2.1), I'"(A)(z) £ T[r < o0)(z) = sup{o[r < o0): o € S(z)}. So the
proof that the left side of (3.3) is less than or equal to the right side is
complete.
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For the reverse inequality, it suffices to show that, for cach open set
O with 0 2 4,

(3.4) I'(0)(z) 2 sup { / I*(Ap)(he)do: o € S(z)} .
<o
By (3.2) and the definition of I'*, for any stop rule r,
P(0)z) = sup { [ T(Op.)(h)do: o € S(a)} 2

> sup { / [*(Ap.)(h,)do: o € S(z)} .

Replace r by the stop rule ¢ A r to see that
I(0)(z) > sup { / I*(Apy)(h)do: o € S(:)} :
<r

Now take the supremum over r and apply Lemma 5.1 of [9] to get
(3.4). 0

COROLLARY 3.4. IfACH, r is a stop rule, and z € X, then

(35)  T(A)z)=sup { / [*(Ap,)(h,)do: 0 € S(z)} .

4 — The measure of countable interesections

Call a Souslin set A squeczable at z if T*(A)(z) = T(A)(z) or, equiva-
lently, if (1.2) holds. Our basic technique for proving that . is squeezable
at z is to construct a closed set C inside A and a ¢ € §(z) such that o(C)
is almost as large as ["*(A)(z). Our main tool for these constructions is
the result of this section.

The following assumptions are nceded to state the result:
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(i) {r.} is a sequence of stop rules such that ry(h) < (k) < ... for
every he H.
(ii) {K.,} is a sequence of clopen sets such that, for every n, I(, is deter-
mined by time r,.
(iii)) 0 < Qo < 1and, forn > 1, Qn: H — [0,1] is determined by time r,.
For the last two assumptions, fix € > 0,z € X and set g,(h) = p,, (h)
forevery h€ Hand n=1,2....
(iv) o' € §(z) and
/Q.da‘ > Qo — /2.
K,

(v) Forevery h € H and n = 1,2,...,8"*!(ga(h)) € S(h,, (h)) and

(Qn 180 (h))dT™*(ga () > Qu(h) — £/27+!

Knsr4n(B)

whenever h € h H;.

i=l

ProrosITION 4.1. Let o be the stralegy which agrees with o' prior
to time ry and, for each n 2 1 and h € 1, has a conditional strategy
o[gn(h)) which agrees with 3+'(ga(h)) prior to time voyi[¢u(h)]. Then
o € S(z) and

(4.1) o (ﬁ I(,.) 2> Qo - E.

n=]

ProoF. That o € §(z) is clear from the definition of ¢. The proof
of the inequality can be reduced to Lemma 5.4 of {9). The idea of the
reduction is to replace X by the set X* of finite sequences of members
of X so that Q.(h) = Q.(p-,(h)) can be written in the form Q (k)
in the new space. (A similar reduction is carried out in detail in [3)).
Alternatively, one can casily imitate the proof in [9]. 0



[9) A Capacitability Theorem in Finitely Additive Gambling 827

5 — Squeezing G,’s
Let G',G?,... be open subsets of H and let G = NG".

ProposITION 5.1. For every z € X,I'*(G)(z) = T(G)(z).

The proof will be an application of Proposition 4.1. (The proof is
analogous to that of Theorem 3 in Purves and Sudderth [9] which is a
special case of Proposition 5.1) To start the construction of section 4, we
need a lemma.

LEMMA 5.2. Givenz € X, € > 0, a stopping lime t, and A C
[t < ], there is a stralegy 0 = T(z,6,A,t) € S(z) and a stop rule
r = 7(z,¢,A,t) such that r < { and

(5.1) [Tt )b)do > T (A)(z) - &
K

where K = [t = 1) is a clopen subsel of [t < oo] and is determined by
time r.

PRroor. By Proposition 3.3, there exists & € S(z) such that

[ T Up)hode > T(4)(=) - e/2.

