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On the absolute Riesz summability of

Fourier series

M.A. SARIGOL

RIASSUNTO — Viene dimostrato un teorema sulla sommabilité assoluta di Riesz
delle serie di Fourier di indice k; il teorema congloba i risultati di Chow e Pandley.

ABSTRACT - In this peper a theorem on the absolute Riesz summability with inder
k of Fourier series, which includes the results of Chow and Pandey, is proved.
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1 - Introduction

Let " a, be a given infinite series with partial sums s,. Let u& and
T2 denote the n-th Cesaro mean of order (o > —1) of the sequences (s,)
and (na,), respectively, i.e.,

1 n
a __ a-—1
uy = ey E AT s,
n y=

and
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where

Ae = (n-:;a) _ (a+1)(a+n2’)...(a+n) forn>1, AS=1.

The series 3" a, is then said to be absolutely summable (C, a) with index
k, or simply summable |C, ¢|,, k > 1, if

(1.1) > nFMug - uﬁ_llk < o00.

n=1

But since 7% = n(u2 —u2_,) (see (4]}, condition (1.1) can also be written
as

d k

Yonrsl" <o,

n=1

Let (pn) be a sequence of positive real numbers such that
Po=po+p1+...+pn >00asn—o0, P,=p.,=0.

The series 3 a, is said to be summable |R, p,|,, k > 1, if

> k
Zn""1|tn —tp| < o0,

n=1

where
1 n
t, = ITZp,,s,,, (P, #0).

n y=0

In the special case when p, = 1 for all values of n, |R, ps|, summability
is the same as |C, 1|, summability.
For any sequence (8,) we write that

A,Bn = Bn — ﬁn+1 .

A sequence (3,) is said to be convex if A28, = A(AB,) = 0 for all
positive integer n.
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Let the formal expansion of a function f(z), periodic with period

2w and integrable in the sense of Lebesgue over [—m,7], in a Fourier-
trigonometric series be given by

fz) ~ éao + i (an cosnz + b, sinnz) = f:A,,(z).

n=1 n=0

We write

$(u) = f(z +u) + f(z — u) — 2f(z)

] t
p(t) = /M:—)Idu,@(t)=/l¢(u)|du, 0<é6<m
t (1]

m-1
bn = ( II 1og"n>(log"‘n)1+¢, >0,

v=1
where
log™ n = log (log™ ' n),...,log’ n = log(log ).

The following results are known:

THEOREM 1. (CHow [2], 1941). If (A\.) is a convex sequence and
the series Y. n~'), is convergent, then the series 3 A.(z)\,. is |C,1]-
summable for almost all values of x.

THEOREM 2. (CHENG (1], 1948). If
&(t) =0(t), ast — 0+

then the series

i An(z)/(logn)'*c, €>0,

n=2

is summable |C,a|, a > 1.
THEOREM 3. (HsIANG (3], 1970). If

&(t) =0(t), ast — 0+



208 M.A. SARIGOL [4]

then the series

$ An(z)/n®

n=1

is summable |C, 1| for every a > 0.

THEOREM 4. (HSIANG [3], 1970). If

(2) =0{t/ﬁllog”(1/t)} as t— 0+,

v=1

then the series

S An(@)/tn

n=no
is summable |C, 1| for every e > 0.

Recently, PANDEY [5] has proved the following theorem, which in-
cludes the theorem of Cheng and both the theorems of Hsiang:

THEOREM 5. If

o(t) =0{(log™(1/t))"} as t— 0+,

then the series

3 An(@)/bin

n=ng

is summable |C,1| for0 < z < e.

2 — |R, P,|x summability factors of Fourier series

In this paper we prove the following theorem, which includes the
theorems of Chow and Pandey as special cases, and hence all the previous
results.

THEOREM 6. Let (|\,]) be a non-increasing sequence of real numbers
such that n|AX,| = 0(|An|). Let npn = 0(P,) and 3_;_, v~ P, = O(P,).
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G If
Zn‘1|)‘n|k <00,

then the series 3° An(z)), is summable |R,pa|,, 1 <k < 2.

(ii) If (wn) is a sequence of positive real numbers such that n~*w, — 0
as n — 0o, for some s, 0 < 8 <1, and if

o(t) = O(w(m)) as t—0,
zn"|/\,,|kwﬁ < oo,
then the series 3_ An(z)An is summable |R,pn|,, k> 1.
To prove the Theorem, the following results are needed.

THEOREM 7. Lett, be the n-th Cesdro mean of first order of the
sequence (na,). Let (A\,) be a sequence of real numbers. If

s -1 k k
S5t Pl il < o0,

n=1

> B[l < o0,

n=1°"

o0
3 nt A el < o0,

n=1

> —
,; (%)k 1%:"\n|k|tn|k <00,

Q0

(-@'- k—l—p"——O(—l-) as v— 00,

Pn PnPn-l— Pv

n=1

> v'P,=0(P,) as n—oo

v=l
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hold, then the series 3" an), is summable |R,pa|,, k > 1.

PROOF. Let T, denote the (R, p,) mean of the series 3~ anA,. Then
we have

Tn - Tn—l =

Zva,,(v 1P,1h)

-1 93

Pn Pn

n—1
Pn —1
= P,y Aty — DyAuty + PLAME,

PnPn—l { ; v ! Y P + +

+(n+ 1)n“1P,,_,)\nt,.}
=din,1 + T‘n,2 + Tn.3 + Tn,4 , Say .

