Interpolation by Piecewise Weighted Mean Functions

V. DEMICHELIS

RIASSUNTO – Nel lavoro viene introdotta una classe di funzioni "medie pesate a tratti" per l'interpolazione di una funzione reale f(x) nota in un insieme finito di nodi $x_1 < x_2 < \ldots < x_n$. In ogni punto $x \in [x_i, x_{i+1}], i = 1, \ldots, (n-1)$, la media interpolante è una media pesata dei valori $f(x_i)$ ed $f(x_{i+1})$. È stata studiata la regolarità delle medie pesate a tratti nell'intervallo $[x_1, x_n]$ e si sono dimostrate le proprietà di "variation diminishing" e di conservazione della monotonia della sequenza di valori $f(x_1), \ldots, f(x_n)$.

ABSTRACT – In the present paper we introduce a class of "piecewise weighted mean functions" for the interpolation of a real function f(x) given on a finite set of nodes $x_1 < x_2 < \ldots < x_n$. At any point $x \in [x_1, x_{i+1}]$, $i = 1, \ldots, (n-1)$ the interpolating mean is a weighted mean of the values $f(x_i)$ and $f(x_{i+1})$. We analyse the smoothness of the piecewise mean functions in the interval $[x_1, x_n]$, and we show that they satisfy the variation diminishing property and they preserve the monotonicity of the sequence $f(x_1), \ldots, f(x_n)$.

KEY WORDS - Piecewise interpolation - Variation diminishing - Monotonicity preserving.

A.M.S. CLASSIFICATION: 41A05 - 65D05

- Introduction

A wide class of weighted mean functions, possessing the interpolation property, is defined in [1]. For a given set of real values $f_i = f(x_i)$, $i = 1, \ldots, n$, and distinct nodes x_i , $i = 1, \ldots, n$, arbitrarily distributed in

 $I \subset R$, the interpolating mean is given by

(1.1)
$$u(f;x,n) = \sum_{i=1}^{n} f_i p_i(x;n)$$

where the weight functions $p_i(x;n)$, $i=1,\ldots,n$, satisfy the conditions:

(1.2)
$$\begin{cases} p_i(x,n) \geq 0 \\ \sum_{i=1}^n p_i(x;n) = 1 \\ p_i(x_j;n) = \delta_{ij} , \quad i,j = 1,\ldots,n \end{cases}$$

We consider in particular the weight functions $p_i(x; n)$, which can be represented by the general formula:

(1.3)
$$p_{i}(x;n) = \frac{\left| \prod_{\substack{k=1\\k\neq i}}^{n} [\varphi(x) - \varphi(x_{k})] \right|^{\alpha}}{\sum_{\substack{j=1\\k\neq i}}^{n} \left| \prod_{\substack{k=1\\k\neq i}}^{n} [\varphi(x) - \varphi(x_{k})] \right|^{\alpha}}, \quad i = 1, \ldots, n$$

where $\alpha \in \mathbb{R}^+$ and $\varphi(x)$ can be particularized as follows [1]:

$$(1.4) \varphi(x) = x , x \in I \subset R$$

in this case the (1.1) becomes the well known Shepard interpolation formula [2];

$$(1.5) \varphi(x) = \cos x , x \in [0, \pi)$$

$$\varphi(x) = c^x \quad , x \in I \subset R$$

more in general, we say that $\varphi(x)$ can be any function strictly monotone and at least C^1 in I.

In the present paper we introduce the "piecewise mean functions", to do this we suppose that the nodes are in increasing order, namely

 $x_1 < x_2 < \ldots < x_n$, and we apply a formula of type (1.1) to the pairs of nodes $x_i, x_{i+1}, i = 1, \ldots, (n-1)$; the resulting interpolation scheme is

(1.7)
$$u_2(f;x,n) = \sum_{j=i}^{i+1} f_j p_j(x;2) , i = 1,...,(n-1)$$

where

$$(1.8) p_i(x;2) = \frac{|\varphi(x) - \varphi(x_{i+1})|^{\alpha_i}}{|\varphi(x) - \varphi(x_i)|^{\alpha_i} + |\varphi(x) - \varphi(x_{i+1})|^{\alpha_i}}$$