(24 ]

Now use the fact that ot < o] = sup{o[t = r]: r a stop rule} from
[9, Lemma 5.1). 0

As was mentioned in section 2, for each of the open sets G*, there is
a stopping time ¢, such that G® = [t, < 00}. Also, we may assume for
the proof of Proposition 5.1 that G' 2 G? D ... and, by adding constants
if necessary, that #,(h) < t5(h) < ... for every h.

Fix z € X and ¢ > 0. We will use the lemma to define inductively
{ra}. {K0},{Qn},0" and {0"} satisfying properties (i) through (v) of
section 4,

Set Qo = I'*(G)(z). Since G C [t; < o], we can apply Lemma 5.2
loget ry = 7(z,6/2,G,1)),K, = [t, = r], and o' = 7(z,6/2,G,¢,). Set
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Q1(h) = I*(Gq(h))(h,,(h)) and notice property (iv) is an instance of
(5.1).

Suppose now that ry,...,r; K,...,Ky; 0,3%,...,5";and Qo, ...,
Q. have been defined and that K; = [t; = r;] for i = 1,...,n. To define

Tas1, first suppose h € N K.
i=l
Then

gn(h) = pra(h) = pia(h) and Gga(h) = {K': ga(h)h' € G} C
C {K": tasa[ga (R))(R') < oo}

Use Lemma 5.2 to get
Ta(ga(h)) = ?(hrn(h)’€/2n“vG‘In(h)vth[‘lu(h)]) .

Ith¢ .ﬁl K;, let 7a(gn(h)) = 1. Now define

Ta+1(h) = ra(h) + Tn(ga(h))(hr (h) + Lh,, (h)+2,...)

for every h. Set Ko41 = [tays = Tpq1) and notice that, for h € K, =
[tn = rn]y
Kn+1‘1n(h) = [t,,“[q,.(h)] = ﬁt[‘lﬂ(”))]'

Set Qns(h) = I"(Gans1(h))(hryy, (h)). Finally, define

T (gn(h)) = T (hen(h), /2", Ggu(h), tasrlga(R)) , if h € () K:
i=1
and let 3*'(g,(h)) be an arbitrary element of S(h,,(h)) il h ¢ ﬂ K.

This completes the inductive definition and, with the aid ol' Lcmma
5.2, properties (i) through (v) are easy to verify. So Proposition 4.1 gives
a strategy o € 5(z) such that

o (ﬁ I\',,) > I (G)z) -«
n=1
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Furthermore

N K= Altn=r] € (ltn <] = G

n=1 n=l n=1

so that
I(G)(z) 2 o(G) 2 T*(G)(z) - €.

This completes the proof of Proposition 5.1

6 — Squeezing G;,’s

A G, set is a countable union of countable intersections of open sets.
The object of this section is to generalize Proposition 5.1 to such sets.

ProrosITION 6.1. If E is a G, subsel of Il and z € X, then
I*(E)(z) = I(E)(2).

This result was proved in a countably additive setting in MAITRA,
Purves, and SupperTi [4). The proof here will be similar, but there
are some additional difficulties to overcome in the finitely additive case.

The proof will require a few lemmas and definitions. All of the sets
occuring in the lemmas and definitions are assumed to be Borel subsets
of H. (The results also hold for sets E which, like Borel sets, are in the
domain of every strategy and have sections Ep, p € X* with the same
property.)

DEFINITION.  Say that E is T-null (T*—null) if T(Ep)(z) = 0
(T*(Ep)(z)=0) forallz € X, p€ X".

The set functions I'*(-)(z) need not be countably subadditive, but do
have a related property.

LEMMA 6.2. IfE'E?,... are I*-null then so is their union.
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Proofr. It suffices to show I'*(UE™)(z) = 0 for a fixed z. (This is so
because E'p, E?p,... are "-null when E' E?...arc.) Let € > 0.
For each p € X* and n = 1,2,..., choose an open sct O(p,n) D

E™p and such that T'(O(p, n))(I(p)) < €/2/P! where I(p) denotes the last
element of the finite sequence p and [p| is the number of elements of p.

