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A relation between total multigraphs
and total multidigraphs

R.A. CHIAPPA - A. MACCARI - A. ZILIANI

RIASSUNTO ~ Si considerano multigrafi e multidigrafi finiti, connessi con o senza
cappi. Si definiscono i concetti di multigrafo e multidigrafo totale, caratterizzando
quest’ultimo con l'uso di digrafi di suddivisione, generalizzando in modo naturale un
risultato di Chartrand e Stewart [2]. Si stabilisce inoltre una relazione tra le nozioni
di totalité per il caso orientato e quello non orientato simile a quella data per i grafi
commutati [3].

ABSTRACT - We consider finite, connected multigraphs and multidigraphs with
loops permitted. We define the notions of total multigraph and total multidigraph and
we characterise the latter by means of subdivision digraphs, extending in a natural way
a result of Chartrand and Stewart (2]. Furthermore, we obtain e relation between the
notions of total in the directed and undirected cases analogous to that established in [3]
Jor the line-graph concept.
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1 — Introduction

In 1932 WHITNEY [9] obtained some relations between the line-iso-
morphisms and the vertex-isomorphisms in graphs without loops. In
order to give a new proof of some of these results, in 1943, KrRAUSZ [8]
defined and characterized the notion of line-graph.

This concept was later extensively studied and generalized in different
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ways to graphs with loops or multiple lines.

A similar notion for digraphs without loops was studied in 1960 by
HARARY and NORMAN [5] and independently for arbitrary multidigraphs,
in 1964, by HEUCHENNE [7].

The only attempt to relate the line-graph transformation with the
line-digraph transformation, known to us, was done in 1979 by CHIAPPA
[3]. There, two generalizations of the line-graph concept were considered
and it was proved that each of them can be obtained by means of certain
operations which involve the line-digraph transformation.

On the other hand, in order to study coloring problems and follow-
ing the same idea that lead to the concept of line-graph BEHZAD (1]
introduced in 1965 the concept of total graph. In 1966 CHARTRAND and
STEWART (2] studied total digraphs.

As far as we know, total digraphs have not been studied since and all
the papers on total graphs assume that there are neither multiple lines
nor loops.

We next extend, in a natural way, the concept of total multigraphs
and multidigraphs and we find a relation between them similar to that
established for the line-graph notion in [3]. Also we characterize the total
of a multidigraph D by means of the square of the subdivision digraph
of D, as CHARTRAND and STEWART in [2].

We shall consider finite, connected multigraphs and multidigraphs
with loops permitted and we shall use, in general, the terminology of (4],

(5], [6]-

1.1. Let D = (V(D),U(D)) be a multidigraph. We say that:
a) the point v is k-precedent to the point v; if there exist k arcs (vi, v;).
b) the arc z = (v;,v;) is precedent to the arc y = (v;, Ui)-
¢) the point v; is precedent to the arc z and z is precedent to v; if
z = (v, ;).
Remark that in b) and c) precedent means k-precedent for k& = 1,
and k-precedent is meaningless for k& > 1.
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1.2. Let D be a multidigraph. The total multidigraph T(D) of D
is a multidigraph whose point are in one-to-one correspondence with the
points and arcs of D, and such that the point u is k-precedent to the
point v in T(D) if and only if in D the element corresponding to u is
k-precedent to the element corresponding to v. (See figure 1).
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Fig. 1

A multidigraph H is a total multidigraph if there exists a multidi-
graph D such that H = T(D).

The induced subdigraph of T(D) whose points represent the arcs of
D is the line-digraph or adjoint-digraph of D which we shall denote by
A(D).

1.3. It is easy to see that:

a) If D has p points and g arcs, then T'(D) has p + ¢ points and 3¢ +
zp: id(v,) - od(v;) arcs.
i=1

b) T(D) is the arc-disjoint union of the submultidigraphs D, A(D) and
M (D), where M(D) is the digraph whose points are the samc as those
of T(D) and whose arcs are (v;, x)(x, v;) for cach arc = = (v;, v)).

1.4. Let G = (V(G),U(G)) be a multigraph. We say that:

a) the points v;, v; are k-adjacent if there exists k lines [v,,v)).

b) two different lines are k-adjacent if they have & common points. In
this case k can only be 1 or 2. Any loop is 1-adjacent with itself.

c) if z = [v;,v;], v, # v; then x is 1-adjacent to v, and v;. If v; = v,
then z and v; are 1-adjacent.
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We shall also say adjacent instead of 1-adjacent.

