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Nijenhuis and bi-Hamiltonian manifolds
with symmetries
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RiassuNTO - Si completa la discussione delia riduzione di varietd di Nijenhuis ¢
bihamiltoniane con deformazione e simmetrie, considerata in un precedente lavore f1].
St applica tole schema allg strutiura di integrabilitd di alcune gerarchie di equaziont di
evolurione in una e in due dimensioni spaziali.

ABSTRACT — The reduction scheme for Nijenhuis and bi-Hamiltenian manifolds
with deformation and symmetries, previousiy considered in {1}, is completed. Some
applications o the integrmbility structures of NLEE’s in one and two spatial dimensions
are gruen.
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1 - Introduction

In a previous paper [1] the reduction of bi-Hamiltonian manifolds
with deformation and symmetrics has been considered. The aim of this
paper is to complete the discussion of the reduction scheme and to give
some applications to intcgrable non linear evolution equations. The main

(*}This work has been partially supported by the G.N.F.M. of the Italian C.N.R. and
by the Projoct “Metodi geometrici in Relativitd e Teorie di campo” of the Italian
M.U.R.S.T.
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emphasis is on the geometric objects, i.e. Poisson and Nijenhuis tensor
ficlds, symmetries, deformations, rather than on the explicit construction
of the equations.

As for the notations, definitions, theoretical results we refer to [1].
However, in view of the applications we explicitly recall a result dis-
cussed in [1], which is related with the so-called reduction technique to
a transversal submanifold. If M is a Nijenhuis manifold, we say that
8 ¢ M is a transversal submanifold if the Riesz index of IV is constant
at any point of §: ind{N) = r, and if the splitting property holds:

(1.1) TS, M)=TS®Ker N* () = @, (u) + vi{u)

T(S, M) being the space of vector fields evaluated at any point u € S.
On account of (1.1), one can define the mapping

(1.2) II: T(S,M)—TS: ¢r—yp,

and show that N, its graded symmetries T and its symmetries w,(a € G,
the symmetry algebra of N) can be reduced to S:

Lemma 1.1. The fransversal submanifold S is a Nijenhuis manifold.
The reduced structure in S is defined by

(1.3) N=IONII' 7=IIt @, =g,

Moreover, let us assume that M be a PN manifold, that L.(P) =
NP, where L. () is the Lie derivative w.r.t. 7, and that the vector fields
@, be symmetries of both P and N: Ly, (P) = L, (N) = 0. By intro-
ducing the adjoint map II* of I w.r.t. a pairing <,>: T"M xTM — IR,
one can show that:

LEMMA 1.2, The transversal submanifold S C M iz o PN manifold,
with P given by
P=1PII"

and N,7,@, given by (1.3).
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Here, the reductions of P and N are considered separately, differently
from [1]: this is made in view of the applications. Indeed, even if from an
abstract point of view it is possible to consider the structures N, P, 7, ¢,
all together, the application of the abstract scheme to the consctruction
of hierarchies of integrable evolution equations points out the difficulty
of simultaneously defining a Nijenhuis and a Poisson structure together
with a symmetry algebra and a master-symmetry. In many cases, one can
rigorously construct a GNT structure, i.e. a manifold with a symmetry
algebra, a Nijenhuis tensor and a master-symmetry; by its reduction and
realization, the recursion scheme for a given hierarchy of evolution equa-
tions is obtained. In this regard, we recall that an iterative construction
of vector fields in invelution does not require a Poisson structure, but
only a Nijenhuis tensor and a symmetry algebra (e.g., this is the case of
the well-known Burgers' hierarchy). Another possibility is to obtain a
GPN structure {a Poisson-Nijenhuis manifold with a symmetry algebra)
without a master-symmetry.