Define
pO(p,n) = {ph: h € O(p,n)},

and set
0" = U{pO(p,n): [p| = n}, 0 =UO".

Then O 2 UE™ because O D E™ for every n.
Now for o € 5(z) and p € X* with |p| = n,

a[p)(0"p) = o[p}(O(p,n)) < T(O(p,n))(I(p)) < €/2".
By Lemma 5.2 of {8], ¢(0) < €. Hence,
I"(VE")(z) < T(O)(z) <L €.

LEMMA 6.3. A Gy, set E which ts T-null is also T -null.

PROOF. Write E = UE" where the E" are G;’s. Every E” is I-null
because E is. By Proposition 5.1, every E"p is squeczable at every z.
Hence, every E™ is I'*-null. Now use Lemma 6.2. 0

Call a subset E of /I e~squcezable at z if I'*(E)(z) < T(E)(z) + €.

LEMMA 6.4. If D is e-squcezable at r and T*(N)(z) = 0, then
DUN is 2¢-squcezable at z.

Proor. Choose open sets O,, Oy such that 0, D D,0, D N and
I'(O,)(z) < T(D)z)+ 3¢/2,T(0,)(z) < /2.

Then
['(0, U 0x)(z) S T(0,)(z) + T(0:)(z) < T(D)(z) + 26 <
ST(DUN)z)+ 2.
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For EC H and 0 < € < 1, define A, = A,(F) by
A = {pe X": T(Ep)(I(p)) > 1 - €},

where (p) denotes the last element of p. Also define a stopping time
T = T(E) by

(k) = inf{n: pa(h) € A/}
forhe H.

LEMMA 6.5. En(r, = 00] is T-null.
PROOF. Let p=(z,,...,2,) € X*. f 1(21,...,2Zn,...) < 1, then
(Eﬂ[r, = °°])Pg lfc = °°]P= 9

and obviously

T((EN[r. = o0])p)(z) =0
for every z. If 7(z,,...,2p,...) > n, then the conditional stopping time
7.[p) is just r(Ep) and

(En[r. =o0))p = Epn|r.(Ep) = oo].

The final set is again of the form E N [r, = 0o]. So it suflicies to show
T'(EN[r. = oo])(z) = 0 for every z. Suppose not. Then there is an z and
a g € §(z) such that EN{r, = oo] has positive measure under 0. By the
finitely additive Levy zero-one law [10] there is an A € /I and a positive
integer n such that

(6.1) olpa(R))((E N [re = c0])pa(h)) > 1 - .

The set [r, = co]p,(h) must be nonempty, because it is a superset of a
set of positive measure. This implies that p;(h) ¢ A,, i = 1,...,n. (If,
for some i < n, (hy,...,h;) € A, then 7.(pa(h)h’) would be finite for all
h' € H and [r, = 00)) p,(h) would be empty.)

On the other hand, by (6.1) and the fact that o[p,(h)) € S(h,),

1 - ¢ < a[pa(R))(Epa(h)) < T(Epa(h))(ha).
So pa(h) € A,. This is a contradiction. 0
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LEMMA 6.6. EN|r, < o] is £-squeezable at cvery z.

Proof. To simplify notation, write r for r.. The open set [ < o00]
contains E N[ < 00). So it suffices to show that

I[r < o0)(z) ST(EN|[r < o])(z) +¢.

Now, on the set [r < oo}, ['(Ep,)(h,) > 1 — €. So, by Proposition 3.1,

T (EN[r. < oo])(z) = sup{ / T(Ep,)(h,)do: o € S(:r:)} >

r {co
> sup {(1 - €)o[r < o0]: o € 5(z)}
= (1 - €)l[r < oo](2).

