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Continuation of holomorphic solutions of

microhyperbolic differential equations

A. D’AGNOLO - G. ZAMPIERI®)

RIASSUNTO - Sia M unag varietd analitica reale, X una complessificazione di M, §)
un aperto di M con cono conormale proprio in un punto z, di 8. Sia v (risp. v’') un
aperto di Q x xp T X a fibre convesse e coniche soddisfacente: Q xar vy O Q2 xpm T X
(risp. o = Q xp X); si denotino con U (risp. W) gli Q-tuboidi a profilo v (risp.
v') (cf [18]) e con S gli intorni di z,. Sia P = P(x,D) un operatore differenziale
microiperbolico rispetto ad ogni —8 € N2 _(Q)* in v;, sopra Q (nel senso di (2.8)). Si
prova qui che per ogni U, W, S esistono W', S’ tali che

F€O0x(UNS),Pf € Ox{(WNS) implica f € Ox(W'NS").

Risultati analoghi sono inoltre ottenuti per operatori Q-iperbolici nel senso di [12] e per
operatori semiiperboloci nel senso di [5] e [9].

ABSTRACT — Let M be a real analytic manifold, X a complerification of M, Q
an open subset of M with N2 (Q) # T:,M, zo € 8Q. Lety (resp v') be an open
set of_Q Xupm TmX with conver conic fibers and with @ xar vy D Q Xar TaX (resp
v = QxmTuX); denote byl (resp W) the Q-tuboids in X with profile v (resp v') (cf
(13]) and by S the neighborhoods of zo. Let P = P(z, D) be a differential operator at
Zo with C*-coefficients which is microhyperbolic to each —6 € N;,(Q)* in v;5 relative
:z ? (in the sense of (2.9)). We prove that for every U,W,S there exist W', S’ such

a
feOx({UNS),PfeOx(WNS) implies feOx(W'NS').

()The contenent of this paper has been the subject of a talk given at the meeting
“Generalized Functions and Complex Analysis” held in Oberwolfach, West Germany,
may 7-13 1989.
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A similar result is obtained for Q-microhyperbolic operators in the sense of [12] and for
semihyperbolic operators in the sense of [5],/9). (We aim to refine the above conclusions
and show that in the preceding hypotheses P is an isomorphism of the sheaf (Coy x)T;, x

(cf [10]) at any p € ~vi3.)
KEY WORDS - Analytic Continuation.
A.M.S. CLASSIFICATION: 32D

1 — Preliminaries

Let X be a complex manifold, P a differential operator with holo-
morphic coefficients, and let o(P) be the principal symbol of P. First we
introduce a lemma which will be our main tool in proving propagation
theorems.

LEMMA 1.1. Let {Va}a (0 < a <1)andV be open sets in X such

that:

(i) VoV, Vo C_Vp, for 8> a,

(ii) Va =ﬂU Ve, Va= N Ve,
<a

f>a
(iii) VLNV \V cc W,
(iv) Nz(Va) # T2 X for everyz € 0Va NV \V,
(v) a(P)(z,{) # 0 for every z € 0Va NV} \ V and for every { conormal
toV, at z (cf. §2).
Then:

(1.2) feOx(V),Pf€Ox(VUV) implies f€Ox(VUW).

PROOF. For f as in the left hand side of (1.2) set V = {VUV,; f €
Ox(VUV,)}, endowed with the natural order relation; this is an inductive
family. Let V U V,, be a maximal element for V and suppose by absurd
that o < 1.

Note that f € Ox(Va,) and, by (iii), Pf € (Ox). Vz € 8Vo,NV1\ V.
Using (iv) and the refined version of the theorem of Cauchy-Kovalevsky-
Leray given in [1], we conclude that f extends holomorphically to a neigh-
borhood of 8V,, NV \ V.

By (iii) (Vi \ V)NV, cC Vi\V, hence from (ii) we get that, in V1\V,
{Vs}s (B > ay) is a fundamental system of neighborhood of V 4; it follows
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that each open set containing (0Vo,, NV \ V) U (V U V,,) contains also
V U Vj for some 8 > ag. Hence f € Ox(V U Vp) which is a contradic-
tion. 0

REMARK 1.3. This result is a variant of a wider principle by Kashi-
wara concerning the “propagation of cohomology of a complex” (cf. [7,
Theorem 1.4.3)).

