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Some remarks about the thermoelastic theory
of materials with voids

G. SACCOMANDI

RIASSUNTO — Si formula una teorie per materiali termoelastici porosi cke include
tra le variabili costitutive la derivata temporale della funzione “grado di vuoto”. Per
questa teoria si dimostre un teorema di unicitd e per evidenziare la differenza con le
teorie proposte precedentemente si studia la propagazione di onde di accelerazione di
dilatazione.

ABSTRACT - In this paper we formulate a theory of thermoelastic materials with
voids which includes voidage time derivative among the independent constitutive vari-
ables. A uniqueness theorem is obtained and to test the difference between this theory
and the previous ones the growth and decay of dilatational acceleration waves is used.
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1 - Introduction

Structural materials for numerous applications in industry, aerospace
and other areas of technology may be required to provide satisfactory ser-
vice at clevated temperatures. For example this is the case of: process
vessels and crucibles in the metal-working and chemical process industry,
heat exchangers, devices such as turbine engines, components and struc-
ture for high-speed aerospace purposes and many others. In addition to
high temperature the materials used in many of the above applications
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also are subjected to corrosion, erosion and mechanical loads. Obviously
for long term performance, the materials selected for these applications
should exhibit high melting point, good corrosion and erosion resistance,
excellent retention of load-bearing capability as well as resistance to creep
at high temperature. The only class of materials which can satisfy the
above requirements is known as “structural ceramics”. Such materials
include the metal oxides, carbides, nitrides and silicides. The advanta-
geous properties of these materials at high temperatures derive from the
high strength of the bond (usually of ionic and/or covalent type) be-
tween atoms, but this type of atomic bonding also causes these ceramics
materials to be exceedingly brittle [1). '

On the other hand materials which operate at elevated temperatures
will invariably be subjected to heat flow at some time during normal use.
Such heat flow will involve a non-linear temperature distribution which
will inevitably give rise to thermal stresses. This behaviour in combina-~
tion with the structural properties renders the ceramics highly subscetible
to thermal stress failure [1]. For these reasons, the development, design
and selection of materials for high temperature applications requires a
great deal of care. The role of the pertinent material properties and
other variables which can affect the magnitude of thermal stress must be
well understood and all possible mode of failure must be considered.

The purpose of this paper is to establish a linear thermoelastic theory
of the elastic material with voids as a first step to a better understanding
of thermal stress in ceramic materials. Obviously this theory can be
useful also in other fields of application which deal with porous materials
as geological materials, solid packed granular materials and many others.

The elastic theory of materials with voids has been proposed by
CowIN and NuNzIATO (2,3] to deal with manufactured porous materials
like ceramics and pressed powders non conductors of heat. The basic
premise underlying this theory is the concept of a material for which the
bulk density is written as the product of two fields, the matrix mate-
rial density field and the volume fraction field. This theory has been
developed from the Goodman and Cowin theory of granular materials
proposed in 1971 [4].

It is quite surprising that by means of a straightforward generaliza-
tion of the concept of linear elastic body Cowin and Nunziato have been
able to describe a material which can exhibit a wide variety of qualitative
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behaviors, which occur in real ceramics and are not foreseen by classical
elasticity [5].

In 1986 IESAN [6] has proposed a theory of thermoelastic materials
with voids, but in this theory he neglected the experimental evidence
that changes in the volume fraction result in internal dissipation in the
material (1, 7]. In this paper we improve the theory of Iesan by adding
into the set of constitutive variables the time derivative of the voidage to
include the inelastic effects.

The plan of the paper is the following. The non linear theory of
thermoelastic materials with voids is described in section 2 in a form
that is intended to be easy reading for someone familiar with the pa-
pers of Nunziato and Cowin. The process of specializing the non linear
theory to the linear situation is described in section 3. In section 4 we
consider the boundedness of solutions to establish the uniqueness to the
mixed boundary-value problem and in section 4 we study the evolution
of acceleration waves to show the difference with the theory of Iesan.