(1.9)
$$p_{i+1}(x;2) = \frac{|\varphi(x) - \varphi(x_i)|^{\alpha_i}}{|\varphi(x) - \varphi(x_i)|^{\alpha_i} + |\varphi(x) - \varphi(x_{i+1})|^{\alpha_i}}$$

with $\alpha_i \in \mathbb{R}^+$; we note that the conditions (1.2) are satisfied by the pair of weight functions defined by (1.8) and (1.9) and so $u_2(f;x,n)$ interpolates the values f_1, \ldots, f_n and, in each subinterval $[x_i, x_{i+1}]$, is a weighted mean of the values f_i, f_{i+1} . We can immediately derive that the following properties hold:

$$(1.10) \quad \min(f_i, f_{i+1}) \leq u_2(f; x, n) \leq \max(f_i, f_{i+1}) \quad , x \in [x_i, x_{i+1}];$$

and if $f_i = f_{i+1} = c$, then

$$(1.11) u_2(f;x,n) = c[p_i(x;2) + p_{i+1}(x;2)] = c , x \in [x_i,x_{i+1}].$$

Moreover we can state the following lemma:

LEMMA 1.1.. The weight functions defined by (1.8) and (1.9) with $\alpha_i > 1$, i = 1, ..., (n-1), satisfy the conditions

$$p'_k(x_j;2) = 0$$
 ; $k, j = i, (i+1)$.

PROOF. Let

$$B_i(x) = |\varphi(x) - \varphi(x_i)|^r$$

with $r = \alpha_i$, and

$$B_i'(x) = r|\varphi(x) - \varphi(x_i)|^{r-1}\operatorname{sign}[\varphi(x) - \varphi(x_i)]\varphi'(x);$$

calculating $B_i(x)$ and its derivative $B'_i(x)$ at the node x_i , we get

$$(1.12) B_i(x_i) = 0$$

$$(1.13) B_i'(x_i) = 0.$$

The weight function $p_i(x;2)$ and its derivative $p'_i(x;2)$ can be expressed respectively by

$$p_i(x;2) = \frac{B_{i+1}(x)}{B_i(x) + B_{i+1}(x)}$$

$$p_i'(x;2) = \frac{B_{i+1}'(x)[B_i(x) + B_{i+1}(x)] - B_{i+1}(x)[B_i'(x) + B_{i+1}'(x)]}{[B_i(x) + B_{i+1}(x)]^2};$$

now, by (1.12) and (1.13) we get

$$(1.14) p_i'(x_i;2) = \frac{B_{i+1}'(x_i)B_{i+1}(x_i) - B_{i+1}(x_i)B_{i+1}'(x_i)}{B_{i+1}^2(x_i)} = 0$$

$$(1.15) p_i'(x_{i+1};2) = 0.$$

Similarly we can obtain $p'_{i+1}(x_i; 2) = p'_{i+1}(x_{i+1}; 2) = 0$ and the lemma is proved.

From the lemma 1.1 it follows that, if $\alpha_i > 1$, i = 1, ..., (n-1), then $u_2(f;x,n)$ has null derivative at the nodes $x_1, ..., x_n$ and is at least C^1 in the whole interval (x_1,x_n) ; if $\alpha_i \leq 1$ for any i, then the relations (1.12), (1.13), (1.14) and (1.15) don't hold and, consequently, $u_2(f;x,n)$ can have cusps at the nodes x_i, x_{i+1} .

In order to avoid the null derivatives at the nodes x_1, \ldots, x_n we can consider the following piecewise mean:

(1.16)
$$u_2(L;x,n) = \sum_{i=1}^{i+1} L_j p_j(x;2) , i = 1,...,(n-1);$$

where $L_i = f(x_i) + (x - x_i)f'(x_i), i = 1, ..., n$, as it has been already suggested for the Shepard formula [2]; the piecewise interpolating mean defined by (1.16) with $\alpha_i > 1$, i = 1, ..., (n-1), interpolates at the nodes $x_1, ..., x_n$ both the values $f(x_1), ..., f(x_n)$ and the derivatives $f'(x_1), ..., f'(x_n)$.

In the next section we study more in detail the piecewise interpolating mean $u_2(\cdot; x, n)$ and we shall prove that this interpolation scheme enjoys the variation diminishing and the monotonicity preserving properties.

1 - Two properties

The (1.7) can be also expressed by

(2.1)
$$u_{2}(f;x,n) = \frac{f_{i}|\varphi(x) - \varphi(x_{i+1})|^{\alpha i} + f_{i+1}|\varphi(x) - \varphi(x_{i})|^{\alpha i}}{|\varphi(x) - \varphi(x_{i})|^{\alpha i} + |\varphi(x) - \varphi(x_{i+1})|^{\alpha i}},$$
$$x \in [x_{i}, x_{i+1}]; \qquad i = 1, \dots, (n-1).$$

We say that $u_2(f; x, n)$ has a zero at a point $\zeta \in [x_i, x_{i+1}]$ provided that $u_2(f; \zeta, n) = 0$, we shall write [3]:

$$Z_{[x_i,x_{i+1}]}(u_2) = \text{ number of zeros of } u_2 \text{ in } [x_i,x_{i+1}].$$

Now we prove the following lemma:

LEMMA 2.1.. The pair of weight functions defined by (1.8) and (1.9) satisfies this condition

(2.2)
$$D\begin{pmatrix} t_1 & t_2 \\ y_i & y_{i+1} \end{pmatrix} > 0$$
 for all $x_i \le t_1 < t_2 \le x_{i+1}$.