2 — Statement of the results

Let M be a C*-manifold, X a complexification of M. We denote
by T°M, T*X the cotangent bundles to M, X, and T}, X the conormal
bundle to M in X; in particular we denote by T X the zero section of
T°X. Weset T*°X =T*X \ Tz X.

For subsets S,V C X one denotes by C(S, V) the normal cone to S
along V (cf [7]) and by N(.S) the normal cone to S in X; these are objects
of TX. The same notation will be used to denote the normal cone to a
subset S of the manifold M, which is, of course, an object of TM.

Let Q C M be an open set verifying for a fixed zq € 0Q
(2.1) N;, () # T, M.

Let + be an open set of  x Tay X with convex conic fiber. A domain
U C X is said to be an §-tuboid with profile v iff C(X \U,Q) Ny, = 0 for
some open set v, C T'X with convex conic fiber such that v+ (N(Q)) C
Y1, P(11) D v (cf 13]).

Here
TMX*—‘,—MXxTX*a—TM

are the canonical maps.

REMARK 2.2. Lt X R"+vV-1R"3z+v-1y M 2R" > z.
We recall that U is an Q-tuboid with profile v iff Vo' CC v, e = &, such
that U D {(z,y) € Q xar 7' : ly] < e(dist(z, Q) A1)}
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(4]

Let ¢ € 09 xy Ty X, set 2o = w(q) (where 7 is the projection

T*X — X) and let P be a differential operator with holomorphic coef-
ficients in a neighborhood of zg.

Choose a system of coordinates (z;/—17) € Tj, X and (2,{) € T*X
(z=z+vV-1y, ( =&+ V-19), and assume that

(2.3) o(P)(z,() #0 for

—clnl < (€,8) < —caflyllnl + [€ — (£, 6)8]]
V(z,vV=1n) € @NS) x V=14, Vb€ N, (%),

where A is a closed cone of R and c1, ¢; are constants independent of
z, 1, 0.

REMARK 2.4. Since condition (2.3) is not C*-coordinate-invariant,

no propagation theorem involving the notion of micro-support of a sheaf
(as in [7]) could be applied.

REMARK 2.5. It is obvious that if (2.3) is satisfied by @ then it is
even satisfied by any 6’ in a neighborhood of 8. It follows that we can
replace N;O(Q) of (2.3) by (N;O(Q))s for a suitable €. Here, for a cone
AC IRn, we denote by A, the conic e-neighborhood of A:

= n 6 n
A, ={0 R :sup{7,—)>1—¢€}.
el ol > 1~

We shall now introduce a slight modification of Condition (2.3) which
is coordinate invariant.

Assume that
(2.6) 8 ¢ Cy(char(P), ¥ xm T3 X) Vg €AV6€ NZ (),
where char(P) is the characteristic variety of P, ) is a closed neighbor-
hood of g with conic fiber and where the exponent a denotes the antipodal

map. Finally note that we have used the identification

ToM < TLX 2 T,T°X 5 TT°X,
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where j is due to the complex structure of X, n* is the map associated
to the projection 7 : T* X — X, and H denotes the Hamiltonian isomor-
phism.

As in [12], we shall refer to (2.6) as the condition of Q-micro-hyperbo-
licity in A with respect to each 6 € N; (R2)%; this is a weaker condition
than microhyperbolicity.

REMARK 2.7. Note that one proves that if A CC (int A)., then (2.6)
implies (2.3). (Here, for A, B cones in IR, one says that A is a proper
subcone of B, and writes A CC B, whenever AN{y : |y| =1} CCint B.)

