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Rotations and harmonicity in contact geometry

P. BUEKEN - L. VANHECKE

RIASSUNTO — Si considerano le p-rofaziont intorne alle linee di flusso del campo
& dei vetlori caratferistici su una verietd sasakiana (M, g,w, £, n) e si prova che tutte
gqueste rotazioni sono applicazioni armoniche se £ solo se esse sono isomelrie, cioé se

e solo se la varietd & uno spazio localmente p-simrnetrico.

ABSTRACT — One considers the y-rotations around the flow lines of the character-
istic vector field € on e Sasakian manifold (M, g, ¢, &, 17} and one proves that all these
rolations are harmonic maps if and only if they are isometries, that is, if and only if
the manifold is a locally p-symmetric space.

Key WoRDS - Riemannian folietion, Sesakian manifold, rotaticns, p-rotations,
harmenic maps.
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1 - Introduction

In this paper we continue our research about the relationship between
the properties of local diffeomerphisms in normal and tubular neighbor-
hoods on a Riemannian manifold (M, g) and the properties of the curva-
ture of (M, g).

The geometry of reflections with respect to points, curves and sub-
manifolds has been studied extensively. We refer to [18] for more details
and further references. In particular, one investigated under what con-
ditions the reflections are harmonic maps. It turns out that in all the
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situations studied in the different papers harmonic reflections are isomet-
ric maps.

(Local) refliections are special cases of (local) rotetions. We refer to
[10], [13], [24], [15] where these local diffeomorphisms are introduced and
some aspects are studied. Also in the situations studied there one finds
that harmonicity for rotations implies isometry.

Here we consider another natural situation for rotations around a
curve and focus again on harmonicity. More precisely, let (M, g) be an
(odd-dimensional) Riemannian manifold and let £ be a unit Killing vector
field on it such that the Riemannian curvature tensor R satisfies

Rxy€ =n(X)Y —n(Y)X

for all vector fields X,Y on M. 7 denotes the dual one-form of the
field £. Such a manifold is also known as a Sasakian manifold (see, for
example, {1]}. The integral curves o of the characteristic vector field £ are
geodesics. Moreover, if V denotes the Levi Civita connection of (M, g),
then ¢ = —V¢ defines a particular tensor field of type (1,1) such that
ker ¢ = span{£} at each point of M. It follows that S =@+ n®€£ is a
(1,1)-tensor field, parallel along the flow lines, which fixes £. Further, let
exp, denote the exponential map of the normal bundle of the flow line o.
Then
3, = exp, 0§ o exp;’

defines the so-called (local) @-rotation around ¢. The main purpose of
the paper is to prove

TREOREM A. The p-rotations along all flow lines o of the charac-
teristic Killing vector field § are harmontc maps if and only if they are

isometries.
As a consequence of this we obtain

THEOREM B. A Sasakian manifold is e locally w-symmetric space if
and only if all p-rotations are harmonic,
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The locelly p-symmetric spaces are the natural analogs in Sasakian ge-
ometry of the locally Hermitian symmetric spaces in Kihler geometry.
They are introduced in [17] (see Section 2 for more details).

2 — Preliminaries

We start by giving a collection of basic formulas and results. Let
(M, g) be a smooth (connected) Riemannian manifold with Levi Civita
connection V and associated Riemann curvature tensor R defined by

Rxy = Vixy) — [Vx, Vy]

for all vector fields X,Y € x(M). (x(M) denotes the Lie algebra of
smooth vector fields on M.) Further, we put

Rxyzw = g(RxvyZ, W}

and similarly for other covariant tensors such as VR, etc.
Now, let (M, g) be equipped with a unit Killing vector field §, with

dual cne-form 7, such that
(1) Rxy§=n(X)Y —n(Y)X

for all X,Y € x(M). Then (M, g) is equipped with a Sasakian structure
(g,&,m,¢) and (M, g,£,7m, ) is a Sesakian manifold. Here ¢ is the (1,1)-

tensor field defined by
(2) w=—VE.

The equivalence of this definition with the usual one follows at once from
(1, p. 75]. We refer to [1], [20] for more details about contact and, in
particular, about Sasakian geometry. There it is also proved that

= —-I+71®¢,

wE=np =0,

gleX,pY) = g(X, Y] ~n(Xn(Y},
(Vx@)Y =g(X,Y){ ~n(Y)X

(3)
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for all X,Y € x(M). Moreover, since £ is a Killing vector field, we have
(4) RyeY = g(X, Y} —n(Y)X
and finally

Rxyzew + Bxyezw = 9(X,0Z)g(Y, W) — g(X,oW)g(Y, Z)

(5)
~g(Y, pZ)g(X, W)+ g(Y,oW)g(X, Z).