The origin of these difficulties will appear clearly from the applica-
tions in the following sections. Roughly speaking, this is due to the fact
that one needs to introduce a derivation operator which is both invertible
and skew-symmetric and that, on the other hand, the master-symmetries
of the abstract model are constant elements w.r.t. this derivation. More-
over, the definition of a Poisson tensor field requires the introduction of
a vector space in duality with the tangent space; in many applications
it cannot be identified with the tangent space itself, so that a derivation
operator cannot be interpreted as & mapping from the cotangent to the
tangent bundle; an example of this situation is given by the algebra of
pseudo-differential and of differential operators, on account of the well-
known Adler’s result [2). This paper is organized as follows. In Sect. 2,
sufficient conditions are determincd for the existence of a Nijenhuis struc-
ture. They arc suggested by the abstract Zakharov-Shabat (ZS) and chi-
ral models [3], and they arc based on the exisience of two compatible ac-
tions of a Lie group on the manifold. Under particular assumptions, they
can be interpreted as the conditions for the existence of & bi-Hamiltonian
structure. The remaining sections 3-5 contain three explicit applications.
In Sect. 3, the chiral medel is introduced in order to obtain the so-called
sccond representation of K P and KdV hierarchies [4, 5]. This structure
is studied as a GN7 structure: the Lenard bicomplex of vector felds in
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involution is obtained, giving rise to the K P and KdV hierarchies by
two particular realizations. In Sect. 4, the integrability structure of the
W K I hierarchy [6] is analyzed by means of the reduction technique on
a transversal submanifold {Lemmas 1.1, 1.2). By a suitable choice of the
reduction submanifold, the GPN structure is constructed; moreover, by
considering a suitable “enlarged” submanifold, a GNT structure is ob-
tained. In the last Sect. 5, a realization of the Z5 model is considered,
furnishing the recursion scheme for the AKX NS hierarchy in two spatial
dimensions and in particular for the Davey-Stewartson (DS) hierarchy

7).

2 — Lie groups and Nijenhuis manifolds

Let M be a differentiable manifold, G a Lie group and ®: G x M —
M, ¥:Gx M — M two (left) actions of G on M. The correspond-
ing infinitesimal actions are denoted by X: G — X (M): X.§ = pe(u),
Y: G — X(M): Y€ = e(u), where u € M, £ € G. So, one has:

(2.1) [pes wnl = Aoty (A€ C)

(2.2) [ve, Y] = 1¥en (n€C)

where [€,7] and [@¢, @y] = Ly {ip;) are respectively the commutators of
the Lie algebra G of G and of the vector fields in X{M). If an action,
e.g. ¥, is Abelian, it is g = 0; if uz # 0, one can normalize 1 = 1. We say
that & and ¥ are compatible actions if the following relation holds:

(2.3) [@er ¥al + [¥es Pal = Aien) + Pien)

(If an action is Abelian, eqs. (2.1)-(2.3) define a semi-dircct sum of the
Lie algebras defined in X(M) by ¢ and 9).

Now if the vector ficlds ¢ are a basis in A (M), the tensor ficld N
given by Ny = 9 is well-defined and it endows the manifold M with a
Nijenhuis structure:
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PropPOSITION 2.1. Ifa Lie group G acts on a differentiable manifold
M by two compatible actions ¢ and ¥ with generators ¢ and 3, and

if pe are a basis in X(M), then the manifold M is a Nijenhuis manifold
with N defined by Ny = .

Proor. The Nijenhuis condition T(N) = 0 follows directly from egs.
(2.1)-(2.3), since for any pair of vector felds ¢, ¢, it is:

T(N)(pe, q) = [Npg, Ngg| — N [0, Nooy] —
- N[N‘PE'W!?] + N? [S"Es‘Pn] =
(2.4) = [TIL'&'wq] -N ([5051 ¥nl + e 'Pn]) + ’\Nz‘p[t.nl =
= e q — N (Mje.n) + Bplem) + ANVYgq =

= pt (Ve — Nojem)
=0

g
As a particular case, we say that ¥ is obtained by a deformation of
& if there is a vector field 7 € X{M) such that

(2.5) Ye=[r 0] (YE€G)

Since on account of egs. (2.1}, (2.5) it is:

[0e, Yol + [P 0] = (96, (72 @0l + ([T 0l 00] =
(2.6) = 1, [eernll =
= Aen)

the compatibility condition (2.3) can be verified only with u = 0. So,
any action ¥ which is a deformation of ¢ is compatible with & iff it is an
Abelian action.