Throughout this paper we refer the motion of the continuum to a
fixed system of rectangular Cartesian axes Oz; (i = 1,2,3). We shall
employ the usual summation and differentiation conventions: Latin sub-
scripts are understood to range over the integers (1,2,3), summation over
repeated subscripts is implied and subscripts preceded by a comma de-
note partial differentiation with respect to the corresponding Cartesian
coordinate.

2~ Non Linear Theory

As we have pointed out in the introduction the basic concept un-
derlying the theory of the elastic materials with voids is that the bulk
density 5 is written as the product of two ficlds, the density field of the
matrix material v and the volume fraction field v :

(2.1) p=v.

This representation introduces an additional kinematical degree of free-
dom with respect to the theory of classical elasticity because y and v are
independent (2,3]. Now we develop a thermoelastic nonlinear theory that
will be manipulated in the next section to deal with small changes from
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a reference configuration of a porous body. In a reference configuration
(2.1) can be written as p = ygvg and we assume here that yg and vy
are spatially constant. This reference configuration, as it is customary, is
assumed to be strain and stress free.

The independent variables are the displacement field u;(x,t) from
the reference configuration, the change in temperature from the reference
absolute temperature Ty,

(2.2) 0(x,t) =T(x,t)— T
and the change in volume fraction from the reference volume fraction:
(2.3) o(x,t) = v(x,t) — vg.

The fundamental equations are (2]:
Belance of linear and angular momentum

(2.4) piti = [Tij(6i; + wig)l e + oo 5 Tij =Ty,
Balance of equilibrated force

(2.5) 976;5 =hi;+g+pl

Balance of energy

(2.6) pé =T;E; —[9- %k¢]¢ +hidi + gii + ps
Entropy inequality

(2.7) T 2 gii — % +ps.

Here T;; is the second Piola stress tensor, E;; is the Green strain tensor,
b; is the body force vector, p the material density in the reference con-
figuration, k the equilibrated inertia, h; the equilibrated stress, g is the
intrinsic equilibrated body force, | the extrinsic equilibrated body force,
¢ the internal energy per unit of mass, 7 the specific entropy, ¢; the heat
flux and s the extrinsic heat supply.
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The equations (2,4) and (2.6) are analogous to the classical balance
equations, the new balance of equilibrated forces (2.5) can be motivated
by a variational argument [8]. Here we notice that this theory can also
be viewed as a subcase of more complicated microstructure theory [9]
which can explain in a more “rational” than “phenomenological” way
the equation (2.5).

We restrict our attention to the theory of thermoelastic materials
where the constitutive variables are E;;, 6, 8, ¢, ¢, é. The first con-
stitutive variables characterize the elastic state and they are the variable
used by Iesan to formulate his thermoelastic theory, it is the dependence
of constitutive equations on the last variable, #, that allow us to account
of the well known inelastic effects associated with changes in volume of
the voids.

Introducing the free energy function:

(2.8) $=e~Tn,
and using equation (2.6) we can rewrite the entropy inequality (2.7) as:

(2.9) 0> py + pnd — Ti; By + [9 - -k¢] ¢~ hibi — .q, .

We can assume as in [2] that the equilibrated inertia k depends only on
¢ and then from (2.9) we obtain

02 [ a¢+g—12’5¢2]¢+[ 9. Z’L]Eu+

1) *56 9 208 P3E;
2.10
o oY - oY oY , 6.
+[ P8, ~ ]¢ + 'a?’s“”[aoﬂ}ﬂ 3.0~

The inequality (2.10) must be satisfied for all independent thermo-kinetic
processes, i.c. for every choice of the functions E;;, ¢ and 8. This fact
implics some restrictions on the constitutive relations for the quantities
¥, Tij, m, hi, 9, q; and k. If in an arbitrary point, x, for an arbitrary
value of time, ¢, we choose the values of the constitutive variables it
is possible to construct a thermo-kinetic process such that E,J, é, s
6, 0 arc arbitrary. Then to maintain (2.10) for all the values of the
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constitutive variables is necessary that the coefficient of E",-, é, ¢'>,,~, 8, 0",-
vanish obtaining the relations:

o oy
.= )—— h" =P
T'.J paE,-_,- ! pa¢.i
(2.11)
oy w_o%_,
08’ o 96,

Now the (2.10) is simplified into the following inequality:

(212) 0> f$- %2,

where f = pg—i’ +9— 35 52 is the dissipation function which takes into
account of the inelastic behavior of voids [3].