Here, at last, is the proof of the main result of this scction.

Proor of ProposiTioN 6.1. Fixz € X and € € (0,1). Set D =
En[r. < o] and N = EN|[r, = 0o]. Then D is e-squeezable by Lemma
6.6. Also, N is I-null by Lemma 6.5 and is a Gy, because [r, = oo] is
closed. So, by Lemma 6.3, N is I'*-null. Apply Lemma 6.4 to see that
E = DU N is 2¢e-squeezable. Since ¢ is arbitrary, the proof is complete.

0

T - The “going up” property for I

Assume throughout this section that
AlCc AcC...

is a sequence of subsets 6f II. If X is countable and all mecasures are
countably additive, then, by (4, Coroliary 2.10],

I (UA™)(z) = supT"(UA")(2)
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for every z. This equality can fail quite easily in the presence of finitely
additive measures. llowever, the main result of this section is an appro-
priate analogue.

PROPOSITION 7.1. For every z € X,

I*(UA")(z) = sup{T*(A")(z): r a stop rule }.

Here A" = {h: h € AW},

The proof uses several lemmas. The first two are about squeezing
sets uniformly in z. Their proof uses the following notation: For p € X*

and B C H,set pB = {ph: h € B}.

LEMMA 7.2. Given AC H and € > 0, there is an open set O 2 A
such that, for allz € X,

P(O)z) S T*(A)(z) +e.

PROOF. For each y € X, choose O(y) open with O(y) 2 Ay and

T(O(y))y) S T°(Ay)(y) +¢.

Define
0 =JyO(y)
y

Apply Corollaries 3.2 and 3.4 with r = 1 to see that
1(0)(e) = sup { [ HOWN1(d): 7 € T(@)} <

<sup{ [ (A (an): 7€ )} +e=

=T*(A)(z) + €.
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LEMMA 7.3. Given AC H, there ezisis a G5 set G D A such that
I*(Ap)(z) = I(Gp)(z) forallp€ X" andz € X".

ProOF. Let £ > 0. For each p, use Lemma 7.2 to get an open set
O(p) 2 Ap such that, for all z,

I(O(p))(z) < T*(Ap)(z) +¢.
Let O™ be the open set
0" = u{pO(p): Ip| = n}

and define
Gt =no".

Then G* D A and, for every z and every p of length n,
I(G*p)(z) S T(0"p)(z) = T(O(p))(z) S T*(Ap)(z) + €.

Finally, take
G=(\G"".

0

The next two lemmas are concerned with the uniforin squeezing of
all the A".

LEMMA 7.4. There ezist G; sets G*,G?,... such that, for all n,p,

and z,
(i) Gr c G
(i) A" C G
(iii) F(G"p)(z) = T*(A"p)(2)-

Proor. Use Lemma 7.3 to get Gs's G satisfying (i) and (iii). Then

G" = nék

k2n

let
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A sequence G = (G',G?,...) of Gy’s as in Lemma 7.4 is called a
uniform squeeze for A = (A', A%,...).

LEMMA 7.5. If G is a uniform squeeze of A, then
I(G"p)(z) = I"(A"p)(2)
Jor all stop rulesr, pe X*, and z € X.
PRrOOF. The proof is by induction on the structure of r [2, sections
2.7 and 2.9]. If r has structure zero, the desired equality is just property
(iii) of the previous lemma. So assume r has structure a > 0 and that

the equality holds for stop rules of smaller structure.
By corollaries 3.2 and 3.4,

XG)e) = sup { [ PG p)om(dn): v € T2},

and

r(a)e) = sup { [ (A pu)ud(dn): v € D=}
So it sufficies to show that
(7.1) T(G py)(y) = [ (A"py)(y)

for every p = (z,,...,2,) 2and y.
Consider first the case where

r(py"‘) = r(""")zﬁ’y”") = ks n+ 1‘

Then G"py = Gtpy and A"py = A'py so that (7.1) is an instance of
Lemma 7.4 (jii). Next suppose

r(py...)>n+1
and recall that r{py] is the stop rule given by

rlpy)(h) = r(pyh) - n - 1.
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Introduce new sequences of sets
G = (G"*?py, G "*3py, ...)