THEOREM 2.8. Let Q verify (2.1), take g € 8Q %, T3, X, and let P
be a differential operator at zo = w(q) which verifies (2.3) in some system
of coordinates (resp. (2.6)). Denote by U the family of tuboids whose
profile v verifies:

(2.9) QXM’YDQXMTMX, ’Y;SCA
(resp.
2.9y Vzo C (int A)z,),

and by W those with profile v verifying
(210) ’)" >0 XpmTuX

(where the exponent x denotes the polar). Let S be the family of neigh-
borhoods of xo. Then:

fe lim T(UNS,Ox), Pfe lm T(WNS,0x)
UelU,Ses wWew,ses

implies fe lim T(WnS, Ox).
Wew,Ses
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REw‘IﬁRK 2.11. Let I' be an open convex cone of R" with I'*e C A,
fix n € R and let:

y= (@ xT)U(Qx ch(T,{-1}),

v =0 xch(v,{-n})

Then the same conclusion of Theorem 2.8 holds. (Here c.h. denotes the
convex hull.)

In fact in subsequent Theorem 2.15 the assumption € intI'* N T is
unessential. (It is only used in the conclusion to get c.h.(T, {~7}) = R".)

THEOREM 2.12. Let Q = {z = (z,,7') : 21 > 0} and assume that
a(P)(z,¢) # 0 when (z,{) satisfies the conditions in (2.3) with A =
RxA’ (A cR"™), and when in addition y;, = 0. Then the conclusion
of Theorem 2.8 still holds.

Note by the way that the condition for P expressed in this statement
is a refinement of the hypothesis of semi-hyperbolicity in the sense of [5].

For example in T*°X 3 (z,(), z = (2,2') consider o(P)(z,{) =
¢ — 21¢2 — Q(z,¢’'), @ homogeneous of degree 2 and Q'T;,X < 0. This is
semi-hyperbolic but neither Q-hyperbolic nor it satisfies (2.3).

The proof of Theorems 2.8, 2.12 will be given in the next section; it
will follow from a statement which fully describes the shape of the sets
UandV.

Let Q@ C M be an open set verifying (2.1). Then we can write Q on S,
neighborhood of zo, as @ = {z : ; > ¢(z')} for a Lipschitz-continuous
function ¢. We set

p(z) =z, — p(z')

and remark that for suitable constants k', k” > 0 we have:
(2-13) k' dist(z,09) < p(z) < k" dist(z,00), z €

hence we will use the function p as a substitute of the distance to 852 in
our arguments. Moreover, we can find I,l” > 0 so that on S:

(2.14) lo(@) — p(2)| < I"[Z — =l
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2.14)’ ‘
(2.14) (”G(N;Om))‘ i) lp(z +av) — p(z)| > l'a, 0<a<<l

(As for (2.14)’ we have to notice that we can choose coordinates at zo so
that N; () CC N, (R); here we identify T, M = T; M = M = R".)

Let A,T be open convex cones of IR" with A DD I'*® and take n €
int NI

THEOREM 2.15. Let P verify (2.3). Let

(2.16)
U=[(n+\/—‘1r)u{z:t'<p(z)<t,y5r£(:’—)_:7tin+r}]n

N{z: ol < S@}nS,

where § > r and S is a suitable neighborhood of zyg. Then for every convex
coneI¥ cCcT (I"an, I CA), there exists k = kr» <1 such that if t
verifies

(2.17) t < k'l

and if c verifies

"
(2.18) Zci—ltr <e¢, crkl<é c<1

(U',1"” being the constants of (2.14)), it follows that setting
6
(2.19) V = {z:0< p(z) < t,y € —crp(z)n+T'}N{z:|y| < -t—p(a:)}ﬂS,

then for a suitable S’ C S, depending on t,l’,l" and the € of Remark 2.5,
the following holds:

f € Ox(U),Pf€Ox(V) implies f€Ox(VNS).
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REMARK 2.20. Since 7 € I then for a suitable d = 1., : V D {2
p(z) <t |yl < cerp(z)} NS

To handle also the case when Pf does not extend to a convex set we
introduce the following

THEOREM 2.21. Let P verify (2.3) and let ¢, t verify (2.17), (2.18),
let U be defined by (2.16). For every gi(z) > 0 with  inf g,(z) =,

{zin(z)=t}
there exists h(s), s € R with h(0) = 0, h(t) = cr, h' increasing and
0 < k' <cr/(t—t') for s> 0, such that if we set g2(z) = h(p(z)) and

Vi={z:ye—-aq@)n+T, < %p(x), 0 < p(z) <t},

(resp.
Va={z:y€—gaz)n+T", [yl < gp(z), 0<p(z) < t}),

we get

feOx(U), PfcOx(inS)  implies feOx(;NS').