3 — Linear theory

‘We now deduce from the equations of section 2, the field equations of
the linearized theory. We assume that the displacement gradients u,,; and
é, @, q'S,,-, 6, 6 ; are sufficiently small that their squares can be neglected,
then the strain tensor is approximated by the infinitesimal strain tensor,
E,; and the free energy 3 can be expanded in a multiple Taylor series
about the reference configuration. We suppose the initial body to be:
stress-free, with zero intrinsic equilibrated body force and zero heat flux
rate. Then taking note of (2.11,4) we have the quadratic expression:

1 1 1 S 1 _— )
(31) = §§¢2 + §Aij¢i¢j + EcijkmEijEkm - 50-02 + B;; Ei;0+
+di¢d; + DijxdiEjx — a::0 — m0¢p — B;,0E;; .

Using (2.11) we obtain the following linear constitutive equations for
T:j, h: and n:

Ti; = CijreEra + Bijé + Dijxd i — B0,
(3.2) hi = Aij¢;+ D, iE,, + di¢p — aif,
m= ﬂijEij +al +mp+aid;.
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Here: Cijrl = Craij = Cjira ﬂij = ﬂji, Dijx = Djika Aij = Ajiy Bij = Bji-
As in the theory of Nunziato and Cowin we assume for the dissipative
function f the form:

(3.3) f=-wp,

where w is a positive constant [3]. For the constitutive equation of the
heat flux we assume the celebrated Fourier law:

(34) gi = ki,-0,- .

where k;; is the thermal conductivity which is positive definite [10].
Now the inequality (2.12) reads:

6.:0 ;
T Y

(35) 0 > '—UQ'SZ - kij

which is verified for all thermo-kinetic processes, and the constitutive
equation for g is:

(3.6) 9=-ByE; —tp—w—dip;+mb.
Moreover, in this framework, the energy equation is reduced to:
(3.7) piTo = gii + ps.

To obtain from (3.2), (3.3) and (3.6) the constitutive relations of the
thermoelastic theory of Iesan it suffices to set w = 0 and to obtain the
constitutive relations of Nunziato and Cowin we must set § = 0 and
a;=m= 6ij =0.

In the case of an isotropic material for the constitutive constants we
have:

Cijrs = Mijbr, + (6:v65 + 6:s65r) , Aij=abi; , Dy =0,

di=0, a=0, k.'j=’C5.'j ) Bij=b5ij ) ﬁ-‘j=55sj

and then the equations of motion read:

b
(3.8) Guga + (c5 — Auy i+ ;¢.i - %9,.' +b; =i,
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b 3 w. m 1 .
3.9 20 i — —U; s — S Yi o Ma 2
(3.9) .9, pkuJ.J pk¢ pk¢+ pk6+ % o,
(3.10) K8 — BToisj; — mTod — aTof = —ps,
where:

A+2u B a
3.11 = L a=t  a2-2.
(3.11) =2t : e

The boundary conditions for this theory can be deduced from the
work of ATKIN, CowIN and Fox [11]. In particular they are as those
reported in COWIN and NUNZIATO [3]. Now we must give the additional
data for the surface continuous temperature field on the boundary 6B
of the geometry of the body B and for the time interval for which the
solution is desired. Obviously we must also add the initial temperature
field 6(x,0) = 8°(x) for x € B. For example for a mixed boundary, initial
problem the conditions read as:

h,‘(x, t)n. =0, v (x, t) € 0B x [0, to] ’

q,-(x, t)n; = 0, v (x, t) € 8B x [0, to] ,
(3.12) )

ui(x,t) = Gi(x,t), V (x,t) € 8By x (0,10},

ta(x, ) =(x,t), V(% t) € dBr x [0,to],
and

(313) ui(xi 0) = ‘ll,?(X) H] ¢(x’ 0) = ¢0(x) ] 0(x, 0) = 00(X) ’

where 8B, is the portion of the boundary on which the displacements
are specified, 0By the portion on which the tractions are specified, 9B U
8Br = 0B, 8By N8By =0 and n; is the unit outward normal to 8B.
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4 — Uniqueness

In this section we use a simple energetic method to investigate the
uniqueness for our dynamic theory.

We consider two solutions ¢, u;, 6 and ¢', u!, @' of the system of
equations (2.4), (2.5) and (2.6) with constitutive equations (3.2), (3.3)
and (3.6), for the same body B subjected to the same body force b;,
the same extrinsic equilibrated body force [ and the same extrinsic heat
supply s. For each solution we have an appropriate set of boundary and
initial conditions of the same kind of (2.24) and (2.25). We introduce the

circumflex notation to denote the difference from the prime and unprimed
solution; for example:

(4.1) (%, t) = ui(x,t) —ui(x,t).

Then as result of the linearity of the field equations the differential
equations governing the difference solutions are:

(42) Pﬁ; = j‘}j.j )

(43) p(kg) = huy + 3,

(4.4) oiTo = i

(4.5) Tij = CijraErs + Bijd + Dijicdb s — Bi;0
(4.6) hi = Ai;¢; + Dyyibiry + did — a:6,
(4.7) m= ﬂa’Eij +af + mé + aié’.i ,

(4.8) g= '_BijEij - fJ’ + f - diJ’.i +mé N
where E,'j = ';'(ﬁ."j + '&j_,-).

It is fundamental for our purposes to introduce the Biot’ s potential
[10) defined as:

(4.9) B = ple ~ Tom).
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Eliminating ¢ from this equation and (2.8), we obtain the following ex-
pression for B:

1 1 1 _ = 1
B= §€¢2 + EAij¢i¢j + §CiikmEiJ'Ekm + 5002+
(4.10)
+ Bij-E—ij¢ + di¢¢.i + Dijk¢.i-E_jk ’

With K we denotes the kinetic energy per unit mass i.e.:
1 .
(4.11) K= -ip,(uia.- + k¢?).

Using the field equations, the constitutive equations and the divergence
theorem we obtain in this way the energy equation:

d _ . . P 1 ;
£ Joc+Bav = 3/ (pbess + plp+ £e30 — -0, + f8)V +

(4.12) .
+6-[ (t,'j‘l‘l.j + h,¢ + Foqle) n, dA.

Now we are in position to prove the following:

THEOREM. If in addition of the constitutive restrictions which have
been formulated in (3.2), (3.3) and (3.4) we assume that B is non-negative,
then there exists at most one solution for the problem given by the equa-
tions (3.8)-(3.10) and (3.12), (3.13).

PROOF. Let (u;, ¢, 8) and (u!, ¢/, 8') two solutions of equations (2.4),
(2.5) and (2.6) with constitutive equations (3.2), (3.3) and (3.4) subject
to the same b;, [ and s and subject to boundary conditions of the mixed
type as in (3.12). In this case for the difference solutions (4-12) reads:

(4.13) % B/ (K + B)aV = B/ ( - Tloqé,i - fés)dv.

Since the right side of (4.13) is non-positive for (3.5), integration of both
sides from 0 to t yields:

(4.14) / (R(0) + B©)dv 2 / (k&) +Bw))av..
B B
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Then for the initial-value problem the values of the quantities involved in
this theory are bounded by their values at time ¢ = 0. This relationship
proves a sort of weak stability for the theory of the elastic materials with
voids.