A = (A™*?py, A"H3py,...)
Now G is a uniform squeeze for A and it can be checked that

G = (G")py,
i) = (A%)py .

Equality (7.1) now follows from the inductive hypothesis because r{py]
has structure smaller than a. a

Our final lemma gives a “going up” property for I'.

LEMMA 7.6. Let B* C B? C ... be Borel subsets of T and let
z € X. Then

T(UB")(z) =sup {T(B")(z): r a stop rule} .

PRrRoOOF. Since UB™ 2 B’ for every r, one inequality is obvious. The
other inequality follows easily from Theorems 5.1 and 5.2 of [8]. ]

Proofr ofF PROPOSITION 7.1. Clearly,
I"(UA™)(z) 2 supI'*(A")(z)
because UA™ D A" for every r. To prove the opposite inequality, let
G = (G',G?,...) be a sequence of G;'s which is a uniform squecze for A.
Then
I*(uA™)(z) < T(UG")(z) = supT(G")(x) = sup I'*(A")(x),

where the inequality is from Proposition 6.1 and the cqualities are by
Lemma 7.6 and 7.5, respectively. o
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8 — The proof of Theorem 1.1

Suppose that, for each finite sequence B of positive integers, B(0) is
a clopen subset of /1. Define

(8.1) A:Uﬁn(a,,...,a.)

a n=1

where the union is over all infinite sequences a = (ay,a;3,...) of positive
integers. Because cvery closed subset of [ is a countable intersection of
clopen sets, every Souslin set is of this form (cf. excrcise 1.2.2 of NEVEUY
[6]). Assume, without loss of generality that

(8'2) B(alv"’an)g B(alv"tamanﬂ)

for every a and n.
Fix zo € X and € > 0. It is cnough to construct o € S(z,o) such that

(8.3) a(A) 2 I*(A)(z0) - €.

The construction uses Proposition 4.1 and techniques of Sicrpinski [11,
pp. 48-50] which have also been used to prove Choquet’s capacitability
theorem.

For each finite sequence 8 = (B, ..., B ) of positive integers, intro-
duce

5 Pa o
(8.4) A(B) = U U ) B(its--esias@ise vt

n=1 ir=1 a n=l

For m a positive integer, let fm be the concatenation (B, ...,B8:,m).
Then clearly

(8.5) AB) = | ABm),
m=)

and

A(Bm) T A(B)-
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If 8;,...,8 are stop rules, let
A(s.,. .o ,3&) = {h: he A(s,(h),. .. ,a.,(h))}.
In order to apply Proposition 4.1, we must define {r,}, {K,}, ",

{7}, and {Q.). As part of the inductive definition, we will also need
another sequence of stop rules {s,}.

To start the induction, set Qo = I'*(A)(z,) and usec (8.5) with 8 taken
to be the empty sequence to see that

A(m) 1 A.
So, by Proposition 7.1, there is a stop rule s, such that
(8.6) I (A(s1))(z0) > Qo — €/4.
Let )
m:Qma
By (8.2) and (8.4), K, 2 A(s)). C-hcck also that K, is clopen and let

r1 be a stop rule such that s, < r, and K, is dermined by time r,. Use
Corollary 3.4 to get o' € S(zo) such that

@1 [T (AG)P)B ot > T (As))(z0) — €/,

Because K, D A(s;) and is determined by time ry,

88) [ T(AG)P)(Bn ) = [T (ACs1)pr )R, Yo
K3

Define Q,(h) = T*(A(s,)p., (1))(h,(h)) and notice that property (iv) of
section 4 is a consequence of (8.6), (8.7), and (8.8).