If M = G, a solution of egs. (2.1)-(2.3} is obtained by considering
affine actions of G onto itself [8], i.e. by assuming that ¢ and ¥ take
the form

2.7 we(u) = DE + aeu Pe(u) = D€+ au
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Indeed, egs. (2.1), (2.2) are verified iff a; and a; are linear representations
of G and D, D’ are one-cocyles w.r.t. them, i.e. if

(2.8) glq — Gnlg = —Mieq  Cly — Q0 = —HGje
and if
(29)  eDn—a,DE=-ADl,n] e D'n—a,D'¢=—pD'l§,7)

Furthermore, the compatibility condition (2.3) is verified if a¢ and ag
are compatible representations (i.e. if their linear combination is itself
a representation) and if D and D’ are cocycles also w.r.t. a; and ag
respectively. A solution of the entire set of conditicns is obtained by
taking agu = a;u = —adgu and for any pair of derivations I and 1) in G.
As a particular case, if the action @ is linear (D = 0) and if the action ¥
is constant {afu = 0), then a Nijenhuis structure is defined in G for any
representation ag and for any cocycle D' w.r.t. a;. A non trivial example
of this situation will be considered in Example III of this section.

REMARK I. Let us assume that M = G, that G can be identified with
its dual space G* by a suitable pairing <,> : G x §* — IR and that &
and ¥ be affine actions. Then eq. {2.7) can be seen as defining two linear
mappings P: G x G* — G and Q: § x G* — G given by P,§ = p¢(u) and
Q.£ = Ye(u), so that one can associate in M = G two tensor fields P and
Q of type (2,0) with the actions ¢ and ¥. Let us consider the tensor
P; eqgs. (2.1), (2.7) entail that the Schouten condition [P, P], (§,n) =0,
which has to be verified by any Poisson tensor [1], is equivalent to

pigy P& Pa) = Pln PO+ PP (&) =
(210) (4, Dy — 0, D€ — Dagn) + (agan — nte — Gaza)u = 0
where af is defined by <u,e >=<a¢u,n>.

If A = 1, egs. (2.8), (2.9) for a¢ and D are verified by taking
agu = adeu and by D equal to any coadjoint cocycle. Moreover, if D
is skew-symmetric w.r.t. <,>, P itself is skew-symmetric and eq. (2.10)
entails that P is a Poisson tensor. The same conclusion can be drawn for
the tensor (J; moreover, the condition that the action ® and ¥ be com-
patible can be interpreted also as the condition defining a bi-Hamiltonian
structure in M.
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If A = 0, there is the particular solution e;u = 0, so that P is a
constant tensor field in M = G, and it is clearly a Poisson tensor under
the further assumption that D be skew-symmetric.

Summarizing, compatible actions entail s Nijenhuis structure, but
the existence of two compatible Poisson tensors requires more restrictive
conditions; in particular, for M = G and for affine actions ¢ and W,
the introduction of a suitable pairing <, > and the skew-symmetry of D
w.r.t. <,> are required. a

REMARK II. Under the assumptions of Remark I, the existence of a
deformation 7 for the action ¢ is generally not equivalent to the existence
of a deformation for the tensor P, at least if 7 is assumed to be the same
in both cases and if it is not given by a constant vector field. Indeed, if
Q is related with ¥ one obtains:

(2.11) QuE = Ye(r) = I, @el(w) = L, (PL)E + Pur.€

so that the tensor field which is related with ¥ is not the deformation of
the tensor field related with &. a

At last, we apply the previous abstract approach to three well-known
examples of Nijenhuis structures, which can be constructed by means of
compatible actions on a manifold. They are strictly related with three
abstract integrability structures which have been discussed in [1], i.e. the
Zakharov-Shabat (ZS), the chiral model and the structure of the non-
periodic Toda chain respectively.

ExaMpPLE I. Let A, K C A,G C A be respectively an associative al-
gebra with unit and with a derivation D, the kernel of D and a subalgebra
where D is invertible. Let M = G+ {c} bc an affine hyperplane modelled
on G,c € K being such that [¢,G] € G. The infinitesimal generators of
the actions ® and ¥ are the vector fields

(2.12) pelu) = DE+[u,&]  ve(u) =le,g]

where © € M,E € G, [u, &) = uf — fu,a € A is such that [a,G] C G.
The conditions (2.1)-(2.3) are verified with A =1, y =0, so that M isa
Nijenhuis manifold on account of Prop. 2.1. Morcover, ¥ is a deformation
of @, since it is Y = [7,9¢] with 7(z) = a (actually, this statement is
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rigorous if a € G, it is only formal if o € A/G: this point will be considered
in more detail in the applications of the following sections). As is known
(9], this manifold is also a bi-Hamiltonian manifold if it is realized by the
algebra of polynomials.