Obviously if the primed and the unprimed solutions satisfy the same
initial a.nq boundary value data then (&, , é) corresponds to the null
data, i.e. h; = 4; = £;; =0 on 8B x [0,t,] and (3.14) requires:

(4.15) 0> / (lé(t) +B(t))av,

B

but K(t) and B(t) are positive definite and then they must be zero ev-
erywhere in B. This means that the difference solutions must vanish
everywhere in B for all times and this complete the proof. a

5 — Acceleration Waves

To test the difference between the theory proposed by lesan and
our theory we examine the differences in the propagation of acceleration
waves.

Without enter the details of the methodology and the algebra nec-
essary to determine and study acceleration waves, for which we refer to
(12], let £ be a moving surface defined by:

(51) fe =zi(yh y2)t)‘

where y, and y» are curvilinear coordinates on the surface and the func-
tions in (5.1) and X fulfill all the necessary regularity conditions. To
make casy the comparison we will use the same notation of Iesan paper
(6]
The propagation wave it is said to be an acceleration wave if:
1) u;, ¢, 8 and all their first derivatives are functions continuous every-
where;

2) The sccond derivatives of u,, ¢, and 6 have, at most, jump disconti-
nuities across X but are continuous everywhere else.
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Let h be one of the field variables. The discontinuity on X of the
second derivatives of h are defined by a single scalar function as follows:

[h.ijl = Cninj , [ill,'] = —CVn; ’ [‘ﬁ] = C‘n.-nj ,

where n; is the unit normal to  and V is the speed of propagation of
in the direction of the normal.
Introduced the notation:

Ay = [‘u'i.rl]nrna y = [¢,rl]n"n‘ y €= [9'"]""'"" ?

as first point we can note that in both the theories the waves can be
only longitudinal, transverse or dilatational and the admissible velocities
of propagation are the same. Exactly longitudinal waves, A; = An;,
propagate with speed c;, transverse waves, Ain; = 0, with speed ¢, and
compaction or distension waves, 7 # 0, with speed c,, where c;, ¢;, c,
are defined by (3.11).

It is obvious that the velocity of propagation are not affected intro-
ducing a new term that consists in a first derivative, and it is natural
that the behavior of longitudinal and transverse waves will be the same
in both theories. It is the growth and decay of compaction waves which is
quite different in the two theories. Always without to report the algebra
that is similar of the one in {6] the equation for the growth and decay of
compaction waves, V =c¢,, A; =€ =0, are:

b
(5.2) {(2 — )i — (¢} — Inymi}; = Pl
26,97 4 22 Hn — “ne, =0
(53) —£Cy 6t v T] pkncu — Uy
(54) BToc.pn; + Ky+mIoe,n=0,

6 8
where p; = [t por]RpTgNr, ¥ = (6158 Rin570, yriadr + Vn‘é; and H is
the mean curvature i.e.:

_ HQ - nKo
T 1-2nHy+n2K,'

H
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with Hy and K, respectively the mean and Gaussian curvature at t = £,.
The solution of (5.3) then is:

= no(1 — 2)-4 -
(5.5) 1 =no(1 — 2nH, + n?) exp< 2pkc,,n) ,

bn; -
(56) i = 'p(czfjocz?(l—'ano'f'nz) iexp(— b n) ’

2pkc,
. mCuTo‘I]o ( ﬂb )
61 1=t nems

(1= 2)-4 Y
(1-2nHy +n) exp( 2pkc.,n)’

where 7 = 75 when ¢t = ¢,.

The exponential factor ensures that the discontinuities 7, u; and «
tend to zero as t tends to infinity, obviously setting w = 0 we obtain the
same expression of Iesan [6] and the difference is striking.

It is very important to note that the study of acceleration waves pro-
vides a way to determine experimentally the constitutive parameters. In
particular we have that from (5.5) we are able, by means of an experi-
ment, to compute w.
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