Suppose now that ry,...,r;0%7%...,0" Koo, Kni Qhye o - Qi
and s;,...,8, have been defined. Assume properties (i) through (v) of
section 4 hold and also that, for A =1,...,n.

8 < gy
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(8.9) K= ... 0 B(iy, .- i)

1=l =l

Qi(h) =T*(A(sy,- .., 8:)qe(h))(hr, (h))
for all h € H, where ¢ = p,,.
For the inductive step, notice that, for every h,

A(3y(h),...,8,(Rh),m)g(Rh) 1 A(81(R),...,3(R))ga(h).

By proposition 7.1, there is a stop rule 7,(ga(h)) such that

610 L (A1 (A), - - 80(B), g (B))an(B))(Rra (h)) >
' ST (A(1(B), - 3n(R))gn () (hra(h)) — /2747,

Define

3ns1(h) = ra(h) + Fa(ga(h))(hro(h) + 1, hr (h) + 2,...)

and notice that

(8.11) A3ty 3041)00(R) 2 A(81y- -+ 130, T(a(h))gu(h))-

Next use (8.9) with k = n + 1 to define K,4, and Qu41- It is easy to
check that K,,, is clopen and, by (8.2) and (8.9),

(8'12) A(’lv“n’m}l) g Kn+l Q Km

Choose a stop rule r,,, strictly larger than the maximum of r, with 3,4,
such that K,,, is determined by time rn41. Then use Corollary 3.4 to
choose, for every h,7"*!(¢a(h)) € 5(h,o(h)) so that

(8.13)

L IO PR TSN AL\ AN ) Tl O L ke

ST (A(314. .y 3n41)gn(h))(hr . (h)) - 6/2"'“.

The integral above would be the same if taken over the set Kay1¢a(h)
because this set contains A(3y, ..., 3ns1)gn(h) by (8.12) and is determined

by time r,(g.(h)).
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Property (v) of section 4 now follows fromn (8.10), (8.11), (8.13) and
the definition of Q, in (8.9). Properties (i), (ii) and (iii) are clear from
the construction and (iv) was checked above. So, by Proposition 4.1,
there is a @ € S(zo) such that

o () 200

i=)

The proof of (8.3), as well as that of Theorem 1.1, will be comnplete once
we show that «
A2 (K.
=1
To see this, fix A € NK; and let S be the set of finite sequences of positive
integers given by
S=uU{(ai...,as): a; < si(h),i =1,...,k, and h € DB(ay,...,0a)}.
Then, by (8.2), S is closed under initial segments. Also, for every k >
1, § contains a sequence of length & because h € K. Thus Kénig's lemma

applies to give an infinite sequence a;,ay,... such that h € B(ay,...,08)
forall k. So h € A. 0

9 — Squeezing functions

Let g be a bounded, real-valued function defined on I which is upper
Souslin in the sense that, for every real number a,{h: g(h) > a} is a
Souslin set. For example, g is upper Souslin if g is Borel measurable.
Define

(Tg)(z) = sup {/gda: g€ .S’(z)}

for each z € X. (The integral of g with respect to every o is well-defined
because g can be uniformly approximated by a linear combination of in-
dicator functions of Souslin sets.) In view of Theorem 1.1 and classical
results for functions, one expects that, given £ > 0, there will be a lower
semi-continuous function f > ¢ such that (T'f)(z) < (I'y)(2) + €. Tlow-
ever, a simple counterexample in [5) shows that such an f need not exist.
To obtain a squeezing result for functions, we introduce a new collection.
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Say that the bounded function f: H# — R is upper Gy, if for every
real number a, {h: g(h) > a} is the intersection of a countable collection
of open sets.

THEOREM 9.1. If g is upper Souslin, then

Tg =inf{Tf: f 2 g, [ is upper G;}.

We omit the proof because it is similar to and slightly simpler than
that of an analogous result in the countably additive theory [5, Theorem
10.1).
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