To prove the theorem, it is enough, by Minkowski’s inequality, to show
that

o0
S n* T, F <00, for r=1,23,4.

n=1

It follows from Holder’s inequality that

m+1
Sl < () " 5 (SR}
n= n=2
m+1 n -1 B 1 n-1 _ k—1
@ ot
m+1 k—
=o<1>§(%ﬁ) o R

k-1
—O(I)ZU_IP A | Itl Z (7;1::1) Pn?;;—l

n=v+1

=0(1) Y v e,
v=1
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m+1

- npn
S moinal <;2(Pn) T {Zp,,lz\]lt |}
pass npp\*-!  p, n-1 n—1
<5 (B B San (7= Sn)
n= n+tn— = u_l
ki m+1
=0(1 ol A lf [t | nPn\E~!  Pa
W pE 3 (F) 55
=0(1) Z Iz\ el
u—l

Srima < 3 () o2 (S pian )

_Z(”p") e Zv"‘P (wlar)" {P:_lfv-lpv}k_l

" v=]

=0(1) 3 v*Yar, | |t.|", and
v=1

m m k—
an_llTn,«clk =0(1)Z(T$n) l;—nlAnikltnIk-
n=1 n n

n=1

COROLLARY 8. Lett, be the n-th Cesiro mean of first order of the
sequence (na,) and write T® = T, |t,|*. Let (]Aa]) be non-increasing
sequence of real numbers such that n|AA,| = 0(|As]). If npn = O(Pn),
Yoo v P, =0(P,) and

m

S 0722 "T = 0(1) asn — o0,

n=1

then the series 3" ap\, is summable |R,pa,, k> 1.

PROOF. Since np, = 0(P,) and |A’\n|k = O(IA—,:‘EE)»
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(Z22)"" B Pl = 000) 3 7 el

NgE!

n=1 P n=1
m
E | Axa [ Jtal* -0(1)2 =l
=1 n=1
~ np,\*-1 pn — Dn 1
—_— —=— =0(1) =0({=).
n=20-:f1 ( Pn ) PnPn—l n=v+1 PnPn—l (Pu)
Therefore, it is sufficient, by Theorem 7, to show that
3 Al < 00.
n=1

Now

m=-1

Zn“lz\ [*Jta]* = ZT,E"’A(n"Iz\nI")+T,‘,1"m“lf\mlk

=1

1 k 1 k
_me {|,\ | A( )+ =50 }+T,g=);|,\m| .
n=1

On the other hand, since

k
AG* < kP A < kT AN] = 0(%) ,

T"‘)II/\ I —T"‘)ZA( A[)

i 1 1
< £T5k){]Av|kA(5) + H—IA[/\,,["}
=0(1) Z |,\ | ke

it follows that

m oo 1
Z %lf\ulklt.,lk = 0(1) Z ylf\ul"Té*’ <00,
v=1

v=1
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which completes the proof.

LEMMA 9. Let to(z) be the n-th Cesdro mean of first order of the
sequence (nAn(z)) and write T®(z) = ¥, |t.(z)|*. Then,

) T®(z) = 0(nut) asn— o0, k21,

provided that (w,) is a sequence of posilive real numbers such that
n"w, — 0 as n — oo, for some s, 0 <s <1, and

() = 0(wasm) ast — 0.

(ii) TH®)(z) =0(n) asn w00, 1<k<2,
Jor almost all values of x.

PROOF. Take S,(z) = Y v_0 Av(z). Then,

2 7 in vt
Su(@) - £=) == [ 4075 dt +0(1) = 2L +0(1), say
0
1/n x
L= /+/ =L1+L2, say.
0 1/n

Now
J1oldu = [up'tuiu = up)], - [up(un—rdu =
0 0 1]

t
= O(tw(1/¢)) + O(t"w(x/g) /u“’du) = O(t‘w(,,/g)) .
0
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Thus
1/n . 1/n
Ll =| [ 6= <o [ Igwldu
] 0
1/n '
<n / |¢(u)|du = O(w,) , and
0
[ oS 16
Lo =| [ 6)P"du] < [ Edu = 0(wn).
I”fn W< / .
Therefore
|L| = O(wn),
and so .
S 18.(@) - f(@)]| = 0(nwk) .
v=1
Writing
u'"( ) = n—+1 gs (z) )

and applying Holder’s inequality, we obtain

@)~ 1@ < {77 Sosu(e) - £}

v—O

< %VZ:%]S.,(:::) - f(.z-)|"{ 2"21} o),

v=0
which implies
> (@) - F@)| = 0(nawk) .
v=l
Since t,(z) = Sn(z) — un(z), it follows from Minkowski’s inequality that

n x 1/k k
5~ (o)~ 1)) } — 0(mut).

v=1

T®(z)< {( g 1S,(z)— f(z)(") " (
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PROOF OF LEMMA 9 (ii). Since (see[2])

3 {5.(2) - @)}’ = O(n)

v=0

for almost all values of x, we have

i |Su(z) - f(@)|" < {:golsu(m) _ f(m)|2}k/2{i 1}1-k/z

v=0 v=0

=0(n), 1<k<2.

The rest can be achieved similarly as in the previous part.

3 — Proof of theorem 6 and special cases

The proof of Theorem 6 follows immediately from Corollary 8 and
Lemma 9.

REMARK. If ()\,) is convex such that 3" n=!\, < oo, then A, > 0
and nAA, = 0(A,) (see [6]). )

It may be mentioned here that Theorem 1 follows from Theorem 6 (i)
by putting p, = 1, ¥ = 1 and making use of the remark. While Theorem
5 follows from Theorem 6 (ii) by putting p, =1, k =1, A, = u! and
w(t) = (log™ t)*.
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