Indeed, let B be an associative algebra with unit and with a trace-
form Tr: B — R {in the applications, B is R or gi{n,IR)), A the al-
gebra of polynomials of any fixed order n whose cocfficients are C(B),
D = 9/0z, K and G be the polynomials with constant and with rapidly
vanishing coefficients, respectively:

(2.13) £€GiE=Y6id (€ CEESB)

A structure of associative algebra is given by the following product:
(.14 € 1) =3 (St 2

and G can be identified with G* by putting

(2.15) LEG  p= i;,u.-z" (z€ €, € 8(B))

and by introducing the pairing

(2.16) <p € >= Z/H”Tr piki)dz

i=0

ExaMPLE I1. Under the assumptions of the previous example, let us
consider the compatible actions with the following infinitesimal genera-

tors:
(2.17) pe(u) = DE Yelu) = [1,€]

fulfilling eqs. (2.1)-(2.3) with A =0, = 1. In contrast with the previous
example, these actions have no deformation. Indeed, for a vector field +
such that ¢ = [7, ] it should be

{218) T:.X = [D_lx:'u] = T:(X1?) = [D—IX)X]
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for any x, ¥ € A(M), but this equation has no solution, since 77/(x, %) is
not symmetric w.r.t. x,Xx. Also in this case, the results of the previous
example for the algebra of polynomials hold true (they are clearly trivial
if B is an Abelian algebra}; so, one can define a bi-Hamiltonian structure.
In contrast with the non-existence of a defermation for the actiens, one
has a deformation of Poisson manifold, since it is straightforward to verify
that the vector field 7: 37(u) = [D~'u, u] is such that

(2.19) PE=D§ Qu=E Q=L(P)

ExaMPLE III. Let A be the algebra of the sequences with coefficients
in the associative algebra B:

(2.20) p€A  yp={plexz, @€EB

Let G, K be the subalgebras of the sequences such that ¢; — 0(i — $o0)
and of the “constant” sequences respectively. The manifold M is the
affine hyperplane M = G + {c},c € K, and the infinitesimal generators
of the actions ® and ¥ are

(2.21) we(u) = {wik — &1} i) = {aks — Liai}

with « € M, e € K; these actions are compatible, since eqs. (2.1)-(2.3)
are verified with A = 1, u = 0, and they admit the {formal) deformation
7{1) = a. So, M is a Nijenhuis manifold. In this case, the two actions do

not endow M with a bi-Hamiltonian structure, if G* is identified with G
by the pairing < g,& >= 3, ;. Indeed, since in this case it is

(222) D=0 aru = {‘U.(E,' - 6"_111'."}
for the action ¢ and
(223) D'f = {G,‘E“ - E.-_la,-} a’su =0

for the action W, these mappings are not skew-symmetric w.r.t. the
previous pairing.
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REMARK III. The previous construction of a Nijenhuis structure on
a differentiable manifold M can be generalized by considering a vector
space UJ which is endowed with two Lie algebraic structures ¢ and &',
whose commutators are denoted by [£,7]g = aden and €, 9l = adiy
respectively. Then egs. (2.1)-(2.2) and the compatibility condition (2.3)
become respectively

(2.24) e, n] = A(pﬂd{ﬂ [es Yyl = J'-W"ad' n

(225) ['PE: %] + [Tl’e, 'Pr.l] = Mﬁad;q + ’\wad(q

and it is straighforward to verify (as well as in Prop. 2.1) that the tensor
N: Ny = ¢ endows M with a Nijenhuis structure. As a particular
case, if M = U and affine actions of the form (2.7) are considered, then
eq. (2.24) has the particular solution agu = —adgu, qeu = —edgu, with
D, D' derivations w.r.t. ad, ad’ respectively. The compatibility condition
(2.25) entails that D, D' be derivations w.r.t. both ad and ad’ and that
ad, ad’ be compatible, i.e. that their linear combinations be themselves
Lie algebraic structures.