Again, since £ is Killing, (1), (2}, (3) and (5) imply

The unit Killing vector field £ generates a Riemannian foliation with
geodesic leaves. Hence, the Sasakian geometry of the manifold may be
treated via local Riemannian submersion theory. This feature has been
developed in {16]. So, each point m € M has a neighborhocd U such that
¢ is regular on U and there exists a fibration w: {/ — U=U/E risa
Riemannian submersion and U has an induced Kihler structure (G, J).

This property may be used to define the so-called locally ¢-symmetric
spaces. They have been introduced by T. TAKAHASHI in [17] as the
analogs of locally Hermitian symmetric spaces. We refer to 2], [11], [12],
[17] for a list of examples. We state the following result of [17] which may
serve as a definition.

THEOREM 1. A Sesakian manifold (M,g,§,n, ¢} is a locally p-sym-
metric space if and only if each base manifold U of a local fibration U —
U = U/¢ is a locally Hermitian symmetric space.

To prove Theorem A we will need the following characteristic prop-
erty, proved in [3].

THEOREM 2. A Sasakian manifold (M, g,€,71,p) is locally @-sym-
metric if and only if
VyHyyuey =0

for all horizontal vectors U (that is, U is orthogonal to £).
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We refer to [4] for & survey on further results and other equivalent prop-
erties.

3 — Rotations, Fermi coordinates and expressions for the metric
tensor

In this section we give a brief survey about rotations around a curve
and about the method to describe these local diffecomorphisms by using
Fermi coordinates. In addition we will use this to give expressions for
(g:;) in Fermi coordinates on a Sasakian manifold.

Let {M,g) be an n-dimensional smooth Riemannian manifold and
let o: [a,b) — M:t — o(t) be a smooth, embedded curve in M. Fur-
ther, denote by No = T¢ the normal bundle of o and let exp, be the
exponential mep of No, that is,

expc(ti U) = expn(t) (U)

for all t € [a,b] and all v € T;;,,0. The set

U,(s) = {exp,(t,v)|t € [a,b,vE Tj(,}ar, | < s} cM

is called a tubular neighborhood of radius s about ¢. There exists an
s > 0 such that exp, is a diffeomorphism onto U,(s). In what follows we
will restrict our treatment to such a neighborhood.

Next, a field of endomorphisms ¢ — S(¢) along & is said to be a

rotation field along ¢ if S satisfies
Stie=o, g(SHX,S)Y) =9(XY),
for all X,Y orthogonal to ¢(t) and 2ll ¢ € [a,4]. Then
(7) 8, = exp, oS cexp, "}
is a local diffeomorphism which is called a (local) S-rotation eround o

(see [14], [15]). If § — I is nonsingular on normal vectors, then it is said
to be a free rotation. For § = —I we get the reflection with respect to o,
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To describe the rotaticn

(8) 8, exp,(t,v) — exp, (¢, 8(t)v}

we shall use a system of Fermi coordinates defined as follows. Let
o: la,b] — M be a unit speed geodesic {that is, ||o|| = 1) and let
{e:,i = 1,...,n} be an orthonormal basis of T,)M such that e, = &(a).

Further, let E; = ¢ and let Ey,...,E, be the normal vector fields along
o which are parallel with respect to the normal connection V* of the nor-
mal bundle No and with E;(a} = e;. (Note that, when ¢ is a geodesic,
this is just the parallel translation with respect to the Levi Civita con-
nection.) Then the Fermi coordinates (z°,...,z") with respect to o{a)
and {e,..., e} are defined by

z! (exp‘,m Zt’EJ-) =t—a,
b

xi(exp,(t)thEJ-):ti, i=2,...,n.
H

We refer to (8), [9], [19] for more information about these Fermi coordi-
nates.

With respect to this coordinate system the analytic expression for
(8) becomes '

(9) 5o (z',2%,...,2"%) (zl,szzj,...,ZS;xj),
i j
where §7(2) = g(S(8)E:(t), E;(2)).

In the next section we will need some expressions for the matrix
(9:;) with respect to these Fermi coordinates. To obtain the required
expressions, we proceed as follows. (An alternative method is described
in [8].) Let

D= eXpanlru), u€ Tomo, lull=1,

(
and let y: 3 — exp,,(su) be the unit speed geodesic connecting o(t)
and p, with v(0) = &(t),¥(0) = u. Next, we specify the frame field
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{Ey,..., E,} such that E,(t) = +'(0). Further, let {F,...,F,} be the
frame along 7 obtained by parallel translation of {E\(t},..., E.(£}} along
7. Finally, let Y,Y,,...,Y._, be the Jacobi vector fields along v with
initial conditicns

KO =B, K(O0) = (Typr) 0,
Y,(0)=0, Y{0) = E,(t), e=2,...,n—1.