REMARK 2.22. Let gi(z) = hy(p(z)) for a C'-function h; with
k!, increasing. Then one can show that the function A of Theorem 2.21

verifies b} Acr/t < k' < er/(t —t'). In particular for g1(z) = 7 p(z) one
recovers Theorem 2.15.

3 - Proofs
We will divide the proof of the theorems in some lemmas.

LEMMA 3.1. Let U be as in (2.16). For every open conver cone
I cc T, I’ > n, there exists k = kr» < 1 such that if one sets for

0< o<1 and for p(z) < t:

(3:2) 2o(z) = ;g g @) A ),
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and
(33) U»={z:p(e) <t,y€-Ba(z)n+I'} N {z: lg] < —f—p(.’z:)} ns,
then:

(3.4) Up CU,

- &
(35) O0# (Ua):N{y:k'®u(z) < ly| < ?p(z)} ccrl, Vé < 6,
and moreover the following holds. Whenever

{ 2€U.N{z:t(1-a) < p(z) <t |yl <k~1®.(z)}
(3.6)
¢ € N;(U),

we have

(1) &€ (N;()°)e

(ii) 'll—f’—: <
%) ol >
(iv) ner™s

PROOF. The relation in (3.4) is obvious.

For proving (3.5) let us first remark that there exists k = kyv such
that for a € R:
(3.7) (man+I)N{y:k'a<|y|<d}ccT Vd>0.

Putting a = ®,(z) in (3.7) and observing that we have

2a(2) < To(a) < Sole)

(owing to the second inequality of (2.18) ), (3.5) follows.
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As for (3.6), the point (i) is an easy consequence of the upper semi-
continuity of the map z — NZ(f).

As for (ii),(iii) we first note that, on account of (2.14), ®.(z) is a
Lipschitz-continuous function with:

|8a() - &a(z)] < I'T1E - 2],

inf |®a(z + av) — Du(z)| > 'Ta O0<a<<l.
{ve(Nz (M)e:lvi=1} t

(ii) is then a consequence of the first inequality of (2.18). As for (iii)
we have, if |y| < k- ®,(z) and p(z) < ¢, then clearly |y| < k~'cr and

therefore
€] Uer 1

s >

>
Inllyl = ¢t k~ter

(due to (2.17) ).
Last, (iv) is obvious. 1)
The family {Us}a can be modified as follows. Let T = R x {z’ :
|z'| < 0},T" =R x {z’ : || < 0 + ¢}, let N be an open cone in R",

and set o ~
G=Qpm= U (E@+N)NT"

zeHNNT!

For a suitable choice of N, ,T",T” we have

(3.8) () dnScQq, ANT =82nT,
() 04# Qn{z:p(z) =t} ccT”,
i) N:(@)c (VL (@), VeeddnT”

Similarly to €2, such an ) can be represented as Q={z:z, > @)} for
a Lipschitz-continuous function @ so that the corresponding conditions

to (i)-(iii)’s of (3.8) hold, i.e.:

(3.8y
iy @) <o) and Fo)=e(), for |z'|<o,
@) @) < p(z)+t, for ' >0+0

(iii)’ -the same as in (iii)-.
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Let p(z) = z1 — $(z’) and observe that we could choose & so that 5 still
verifies the assumptions (2.14) with new constants I’,[”. Let U be as in
(2.16) on T, let I'' CC T, let t, ¢ verify (2.17),(2.18). Define

plz) —t'(1 —a)

(o) = o —p@ Tt -t = o)’

and
(3.9) U.={z:p(z)<tye -3 (z)n+T'}n{z: |y < —i—’p(a:)} ns

for some k~lcr < 6§’ < 6.
We then have the following

LEMMA 3.10. For a P verifying (2.3) the sets {Ua}o and U verify
the hypotheses of Lemma 1.1.