As an example, let us consider the vector space U, of the polynomials
with degree n in z € C with the product £ - n defined by (2.14); let us
endow U/, with another structure of associative algebra, given by the

product

n—1 n
(2.26) (Exn)(z): =3 2 ( > E,-_.-_mn-j)

i=0 j=i41
Then U, is endowed with two Lie algebraic structures § and G’ by defining
(2.27) adgn=£€-n—1n-§ adn=E*xn—nx*{

(Indeed, U, can be endowed with n-+1 non trivial Lie algebraic structures;
they are the starting point for the construction of the multi-Hamiltonian
structures characterizing the hierarchies of integrable equations conside-
red by FLASHKA-NEWELL-RATIU [10], MARTINEZ-ALONSO [11], ANTO-
NOwICZ and FORDY {12]. A theoretical study of these structures will be
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considered in more detail elewhere). Then if one chooses D and I¥ as:
(2.28) DE=Y (DE, ;)2 D=0
i=0

one can easily verify that the actions defined by
(2.29) pe(u) = D€ —aden Pe(u) = —adeu

are compatible actions, so that M = U/, is a Nijenhuis manifold. More-
over, by using the pairing (2.16) one can assaciate with the vector fields
(2.29) two Poisson tensors, which are defined as P.& = pe(u), Q€ =
Ye(u). So, the vector space U, can be endowed with a bi-Hamiltonian
structure (indeed, as it has been previously pointed out, one can define
in U, a multi-Hamiltonian structure, given by (n+1) compatible Poisson
tensors).

Of course, it is also possible to have different Lie algebraic structures
acting on a manifold M whose actions are not compatible. A well-known
example is obtained by considering the solutions R of the modified Yang-
Baxter equation on any Lie algebra:

{2.30) adpRn — Radpen — RadAn = aadyn (@ € C)

For any such R, the algebra § can be endowed with a second Lie algebraic
structure ad’ which is defined as [13]:

(2.31) ad,n = adgen + adeRy

The two actions given by p¢(u) = adeu and ¢(u) = adyu are not com-
patible, so that the algebra has not a Nijenhuis structure which is directly
constructed by means of these actions. 0

83 - The GNr scheme for KdV and K P hierarchies

Let us discuss in more detail, for the chiral model of Example 1],
Sect. 2, the conditions enabling one to introduce in & rigorous way a
G N T structure, i.e. a Nijenhuis tensor feld with a symmetry algebra and
g master-symimctry.
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Let A be an associative algebra with unit and with a derivation D,
V C A a subalgebra where D is invertible, K = Ker [ and K, C K an
Abelian subalgebra such that [K,, V] C V.

The manifold M is the affine hyperplane modelled on V, M = V +{c},
¢ € K,. By taking G = V in the general scheme, we consider the actions
of V on M with the infiritesimal generatars (2.17); they allow us to define

in M the Nijenhuis tensor NV given by:
(3.1) Nog = [, D7) (reM,peV)

The symmetry algebra of N is given by the action of K, on M by the
vector fields wp(u) = 'u,b],b € K,, fulfilling the condition L, (N) = 0.
The recursion scheme for the X P hierarchy is obtained by the following
choices:

i) A is the algebra of differential operators in X =8/8z,Y = 8/0y, with
coefficients in C*{IR?)

(3.2) ac A: a= z aji(z, y) X Y*

7k

ii) D is given by: Da =3 a_jk,szYk (ajk,s = Ba;x/0x)
Tk

iii) V. K, K, are the subalgebras whose coefficients are respectively rapidly
vanishing for jz| — co, y-independent and costant.
ivic~X2+Y.

The equations of the K P hierarchy can be obtained by taking uz =
g+ X?*+Y where g is a function (as for the construction of the equations
following this scheme, see [5]). As a particular case, the recursion scheme
for the KdV hierarchy is obtained from the previous one by replacing ¥
with z € €, ie. by choosing ihe algebra of the polynomials in z € ©
whose coefficients are polynomials in X = 8/8z.