Note that
Y{(0) = —x.En(t)

where

Ky = g(&(t),u) .

Then we have

(10) 5
Yo(s) = 5553(7(3)), a=2,...,n—1.

Now, we identify the spaces {v'(s)}” with {y'(0)}" via the parallel trans-
lated basis {E(t),...,En_1{t)} and define the automorphism-valued

function B: s — B(s) on {7’(0)}*' by

(11) Y(s) = (BF)(s), i=12...,n—1.
Then B satisfies the Jacobi equation

(12) B"+ RoB=10,

where R = R, 7/, and it has the initial values



134

P. BUEKEN - L. VANHECKE (8}

(13)

1 0
B(o)=(0 D),

—, 0
B’{O):( 0 ;)'

Hence, using (10) and (11) we have for the components of g:

(14) o

.

1

g 8

gulp) = 9(55’ 5&7) (s} = (Y1, Y1)(s) = g(BF,, BF;)(s)

= ("BB)u(s),

8 4

61e(p) = 9(5or 575 ) () =

= (BB,

8 @&

9s(p) = 9(5 505) (5) =

- glz'(tBB)nb(s)

for a,b=2,...,n— 1. Note that

gin(p) =0,

1909, Y.)(s) = S9(BF, BR)()

2 6(¥a, Yi)(s) = Z9(BFo, BR)(s)

i=1,...,n—1.

In what follows we will use {14), (12) and (13) to write down some terms
in the power serics expansions of g;;. But, since we only need this for
Sasakian spaces with & = £, we shall only write down the results for that
case. Note that then s, = 0.

After some detailed computations using the properties for the curva-
ture tensor R of a Sasakian manifold, we get

THEOREM 3. Let (M,g,£,n,¢) be a Sasakian manifold and suppose
we have a system of Fermi coordinates, as mentioned above, in a tubuler
neighborhood about a flow line o of £. Then we have, at p = exp,,(Tu),
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(15)

g =1-— r? + ﬁ(3 - Ruwuwu)(a(t)) -

gia = %(9(% Eo) = Rupune) (0(8)) = 2 (Vo Rupuna) (0 (8)

Gab =

5

e
1_6 (vuRuvuuvm) (G(t))

T (7 SR e — BV Rupuupu — 15) (e(t)) +O(r7),

120 (52 RuwuuaRuaun_ 59(99'“‘ E ) TV Ruwua) (D'(t))

S 12V Rupues + 3vu&m) (o)) + 00,

Gap — I'E(Runub)(att)) - i(vu-&mub)(a(t))

* 180 (8 Z RoavaRubua — QV,‘“RMW) (o (t))
e 2 3 Ruosa Vo Rt

+ 2 Z vuRuuunRubun - viuuRﬂnub) (O'(t)]

6

+ 5040

(ssRupuuaRquuub + 34 E Ruuuav:uRubun
+ 34 Z VﬁuRunuaRubua - 559(W| Eu)Ruwuub

— 55g(pu, By) Rupuna + 55g(10u, Ea)g(ou, Es)

+ 55 Z vuRunuavuRubua - lov:uuuRuuub

- 16 Z R.muuRuau,ﬂ'Ruﬂub) (J(t)) + O(TT)
af

s (272 Russo VuFumsa + 26 2 Vg Ruoue
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and
gt =147% 4 %(3 + Rupuupu) (@(8)) + O(r®),
9" =T (Rugusa — ol Ba)) (012)
(16) + 2 (VR (0(8)) + O()

3

g™ =bap + — (Ruaub) (o(t)) + = (VuRuaus) (0(2))
+ ;—O (4 3 RussaFaua + 3v:n&m) (o(t)) + O(®)

where a, b, 0, 8=2,...,n— 1, and Rygua = Rus.ur,, Elc.

4 — p-rotations and harmonicity

Now we concentrate on the so-called p-rotation around a Bow line o
of the characteristic vector field £ on a Sasakian manifold. This rotation
is defined by (7) where

an | S=p+n8E.

It has already been considered in [10] and it is the normal analog of a

J-rotation on an almost Hermitian manifold (see {13]). Note that a ¢

rotation is a free rotation and moreover, using (3), we see that S is paraliel

along o. Further, since §? = —I, s is the reflection with respect to o.
In the proof of Theorem A we shall use the following result.

THEOREM 4. Let (M, g,€,7, ) be a Sasakian manifold. Then itisa
locally p-symmetric space if and only if all the p-rotations are isometries.