PROOF. (i) and (ii) of Lemma 1.1 are obvious. As for (iii) it is enough

to show that for every z € m(Us) (= 7 U, )) we have (Ua)z C UzU(0))s-
To prove it, we will distinguish three cases.

If p(z) < (1 — ) we get, for some a > 0, (U): = (V=1an+
VAT N {z: |y < &§/tp(z)} cC Us.
_ If p(z) = t'(1 — a) then (T.), = V=10 {z : |y| < §'/tp(z)} CC
(U1)z L U;.
If 5(z) > t'(1 — a), since E_I;a(:z:) < &,(z) we have U, c U, and (3.5)
holds with U, remplaced by U,, hence

0 # (Ta)e N {z: Iyl 2 K ®a(z)} CC s,
and moreover it is easily seen that

(Ta)e 0 {z: [yl < k™ ®a(z)} €C (Uh)s-
Last, for p(z) near t we have

(Ua)e € ~ern+ V-1 N{z: jy| < &'} CC Uy,

sincec<1 and I'cCCT (in the sense of Remark 2.7).
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Concerning (iv), first note that for every z € 8U, N U; \ U we have

{ Iyl < k'®a(z) < k7124(2)
-the solution of ®,(u) =0 for o =z' verifies A(u) < t-.

If one follows the lines of the proof of Lemma 3.1 it is easy to check that
for such z and for { € N;(U,) we have

1€l el
i < Tlly]

It is clear that n € I"*® and £ € (N;,(9)). due to (3.8)-(iii). Since o(P)
verifies (2.3) (even replacing N, (Q) by (N;,(€)). according to Remark
2'5)a (i)'(iv) imply O'(P)(Z, C) 7& 0. a

PROOF OF THEOREM 2.15. Let be given feOx(U),PfeOx(V)
as in the statement. The family {U,}. of (3.9) has been so defined that
one can find ', depending on T” of (3.8)-(i), with

> Ca.

ﬁlﬂS'=VﬂS’.

Using Lemma 3.10, the proof of the theorem follows immediately from
Lemma 1.1. 0

PROOF OF THEOREM 2.21. The proof is the the same as the one
of Theorem 2.15. One only needs to replace in the definition of U, the
functions ¢s by ks b with k, so chosen that k. ba < g:1(z). Note that
it is not restrictive to assume the map a — k, to be a continuous one.
Thus the family V, = U U,g satisfies the conditions of Lemma 1.1 and

hence f extends to UV Note that, on a small S’ C S, the function
supk o is in the form h(s) (s = p(z)) for a C*-function h satisfying all

reqmrements in the statement. 0

PROOF OF THEOREM 2.8. Let f € Ox(UNS) and Pf € Ox(WNS)
where U (resp W) is a tuboid whose fiber verifies (2.9) (resp (2.9)"), (2.10).
Then for every t,t’ and for suitable § and r = 7, We can write UN S
as in (2.16) (possibly with a new S). Moreover for a suitable ¢, (WU
U)N S contains a set V as in (2.19). Applying Theorem 2.15, we get
f € Ox(V N §"); then the conclusion follows from Remark 2.20. 0
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ProOF OF THEOREM 2.12. As in the proof of Theorem 2.8 we can
assume that f is analytic in UN S and Pf in VN S, where U,V are
defined by (2.16) and (2.19) respectively. On account of (2.3), z; = 0 is
non characteristic for o(P) at zo and then there exist C so that:

(3.11) o(P)#£0 if [G]>CI(-
‘We then set

Ou={z€X:|7 7| <Cla- 7|z =5 =
= zeU,N{z:9, =0}NnS}.

According to (3.11) we get

(312)  feOx(Tan{z:y,=0}NS), PfecOx(Ua)
implies fe€ Ox(ﬁa).

On the other hand we have

o z)< 5 or =~

feOx(.n8), Pfe(Ox). implis f€ (Ox)s

The conclusion then follows from (3.11),(3.12), via Lemma 1.1, in the
same way as it was for Theorem 2.8. ]
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