The previous choices for M do not allow one to introduce the scaling
1, (and consequently the master-symmetry T = N7,); indeed, 7, cannot
be interpreted as a vector field in M, being 7,(u) = u. However, a
N~ structure can be rigorously constructed by & different choice of the
manifold M. To this end, let us assume that V be an ideat of A and
that there is an element z € 4 such that Dz =1, [z, K,] C K, (clearly,
if T exists it is not unique). Under these assumptions, let us consider
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the subalgebra W = V & K, and let us define the mapping J: W — A
depending on z and given by

(3.3) T(po + i) = D_I'Pu + Ty (v EV ek € K,)

Cleerly, J is a right-inverse of D: D7 = 1, and moreover it is 7D, = 1.
Then if M’ = W, one can essily verify that M’ is a Nijenhuis manifold
with a Nijenhuis tensor ¥: W x W — W defined us:

(3.4) Nup = [u,7¢]

Moreover, 7,: T,(u) = u and 7 = N7, are well-defined as vector fields
in M’, and they can be proved tc be a scaling and a master-symmetry
for N. The symmetry algebra is still given by the vector flields w, as
in the previous case; so, one has a complete GNT structure defined in
M = W. The proof that the tensor field (3.4) is & Nijenhuis tensor is
easily obtained by directly verifying that T'(V) = 0, and it is essentially
based on the property that

(3.5) ID[Tp, T = [Te, T¥] (Yo, p € W)

following from the assumptions on K, and z. At last, one can remark
that the Nijenhuis tensor (3.4) is not obtained by the actions ¢, ¥, since
¢ is not an invertible mapping in W.

If the GN7 scheme is realized in order to obiain the K'P and KdV
hierarchies, the abstract element £ € A becomes simply the function x;
80, the master symmetry 7(u) = |u, Ju] becomes:

(36) 7(u) = (D7'qy + 0= — 2(gez + qu)) + 2(q — 2¢:) X +2XY +2X°
at any point w =g+ X?+ Y for the K P case and
(3.7) 7(q) = (= — 2¢zz) + 2(¢ — Tg:) X + 22X +2X°

at any point u = g + z + X? for the KdV case {actually, it can be proved
that the entire hierarchies of K'F and KdV equations can be obtained
by 7 although in a different way w.r.t. the usual master-symmetry ap-
proach [14], [15]; however, this problem will be considered in more detail
clsewhere [16]).
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REMARK. The choice of the algebra of differential operators allows
one to construct the recursion scheme for X P and KdV, but not the
related bihamiltonian structure corresponding to the actions (2.17). In-
deed, since in our scheme the derivation D is interpreted as a tensor
field of type (2,0), we need a non-degenerate bilinear form enabling us to
identify T"M with TM itself. Unlikely, as far as we know the algebra
of differential operators can be put in duality only with the algebra of
pseudo-differential operators, by means of the well-known trace-form in-
troduced by ADLER [2]. In our opinion, the problem of the construction
of a bi-Hamiltonian structure related with the chiral model is not com-
pletely solved neither in the framework of the so-called bilocal formalism
[7), (14], based on the use of the algebra of integral operators with dis-
tributional kernels and of a suitable bilinear form between two spaces of
admissible functions. Indeed, these spaces seem to us to be not clearly
characterized.

4— The WKI hierarchy

In this section we discuss the integrability structure which is associ-
ated with the so-called WK hierarchy [6). To this end, let us consider
the algebra A = gi(2, C*(IR)), the subalgebra V = g{(2, S(K)}, the sub-
algebra K of the constant 2 x 2 matrices and the derivation D w.r.t.
the independent variable z (the spatial dimension of the equations of
the hierarchy). The manifold M is the affine hyperplane modelled on
V: M =V + {03}, 03 = diag(l, —1) being the Pauli matrix. In this case,
at any point u € M it is possible to identify T,M =~ TjM = V by the
pairing:

+oo

(4.1) <, P = Tr/ o, P,dT + Trf Qa4 dT

—oo ~ 00

+oo

where the indices o and d denote the off-diagonal and the diagonal parts
respectively and 7' is the trace of matrices. Clearly, Dy, is invertible
and D: T*M — TM is skew-symmetric w.r.t. (4.1). In this case we
can consider the chiral model of Example 11, Sect. 2, giving rise to the
bi-Hamiltonian integrability structure which is defined by the Poisson
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tensors P, Q:

(4.2) Pa=Da Q.o=[u,q]

the Nijenhuis tensor N:

(4.3) Nyp = Qu.P o =[1,D7y]
and the symmetry algebra:

(4.4) o = [u, b] (b e K, K, V] CV)

The transversal submanifold S (see Lemmas 1.1, 1.2) for the WK hier-
archy is given by