1.5. Let G be a multigraph. The total multigraph 7(G) of G is a
multigraph whose points are in one-to-one correspondence with the points
and lines of G, and the point u is k-adjacent to the point v in 7(G) if and
.only if in G the element corresponding to u is k-adjacent to the element
corresponding to v (see figure 2).
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Fig. 2

A multigraph H is a total multigraph if there exists a multigraph G

such that H = T(G).
The induced submultigraph of 7(G) whose points represent the lines

of G coincides with the v-line-graph of G defined in [3]. Now we simply
say line-graph of G and we shall denote it A(G).

1.6. It is easy to see that if G has p points and ¢ lines then T(G)
has p+ g points and 3g+ X7, (%) lines, where a; denotes the number of

incident lines at the point v;.

2 — Characterization of total multidigraphs

Utilizing the so-called subdivision digraph, in the same way as (2],
we shall give a necessary and sufficient condition for a multidigraph to

be a total multidigraph.
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2.1. The subdivision digraph S(D) of a multidigraph D is that di-
graph obtained from D by replacing each of the k arcs (v;, v;) of D with
a new point v;,, 1 <t < k and the two arcs (vi, vije), (vije, v;)-

A digraph S is called a subdivision digraph if there exists a multidi-
graph D such that S = S(D).

The point z of a multidigraph D is a carrier if id(z) = od(z) = 1.
The points v;;, of a subdivision digraph obtained as above are carriers.

2.2. THEOREM. A digraph S is a subdivision digraph if and only if:
a) S is a cycle of even lengthn, n > 2; or
b) S is not a cycle and every semipath joining two noncarriers (distinct
or not) has even length.

PROOF. Necessity: Let S be a subdivision digraph. Since S is a cycle
if and only if D is and since the subdivision process doubles the length
of a cycle, it follows that the only cycles which are subdivision digraphs
must be of even length.

If S is a subdivision digraph which is not a cycle there exist points
that are not carriers; they are points of D. Then b) follows from the
connectedness of D and 2.1.

Sufficiency: If S is a cycle of even length n, then there exists a cycle
D of length n/2, such that S = S(D).

If S is not a cycle, then S contains at least one noncarrier point v. Let
V be the set of all points of S which are connected to v by a semipath of
even length. This set is well defined since if a point u of V were connected
to v by both an cven and an odd semipath, this would imply that the
noncarrier v or another one is connected to itself by a semipath of odd
length, contradicting our hypothesis. Now if V is taken to be the point
set of a digraph D such that a point v; is k-precedent to a point v; in D
if and only if there are & paths of length two from v; to v;, it is casy to
see that S = S(D). 1

2.3. The square D? of a digraph D is defined as that digraph whose
points are thosc of D and such that a point u is precedent to a point v in
D? if and only if u is connected to v by a path of length one or two in D.

2.4. THEOREM. Let D be a multidigraph, then [S(D))? = T(D).
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PROOF. From the preceding definitions, if D has p points and q arcs,
S(D), [S(D))* and T(D) have p + ¢ points each. Since each of the k
arcs (vi.v;) of D is replaced by a path v;, (vi,vije), vije, (Vijerv5), Vs,
1<t <k, in S(D), it follows that (S(D)]? has 2k arcs (v, vije), (vije, v;),
k arcs (v;,v;) and if v; = v}, a loop in each v;; 1 <t < k. Furthermore if
D has r arcs (v},v,), [S(D)]? has kr arcs (vijo,vj) 1 <t <k, 1<h<T.
Therefore the arcs of (S(D)]? are in one-to-one correspondence with the
arcs of M(D), D and A(D) respectively. Hence T(D) = [S(D)]?. a

2.5. COROLLARY. A multidigraph T is a total multidigraph if and
only if there erists a subdivision digraph S such that S? =T

3 - Relationship between total multigraphs and total multidi-
graphs

3.1. The symmetrized multidigraph G* of a multigraph G is obtained
as follows.

a) The points of G* are those of G

b) Each line u = [z, y] of G, (z # y) is replaced by the arcs (z,9), (v,2).
One of these shall be denoted u and the other u'.

c) Each loop u of G is preserved in G*. In this case we consider u = /.

This notion coincides with that of vertex-symmetrized multidigraph

given in [3)].
Let C be the mapping introduced in [3] which maps each digraph

A(G") to the multidigraph C(A(G*)) obtained identifying each pair of

points u,u’ of A(G*) as one point uq and omitting the arcs (u,u'), (', u)
if u # .

3.2. Let C be the mapping which maps each multidigraph T(G*)
to the multidigraph C(T(G*)) which is the are-disjoint union of G*,
C(A(G")) and M(G®). Here M(G®) is the digraph whose points are those
of G* and C(A(G”)) and whose arcs are obtained in the following way:
(a) If u # o', where u = (v;,v;) in G°, the arcs (v;,u), (v, ), (4,v;),
(vj,u’) of M(G®) become (v;,u,), (uo, v;), (w0, v;), (vj,u0) of M(G?).
(b) If u = ¢’ is a loop incident at the point z, the arcs (z,u), (u,z) of
M(G?*) become (z,up), (uo,z) of M(G?). (See figure 3).
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Fig. 3 C(T(G*)) is a symmetrized multidigraph

T(G*)

C(T(G™M
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3.3. Let D be the mapping which maps each symmetrized multidi-
graph to the multigraph obtained by leaving the loops unchanged and
replacing cach pair of opposed arcs by one line which incides at the same
points that these arcs do.