PROOF. Developping the determinant in (2.2) we get

$$\begin{aligned} & \begin{vmatrix} p_{1}(t_{1};2) & p_{1+1}(t_{1};2) \\ p_{1}(t_{2};2) & p_{1+1}(t_{2};2) \end{vmatrix} = p_{1}(t_{1};2)p_{1+1}(t_{2};2) - p_{1+1}(t_{1};2)p_{1}(t_{2};2) = \\ & = \frac{|\varphi(t_{1}) - \varphi(x_{1+1})|^{\alpha_{1}}|\varphi(t_{2}) - \varphi(x_{1})|^{\alpha_{1}} - |\varphi(t_{1}) - \varphi(x_{1})|^{\alpha_{1}}|\varphi(t_{2}) - \varphi(x_{1+1})|^{\alpha_{1}}}{[|\varphi(t_{1}) - \varphi(x_{1})|^{\alpha_{1}} + |\varphi(t_{1}) - \varphi(x_{1+1})|^{\alpha_{1}}][|\varphi(t_{2}) - \varphi(x_{1})|^{\alpha_{1}} + |\varphi(t_{2}) - \varphi(x_{1+1})|^{\alpha_{1}}} > 0 \end{aligned}$$

since $x_i \le t_1 < t_2 \le x_{i+1}$, the last inequality follows from the strict monotonicity of $\varphi(x)$, and the lemma is proved.

By the lemma 2.1 we can derive that the pair of weight functions $p_i(x;2)$, $p_{i+1}(x;2)$ forms a Tchebicheff system on $[x_i,x_{i+1}]$ and, consequently, it holds [3, pag. 29]:

(2.3)
$$Z_{[x_i,x_{i+1}]}[\sum_{j=i}^{i+1} f_j p_j(x;2)] \leq 1$$
, for all real f_i, f_{i+1} not all 0.

Following S.Karlin [4] we say that $u_2(f;x,n)$ is variation diminishing in $[x_1,x_n]$ if

$$S_{[x_1,x_n]}^-[u_2(f;x,n)] \le S^-(f_1,f_2,\ldots,f_n);$$

$$S_{[x_1,x_n]}^-[u_2(f;x,n)] = \sup S^-[u_2(f;t_1,n),\ldots,u_2(f;t_m,n)]$$

where the supremum is extended over all sets $t_1 < t_2 < \ldots < t_m(t_j \in [x_1, x_n])$, m is arbitrary but finite and $S^-(y_1, y_2, \ldots, y_n)$ is the number of sign changes of the indicated sequence, zero terms being discarded.

We can now state the following theorem:

THEOREM 2.1. The piecewise interpolating mean function $u_2(f; x, n)$ is variation diminishing in $[x_1, x_n]$ and, in particular, it holds

(2.4)
$$S_{(x_1,x_n)}^-[u_2(f;x,n)] = S^-(f_1,\ldots,f_n),$$

PROOF. Let the sequence (f_1, \ldots, f_n) has no zero terms, then (2.4) holds in the whole interval $[x_1, x_n]$ if it holds locally in every subinterval $[x_i, x_{i+1}]$, $i = 1, \ldots, (n-1)$, namely if

$$(2.5) S_{[x_i,x_{i+1}]}^{-}[u_2(f;x,n)] = S_{-}(f_i,f_{i+1}).$$

If f_i and f_{i+1} have the same sign, then (2.5) follows immediately from (1.10). If f_i and f_{i+1} have different sign, then $S^-(f_i, f_{i+1}) = 1$; in order to get $S^-_{[x_i, x_{i+1}]}[u_2(f; x, n)]$ we note that the interpolation conditions at x_i and x_{i+1} guarantee that $u_2(f; x, n)$ has at least one sign change in

 $[x_i, x_{i+1}]$, moreover this sign change is unique by virtue of the relation (2.3); so we can conclude that $S^-_{[x_i, x_{i+1}]}[u_2(f; x, n)] = 1$.

