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Fourier Jacobi-Bessel series for Meijer’s G-function

S.D. BAJPAI

RIASSUNTO — Si introduce una nuova classe delle serie di Fourier Jacobi-Bessel
per la G-funzione di Meijer.

ABSTRACT - In this paper, we present a new class of Fourier Jacobi-Bessel series
Jor Meijer’s G-function.
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1 - Introduction

The object of this paper is to introduce a new class of Fourier Jacobi-
Bessel series for Meijer’s G-function (3, pp. 206-222],and present few of
its particular cases. We also show that our Fourier Jacobi-Bessel Series is
related to the solution of a two dimensional partial differential equation.

The following formulae are required in the proof:

The integral [1, p. 177, (2.1)]:
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where § is a positive integer, 2(m+n) > p+q, |arg 2| < (m+n—3p—

Ref8 > -1, Re(p+6b;) > -1 (7 =1,2,...,m).
The integral [2, p. 37, (2.1)]:
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where ) is a positive integer, 2(m+n) > p+q, |arg z| < (m+n—3

v+u—o+2
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Re(c + v p+2X;) >0 (j = 1,2,...,m), Re(c + 2A\(a; — 1)) < 1

(G=1,2,...,n).

The orthogonality property of the Jacobi polynomials [4, p. 285, (5)

and (9)):
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0 if m#n,
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if m=n;

where Rea > —1, Re 8 > —1.

The orthogonality property of the Bessel functions [5, p. 291, (6)):
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0 if m#n,
(An+2v+2)7! if m=n, Rev+m+1>-1.
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2 — Fourier Jacobi-Bessel series

The Fourier Jacobi-Bessel series to be established is
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valid under the conditions of (1.1), (1.2), (1.3) and (1.4).

PROOF. Let
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Equation (2.2) is valid, since f(z,y) is continuous and of bounded
variation in the region —~1 < z < 1, 0 < y < oo. Multiplying both sides
of (2.2) by y~'J,,2.41(¥), integrating with respect to y from 0 to oo,
and using (1.2) and (1.4), then multiplying both sides of the resulting
expression by (1 — z)*(1 + z)?P{™”(z), integrating with respect to =
from —1 to 1 and using (1.1) and (1.3), the value of C,, is obtained.
Substituting this value of C,. in (2.2), the Fourier Jacobi-Bessel series
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(2.1) is established.

NoTE: On applying the same procedure as above, we can establish
three other forms of two-dimensional expansions of this class with the
help of alternative forms of (1.1) and (1.2).

3 — Particular cases

Since on specializing the parameters Meijer’s G-function yields al-
most all special functions appearing in applied mathematics and physical
sciences [3]. Therefore, the result presented in this paper is of a general
character and hence may encompass several cases of interest. However,
we present below only few particular cases of our Fourier Jacobi-Bessel
series.

In (2.1), putting § = A = 1 and using the identity (1, p. 180, (2.6)],
it reduces to the form
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valid under the conditions analogous to (2.1).
In (3.1), setting m = 1, n = p, by = 0 and using [4, p. 439, (4)], we

get
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valid under the conditions analogous to (2.1).
In (3.2), putting z = 0, we obtain
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valid under the conditions analogous to (2.1).
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4 — Two-dimensional partial differential equation

Let us consider the following two-dimensional partial differential
equation

du 6 ,0%u  Ou
41) — =(1- ==
(4.1) o (1-z? az+[ﬁ a— (a+ﬂ+2)x] +y82+y3
where u = u(z, y,t), and u(z,y,0) = f(z).
To solve (4.1), let us assume that (4.1) has a solution of the form:

+y’u,

(42) u(z, y,t) = e rats -l X ()Y (y).
The substitution of (4.2) into (4.1) yields the differential equation:

(4].’3()3/)[(1 - X"+ {f-a-(a+B+2)z}X' +n(n+a+ B+ 1)X]+
+ X ()Y +yY' + (¥* —m?)Y] =0
We have, Jacobi equation

(44) 1-2)X"+{B—a—(a+B+2)z}X' +n(n+a+B+1)X =0,

with its solution X = P{f) ().
And, we have, Bessel equation

(4.5) YY" +yY' + (v’ —m*)Y =0,

with its solution Y = J,(y).

In view of (4.4) and (4.5), we conclude that to each eigenvalue given
by (4.3), there corresponds the solution of (4.1), called an eigenfunction
or eigenstate given by

(4.6) u(z,y,t) = e’["("+°+ﬁ+1)""2]‘P,$°"’) (2)Im(¥) -
In view of the principle of superposition, the solution of (4.1) is given

by
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In (4.7), putting ¢ = 0, we have

(4.8) f@y) = um,0) = 3 Aum PO (2)Jn(y)

n=0
m=0

It is interesting to note that (2.2) is of the same form as (4.8).
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