(4.5) § = {u: uq = o3}
Indeed, at any point of § the Nijenhuis tensor N has a constant Riesz
index, ind(N) = 1, and the splitting condition is verified, since TS =

{¢: s =0} and:

(4.6) ImN={¢:Tr p=Tr up=0}

(4.7) Ker N = {: ¢ = A1 + (uu)., A, p € S(IR)}

So, one can construct the mapping II: T(S,M) — TS and its dual
IT": T*(5, M)} = Im N* w.r.t the pairing (4.1}

(4.8) I s oy — %D{uoD‘lTr(cpas))
(4.9) I*:a—a, - %agD_lTr(uoDa,,}

Now, the integrability structure (4.2)-(4.4) can be reduced by the two
Lemmas cited in the Introduction. One casily obtains:

(4.10) P: g, = Da, + %D(uoD_‘Tr(uoDa,,))
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D: 9o = [05, 0] — %[uo, 03] D=\ T'r(u, Dery)
(4.11) .
- §D(uaD'1Tr(a3[uo, o))

Moreover, the Nijenhuis tensor is:

—-1

N=QP

(4.12) 1 " »
N, = [03, D7 p,] — ED (ue D' Tr (o3, 1) D™ o))

and the symmetries @, become:
1 -
(4'13) -{l‘-"b: ab = [uosbd] + [031b°] - ED (uﬂD 1TT(“3[UO: bo]))

REMARK I. Actually, the recursion operator of the WK hierarchy
is ?\7‘1; for its construction, see {17], where N has been obtained just
by the present approach. As for the bi-Hamiltonian structure P, @, the
reduction technique of this section has not been previously applied to the
W KT structure at the best of our knowledge. 0

REMARK [I. With reference to the Restriction Technique for Poisson
manifolds discussed in [1], Sect. 3, we remark that P can be restricted
to S, in contrast with Q. Indeed, at any point of S it is:

(4.14)
TS ={a=ag} Tp(S)= {a=a} TH(S)={a: [u, ) =0}

so that P clearly fulfils the conditions for the restriction of Poisson ten-
sors: T°(S,M) =TS° + T3(S). On the contrary, @ does not fulfil this
condition and consequently it cannot be restricied to 5. Moreover, it
is not possible to reduce the structure (4.2) as a P structure {on ac-
count of the invertibility of P = D} since the submanifold § does not
fulfil the condition of the Restriction Lemma for PQl manifolds stated in
1], Sect. 4. So, the reduction technique on a transversal submanifold is
the unique method to obtain the bi-Hamiltonian structure of the W KT
hierarchy. (

Again, in order to introduce the master-symmetry structure, one
has to modify the manifold M. Following the same approach as in the
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previous section, we consider the manifold M’ = V@& K and the Nijenhuis
tensor N: Nyy¢ = [(u,J], so that 7,: 7,{u) = v and v = N7, are well-
defined and can be correctly interpreted as vector fields in M’. The
reduction technique on a transversal submanifold can be applied to /¥ and
T, since at any point of the submanifold S given by (4.5) the conditions
required by Lemma 1.1 are fulfilled. Indeed, Im N is still given by (4.6),
whereas Ker N is defined as

(4.15) Ker N={¢: Jg¢ = A1+ puu, A pue€ C®(R)}

8o that the mapping IT becomes:

1
(4.16) IT: @~ 0, — ED(HOJTT(WU;;))
In particular, the scaling 7, gives rise to:
(4.17) Ty = II7,: Tolu) = —Tuox

We are not going into further details on the explicit construction of the
equations of the W KT hierarchy, which can be obtained either by N or
by 7 following well-known techniques holding for integrable equations in
one spatial dimension (e.g. see [15] and references therein). Instead, we
end this section by observing that one can introduce in M’ =V @& K the
pairing

+oa

(4.18) < a,p = Trf apigedz + Tr app,

—oo

where o = o, + g, @ = ¥, + @k It is straightforward to verify that D is
skew-symmetric w.r.t. (4.18) and that P and @ are still Poisson tensors;
since P is not invertible in M’, one has a bi-Hamiltonian manifold but
not a Poisson-Nijenhuis manifold. Otherwise stated, it is not @ = NP,
as it follows from NPa = [u,JDa] and from the fact that J is not a
left-inverse of D.
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5— The AKNS and DS hierarchies

In this section we apply the reduction technique to the GNT struc-
ture of Example I, Sect. 2, in order to obtain the recursion scheme for
the AKNS hierarchy in two spatial dimensions; as is known, by further
reduction of this structure one recovers the recursion scheme of other
interesting hierarchies, and in particular that of the Davey-Stewartson
(DS) equation [7}.