Let now the sequence (f_1, \ldots, f_n) has r zero terms with $1 \le r \le (n-2)$, we suppose for simplicity that $f_i \ne 0$, $f_{i+1} = f_{i+2} = \ldots = f_{i+r} = 0$, $f_{i+r+1} \ne 0$, then the (2.4) is verified if it holds

$$(2.6) S_{[x_i,x_{i+r+1}]}^{-}[u_2(f;x,n)] = S^{-}(f_i,f_{i+1},\ldots,f_{i+r+1})$$

by the (1.10) we derive that $u_2(f;x,n)$ in $[x_i,x_{i+1}]$ has the same sign of f_i , and in $[x_{i+r},x_{i+r+1}]$ has the same sign of f_{i+r+1} ; in the intermediate intervals $[x_{i+1},x_{i+2}],\ldots,[x_{i+r-1},x_{i+r}]$ we get from the (1.11) that $u_2(f;x,n)=0$, we can so conclude that the (2.6) is verified; finally if r=(n-1),n, then $S^-(f_1,\ldots,f_n)=0$ and, by (1.10) and (1.11) we can derive that $S^-_{[x_1,x_2]}[u_2(f;x,n)]=0$ too, and the theorem is proved.

Now we shall prove that the interpolation scheme $u_2(f;x,n)$ preserves the monotonocity of the sequence $(f_1, f_2, ..., f_n)$

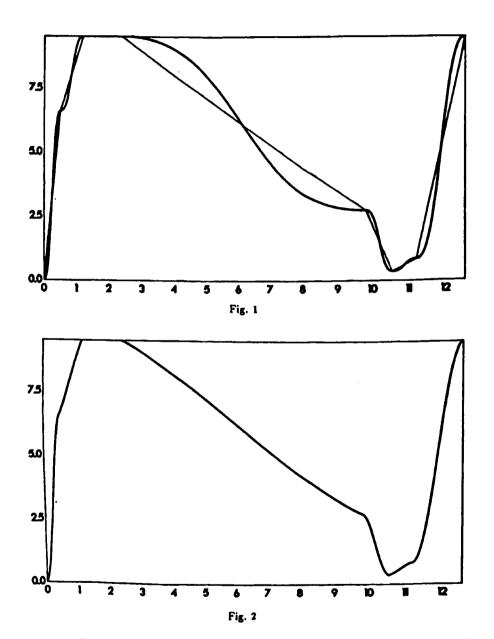
PROPOSITION 2.1. If $f_1, f_2, ..., f_n$ are monotonic, then $u_2(f; x, n)$ it is monotonic in $[x_1, x_n]$.

PROOF. [4, pag. 22]. Let d be any real number, and consider the relation

$$u_2(f;x,n)-d=\sum_{j=i}^{i+1}(f_j-d)p_j(x;2)$$
 ; $i=1,\ldots,(n-1),$

for any d, according to the hypotesis, the sequence $(f_1 - d, f_2 - d, ..., f_n - d)$ change sign at most once, the variation diminishing of $u_2(\cdot; x, n)$ (relation (2.4)) implies that $u_2(f; x, n) - d$ enjoys the same property, which in turn implies the monotonicity of $u_2(f; x, n)$.

Finally, to illustrate the behaviour of the proposed method, we present an example used in [5], where the interpolation values f_1, \ldots, f_8 are the vertices of the polygonal line reported in Figure 1. The interpolation curve $u_2(f; x, 8)$ is obtained by setting $\varphi(x) = x$ in (2.1). In this case, if $\alpha_1 = \alpha_2 = \ldots = \alpha_7 = 1$, then $u_2(f; x, 8)$ coincides exactly with the polygonal line, this can immediately be derived by the relation (2.1). Figure 1 shows the polygonal line and $u_2(f; x, 8)$ with $\alpha_1 = \alpha_2 = \ldots =$



 $\alpha_7 = 2$; Figure 2 shows $u_2(f;x,8)$ with variable exponents such that $1 < \alpha_i < 2, i = 1, ..., 7$.

REFERENCES

- [1] G. ALLASIA R. BESESNGHI V. DEMICHELIS: Weighted Arithmetic Means Possessing the Interpolation Property, Calcolo, 25 (1988), 203-217.
- [2] W.J. GORDON J.A. WIXOM: Shepard's Method of "Metric Interpolation" to Bivariate and Multivariate Interpolation, Math. Comp., 23 (1978), 253-264.
- [3] L.L. SCHUMAKER: Spline Functions: Basic Theory, John Wiley & Sons. New York(1981).
- [4] S. KARLIN: Total Positivity, (vol. I), Stanford University Press. Stanford, California (1968).
- [5] A. LE MEHAUTE F.I. UTRERAS: Convexity Preserving Interpolatory Subdivision, To appear.

Lavoro pervenuto alla redazione il 29 gennaio 1991 ed accettato per la pubblicazione il 10 aprile 1991 su parere favorevole di L. Gori e di I. Galligani