D(C(T(G*)))

3.4. REMARKS.

a) The mapping D is the inverse of the function s : G — G* which
maps cach multigraph G to the symmetrized multidigraph G°.

b) According to the preceding definitions the points of D(C(T(G*))) and
C(T(G*)) coincide. The points of C(T(G*)) are the disjoint union of
the points of G* and C(A(G?)).

c) There is a one-to-one correspondence between the points of C(A(G*))
and the points of A(G) which allows us to identify z; with z, since
each point zo of C(A(G*®)) corresponds to the pair of points z,z’ of
A(G”®) and these to the arc z of G.

d) Let z,y be k-adjacent points in D(C(T(G*))) such that:

(i) if z € V(G?), yo € V(C(A(G*))) then k =1
(i) if 2o, yo € V(C(A(G*))) then zq, yo correspond to the pairs of the
opposed arcs z,z’ and y,y’ of G* respectively. If at least one of
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them is a loop, that is z = 2’ or y = ¥/, we have k = 1 but if
z#z andy#y wehavek=1lork=2.

3.5. THEOREM. Let G be a multigraph. A multigraph H is the total
multigraph of G if and only if H = D(C(T(G"))).

PRrROOF. From 3.1 and 3.4(b), (c) follows that the points of 7(G) and
D(C(T(G*))) are the same.

Let H = T(G). We shall prove that H = D(C(T(G*))).

Let z,y be the k-adjacent points in 7(G). Since V(T(G)) is the
disjoint union of V(G) and V(A(G)) we consider the following cases:

a) Let z,y € V(G). If z # y we have k arcs (z,y) and k arcs (y, =) which
do not change in T(G*). Since C does not modify these arcs and D
is the inverse of mapping s: G — G*, then z and y are k-adjacent
in D(C(T'(G?))). :

If z = y, there are in G k loops incident at z which do not change
by the successive operations which transform G in D(C(T(G?))).

b) Let z,y € V(A(G)). From proposition D of [3], we know that
A(G) = D(C(A(G?))), so that z,y are k-adjacent in D(C(A(G*))) and
therefore in D(C(T(G*))) which is the line-disjoint union of D(G*),
D(C(A(G*))) and D(M(G?)).

c) Let z € V(G), y € V(A(G)). By 1.4 we have k¥ = 1. Then, in

T(G?®) there exists an arc with initial point = and terminal point in
{y,¥'} and another with initial point at {y,y'} and terminal point z,
if y # v’ the terminal point of the first arc is different from the initial
point of the second one.
If the arcs (z,y), (v',z) belong to T(G*), in C(T(G*)) we have the
arcs (z,Yo), (¥o,z) and in D(C(T(G*))) z and y, are adjacents. Since
y and yo represent the same point in 7(G) and D(C(T(G?))) we
conclude that = and y are adjacent in D(C(T(G?))).

d) Let z € V(A(G)), y € V(G). The proof in this case is analogous to
the case c).

Now let H = D(C(T(G*))). We shall prove that H = T(G).

Let 2,y be points of D(C(T(G*))). Taking into account 3.4 (b) and
(c) we have the following cases: a) z,y € V(G*); b) z € V(G*), yo €
V(C(A(G?))) and c) zo,y0 € V(C(A(G*))).

If z,y arc k-adjacent in D(C(T(G*))) then:
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In case a) there are k arcs (z,y) and k arcs (y,z.) in C(T(G?®)). If
z = y there are k loops incident at z. They are preserved in T(G*) and
also in G*, hence z and y are k-adjacent in G and also in 7(G).

In case b), by 3.4. d) k = 1 and by 3.2. y, is obtained identifying
the points y and y’ of T(G*). If y # ¢/, y and ¥’ are opposed arcs in G°,
otherwise y is a loop. In both cases = and y are adjacent in G and hence
in T7(G).

Incasec)by34d)k=1ork=2 Ifk=landz=2"ory =9
in T(G*), then in G* at least one of them is a loop. In G, z and y have
only one common point and in 7(G) they are adjacent. If k = 1, = # z’
and y # ¥ in T(G®), then in G* the arcs = and y have only one common
point.

The lines z and y are 1-adjacent in G and so are in 7(G). If k = 2,
in G* the two extremal points of  and y are the same, hence in 7(G), =
and y are 2-adjacents. a
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