So, under the assumptions made in Example I, Sect. 2, the Nijenhuis
tensor N: Nyg = ¢ is defined by the two infinitesimal generators:

(5.1) we =DE+[uw,€] e =[a,€]

We make the following choices (to be verified in any specific realization):
i) A = gl{2, B), where B is an associative algebra with unit and with a
derivation D

ii) a = g3 = diag(1, —1)

iii}y M = G + {ag3}, where a € K = Ker D is assumed to be such that
the restriction to G of the mapping Dy: Dy = D + adye, be invertible,
where we denote still by D the component-wise derivation in gl(2, B).
iv) the reduction submanifold S C M is defined by S = {u: ug = aos}.

Since at any point of § it is

(5.2) ImN?=ImN = {p: ps = 0}

(5.3) Ker N? = Ker N = {@: ¢ = Daba + [, €4], Vs € G}

it follows that ind(N) = 1 and that the splitting condition (1.1) is verified.
So, the mapping II: T(S, M) — T'S is given by

(5.4) II: ¢ — @0 — [tay D ']

and the Reduction Lemma 1.1 can be applied. As for the Nijenhuis tensor
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N, on account of (5.1) it is simpler to explicitly compute N~ ', which takes
the form:

— 1 1 1
(5.5) N "o = 503D — 5 [to, D3 [tte, 73041
(one has to recall that for 2 x 2 matrices the equation ¢, = [03,£,] has
the unique solution &, = 103p,).

As for the symmetries of N, they are given by the vector fields ¢, =
[u, ca], ¢ € g1(2, K). So, it follows from Lemma 1.1 and from (5.4) that

(5.6) B, = [,

Let us consider two realizations of the previous abstract scheme. The
AK NS hierarchy in one spatial dimension is obtained by the following
choice:

(5.7) B=C®R) G=8(R) a=0

the usual parametrization of S being

. 0
(5.8) jigr)r—u= (—T"%) (g,r€Q)

A recursion scheme in two spatial dimensions is obtained by choosing the
algebra B of differential operators in Y and by taking a = Y. In this
case the operator D, acts on any £ € T'S as:

_ .y
(5.9) Du(+9 g)=(-—*—;f Uq) (Ds =8, £9,)
T -

and the Lenard bicomplex is reduced on the manifold of zero-order differ-
ential operators ¢,7 € S(IR). The equations of the DS hicrarchy can be
obtained by taking the coefficients of the differential operators in C*(C)
and by restricting the Lenard bicomplex to the submanifold r = ¢.

So, the manifold of the AK NS hicrarchy in one spatial dimension is
given by the vector space V of 2 x 2 off-diagonal matrices with entries
in S(R}), whereas for two spatial dimensions M is the affine hyperplane
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modelled on V. A more remarkable difference between the two cases is
the following one: for B = C*°(IR) there is a bilinear form, such as the
previous mapping (4.1) written for the WK hierarchy, enabling one to
define two Poisson structures related with o and g, i.e. the well-known
bi-Hamiltonian structure for AK NS, If B is the algebra of differential
operators, it is not possible to identify G* = G for the same reasons as in
the Remark of Sect. 3.

As a final remark, the prablem of a rigorous definition and reduction
of the master-symmetry for the abstract structure can be handled as well
as for the previous K P and WK structures. Let us consider the case of
one spatial dimension (@ = 0, D, = D); then 7: 7(u) = a is not a vector
field in M = G, but 7 € X(M’) if the enlarged manifold M’ = G & K
is considered. One can directly verify that M’ is a Nijenhuis manifold,
whose tensor is given by eq. (5.5) with D~} replaced by the right-inverse
J. Now, 7 = a is a vector field in M’ and its reduction give rise to

(5.10) 7 = II1 = —[t,, TO3}

corresponding to

(5.11) T= —2(_‘_”;)

in the parametrization (5.8) of the submanifold 5.
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