Some six dimensional compact symplectic and complex solvmanifolds

L.C. DE ANDRÉS - M. FERNÁNDEZ - M. DE LEON J.J. MENCÍA(*)

RIASSUNTO – Si costruisce una famiglia di varietà compatte simplettiche di dimensione 6 che hanno la stessa comologia di una varietà compatta Kähleriana e struttura simplettica e complessa.

ABSTRACT - We construct a family of compact symplectic solumanifolds of dimension 6 which have the same cohomology ring as a compact Kähler manifold. They have complex structures, but we cannot determine whether or not these solumanifolds admit positive definite Kähler metrics.

KEY WORDS - Symplectic manifolds - Complex manifolds - Indefinite Kähler metrics - Solvmanifolds.

A.M.S. CLASSIFICATION: 53C15 - 53C55

1 - Introduction

It is well-known [12,5] that there are strong topological conditions for a compact manifold M of dimension 2n to admit a positive definite Kähler metric:

(1) the Betti numbers $b_{2i}(M)$ are non-zero for $1 \le i \le n$;

^(*)Partially supported by DGICYT-Spain, Proyecto PB88-0012 and by UPV-EHU, Spain, Proyecto 127.310-0038/88

- (2) the Betti numbers $b_{2i-1}(M)$ are even;
- (3) $b_i(M) \ge b_{i-2}(M)$ for $1 \le i \le n$;
- (4) the strong Lefschetz theorem holds for M;
- (5) the minimal model of M is formal (so in particular all Massey products of M vanish).

On the other hand, the additional structure of a complex manifold leads to the Frölicher spectral sequence $\{E_r\}$ (see [7]). For a compact manifold with positive definite Kähler metric this spectral sequence satisfies:

(6)
$$E_1 \cong E_2 \cong \cdots \cong E_{\infty}$$
.

If M is a compact nilmanifold, not a torus, the conditions (4) and (5) always fail (see [1,3,9]). Thus M carries no positive definite Kähler metrics. In contrast to the case of compact nilmanifolds there are compact solvmanifolds non-nilmanifolds that satisfy both conditions (4) and (5) ([6,2]). There, the examples described are 4 and 8-dimensional, respectively.

In the present paper we construct a new family of compact solvmanifolds $M^6(k)$ of dimension six each of which satisfies the conditions (1)-(6). Whereas in [3] is proved that the minimal model of compact nilmanifolds is not formal by showing that there are non-zero Massey products, all Massey products in the spaces $M^6(k)$ vanish. For the compact solvmanifolds considered in [2] and [6] is proved that the corresponding minimal model is formal by computing such a model, but the computation of the minimal model of $M^6(k)$ is very long. Therefore we resort to the definition of formal manifold given in ([8], p. 158) to show that $M^6(k)$ satisfies condition (5).

Moreover we prove that $M^6(k)$ possesses indefinite Kähler metrics and so $M^6(k)$ has symplectic and complex structures. Finally, we also study the Frölicher spectral sequence associated to the (natural) complex structure on $M^6(k)$, and we show that this spectral sequence satisfies condition (6). But, as the example of Benson and Gordon [2], we do not know whether or not $M^6(k)$ admit (positive definite) Kähler metrics.

2 – The compact solvmanifolds $M^6(k)$

Let G(k) be the connected solvable (non-nilpotent) Lie group of di-

mension 5 consisting of matrices of the form

$$\mathbf{a} = \begin{pmatrix} e^{kz} & 0 & 0 & 0 & 0 & x_1 \\ 0 & e^{-kz} & 0 & 0 & 0 & y_1 \\ 0 & 0 & e^{kz} & 0 & 0 & x_2 \\ 0 & 0 & 0 & e^{-kz} & 0 & y_2 \\ 0 & 0 & 0 & 0 & 1 & z \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

where $x_i, y_i, z \in \mathbb{R}$, $1 \le i \le 2$, and k is a real number different from 0. Then, a global system of coordinates $\{x_1, y_1, x_2, y_2, z\}$ for G(k) is given by

$$x_i(a) = x_i, \quad y_i(a) = y_i, \quad z(a) = z, \quad 1 \le i \le 2;$$

and a standard computation shows that a basis for the right invariant 1-forms on G(k) consists of

$$\{dx_1-kx_1dz,\ dy_1+ky_1dz,\ dx_2-kx_2dz,\ dy_2+ky_2dz,\ dz\}.$$

This Lie group G(k) can be easily described as the semidirect product $\mathbb{R} \times_{\omega} \mathbb{R}^4$, where

$$\varphi \colon \mathbb{R} \longrightarrow \operatorname{Aut}(\mathbb{R}^4)$$

is the representation defined by

$$\varphi(z) = \begin{pmatrix} e^{kz} & 0 & 0 & 0 \\ 0 & e^{-kz} & 0 & 0 \\ 0 & 0 & e^{kz} & 0 \\ 0 & 0 & 0 & e^{-kz} \end{pmatrix}, \quad z \in \mathbb{R}.$$

Therefore, G(k) possesses a discrete subgroup $\Gamma(k)$ such that the quotient space $G(k)/\Gamma(k)$ is compact. Hence the forms $dx_i - kx_i dz$, $dy_i + ky_i dz$, dz, $1 \le i \le 2$, descend to 1-forms α_i , β_i , γ , $1 \le i \le 2$, on $G(k)/\Gamma(k)$.