A proof of this theorem has been given in [10]. In the analytic case, an-
other proof is given in [5] by using power series expansions and a criterion
for isometric rotations given in {13].
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Next, we state some facts about harmonic maps and refer to {6], (7]
for more details. Let (M™,g) and (IN™, k) be Riemannian manifolds with
metrics g and h respectively, and let +: (M,g) — (N, h) be a smooth
map. The covariant differential V(d#) is a symmetric tensor field of
order two with values in ¥ (T'N), called the second fundemental form
of 4. The trace of V{dy) is called the tension field of ¢ and is denoted
by 7{%). ¥ is called a harmonic map if 7(3) = 0.

To study these harmonic maps analytically, let U C M be a coor-

dinate neighborhood with coordinate system {z},...,2") and V C N a
coordinate neighborhcod with coordinate system (¥',...,y™) such that
w(U) C V. Then the map ¥ may be expressed by y* = ¥*(z T,

where @ = 1,...,m. Further, the differential d(z) can be repr&sented

by the Jacobian matrix (%‘;—;) and finally, we see that

“ Y Mk OV | Ny OY° OYF
(18) (V(dﬁ’))ﬁ: 5amr ~ Thigr + Tan g gor

where MT% and ¥T7); are the Christoffel symbols for (M, g) and (N, h)
respectively. Consequently, % is harmonic if and only if

(19) (%) = g% (V(dy));, =0

foralla=1,...,m
Now we turn to the

PROOF OF THEOREM A. We start the proof by considering the ex-
pressions (18) when ¥ = s,. Using (9) we then get, with our choice of
Fermi coordinates:

(V(dso))y, = = T4 (p) + T, (s5()),

(Vdsa))], = = TH(0)ST (1) + T, (50 (p)) ,

(V(d2.));; = = T4,(0) + Ty (50 (1)) S2 (0 (1)) ,

(V{dso))}; = — T5(p)ST (0(8)) + T5(5. () P (o (1)),
(V(ds,))y; = = Diy{p) + Tha(50(2)) S (o (1)) S o (8))
(V(ds,));; = =T (p)S2(o(t) + Tl (50 (2)) S2 (0 (1)) S5 (o (8))

(20)
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for 1,5, k,a, 8,7 = 2,...,n and where the Christoffel symbols are given
by

1 dga . Ogjt 391--)
£ _ 1 w(00u 99t 99y
Ty = 29 (Bxf + s Ozt /)’

Now, we use the expressions (15) and (16) to obtain power series
expansions for the quantities in (20) and hence, also for the components
7(8,}* of the tension field 7(s,). In order to do this we put

ru = Z IkEk
k

in (15) and (16). Then we may write

5
7(8,)F = ZC“-(HT'" +0(r%)

i=2

and so, 7(5,) = 0 implies G‘,-“"J =0,i{=2,...,5 as necessary conditions.
A long calculation shows that these conditions involve only R,.u and
V!  Ryu slong the fiow line ¢. We now write down these conditions
after putting Ei(t) = (wu){o(t)). Then we get explicitly the following
conditions along o:

(21) E (VuRunua - Vanwuwnwuwa) =0,

[+ 3

(22) Z (VzuRuuun - v:ruquP“‘P“Wlﬁﬂ) =0,

(23) 45(VuRwuwu - VWRWMW)
-3 z (RuaquRu“g. - R‘puwnwupbkuﬂ\puwaﬁpuwb)
a,b

+ 72 (viuuRﬂﬂ“ﬂ - viuwquWiﬂ“ﬁP‘“'ﬁﬂ) = D!
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(24) 252(V2, Rupuupu — Viupu Rupuupu)

—-10 Z (RuﬂubviuRunub - Rpuwawuwhviu¢uﬁwuwnvu¢b)

a.b

+20 Z (v:uuuR“ﬂuu - v:uwuwuquPuPGPwﬂﬂ)

2
—35 z VuRuaubkuRvumwuwb + 65 z (vuRucub)
a,b

a.b

+ 110 Z (Vngu;;nwuwb)g =0 ]
ab

where all the summations are taken with respect to an orthonormal basis
{f1,-- ) fazr} of {£}* at each point of o.
By replacing u by wu in (24) and by comparing with (24) we then
get at once
Z {(vuRuaub)z + (VouRpupapues)’} = 0

a,b

and hence,
vuRuaub =0.

So,
V'l.l Rurpuupu = 0

which implies that the manifold is locally ¢-symmetric (Theorem 2). This
means that each w-rotation is an isometry (Theorem 4).

The converse is trivial.

We finish with a

Proor oF THEOREM B. The result follows at once fromm Theorem
A and Theorem 4.
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