Now, let us consider the product $M^6(k) = (G(k)/\Gamma(k)) \times S^1$. Then there are 1-forms α_1 , β_1 , α_2 , β_2 , γ , η on $M^6(k)$ such that

$$d\alpha_i = -k\alpha_i \wedge \gamma$$
, $d\beta_i = k\beta_i \wedge \gamma$, $d\gamma = d\eta = 0$, $1 \le i \le 2$.

Now, we notice that G(k) is completely solvable, that is $ad_X : g(k) \longrightarrow g(k)$ has only real eigenvalues for each $X \in g(k)$, where g(k) denotes

the Lie algebra of G(k). In fact, $\mathfrak{g}(k)$ is a Lie subalgebra of real upper triangular matrices in $\mathfrak{gl}(6,\mathbb{R})$. A theorem of Hattori[9] asserts that the de Rham cohomology ring $H^{\bullet}(G(k)/\Gamma(k),\mathbb{R})$ is isomorphic to the cohomology ring $H^{\bullet}(\mathfrak{g}(k))$ of the Lie algebra $\mathfrak{g}(k)$ of G(k). Using this result we compute the real cohomology of $M^6(k)$:

Hence $M^6(k)$ satisfies conditions (1)-(3).

THEOREM 1. The minimal model of $M^6(k)$ is formal.

PROOF. The manifold $M^6(k)$ is formal if the homotopy type of the exterior algebra of differential forms $(\Lambda^*M^6(k), d)$ is the same as the homotopy type of the cohomology ring $(H^*(M^6(k)), d = 0)$ (see [8], p. 158). In other words, $M^6(k)$ is formal if $(\Lambda^*M^6(k), d)$ and $(H^*(M^6(k)), d = 0)$ have the same minimal model.

Now, we define a map of cochain complexes

$$\Phi: (H^{\bullet}(M^{6}(k)), d = 0) \longrightarrow (\Lambda^{\bullet}M^{6}(k), d)$$

by linearly choosing closed forms representatives for each cohomology class; that is, $\Phi[\gamma] = \gamma$, etc. One easily proves that Φ is multiplicative and then it is a homomorphism of differential graded algebras which induces the identity on cohomology. Now, let $\Psi: (\mathbf{M}, \mathbf{d}) \longrightarrow (H^*(M^6(k)), d = 0)$ be the minimal model of $(H^*(M^6(k)), d = 0)$. Then $\Phi \circ \Psi: (\mathbf{M}, \mathbf{d}) \longrightarrow (\Lambda^*M^6(k), d)$ is the minimal model of $(\Lambda^*M^6(k), d)$. Thus, the manifold $M^6(k)$ is formal.

Next, we show that $M^6(k)$ satisfies the strong Lefschetz theorem. Let $\{X_1, Y_1, X_2, Y_2, Z, T\}$ be a basis of (global) vector fields on $M^6(k)$ dual to the basis of 1-forms $\{\alpha_1, \beta_1, \alpha_2, \beta_2, \gamma, \eta\}$. Then

$$[X_i, Z] = kX_i, [Y_i, Z] = -kY_i, 1 \le i \le 2;$$

and the other brackets being zero.

The collection $\{\alpha_1 \wedge \beta_1, \alpha_1 \wedge \beta_2, \beta_1 \wedge \alpha_2, \alpha_2 \wedge \beta_2, \gamma \wedge \eta\}$ is a basis for the closed 2-forms on $M^6(k)$. Thus, any cohomology class $[\omega]$ of a closed 2-form ω is given by

$$[\omega] = \tau[\gamma \wedge \eta] + s[\alpha_1 \wedge \beta_1] + t[\alpha_1 \wedge \beta_2] + u[\beta_1 \wedge \alpha_2] + v[\alpha_2 \wedge \beta_2]$$

for some constants r, s, t, u, v. It is clear that ω is non-degenerate if and only if $r \neq 0$ and $sv + tu \neq 0$. The Lefschetz maps $\wedge[\omega]: H^2(M^6(k)) \longrightarrow H^4(M^6(k))$ and $\wedge[\omega^2]: H^1(M^6(k)) \longrightarrow H^5(M^6(k))$ are isomorphisms and so $M^6(k)$ satisfies the strong Lefschetz theorem.

REMARK. In [11] a compact symplectic 2n-dimensional manifold (M,ω) is said to be Lefschetz manifold if $\wedge[\omega]^{n-1}:H^1(M)\longrightarrow H^{2n-1}(M)$ is an isomorphism. Then we have proved that $(M^6(k),\omega)$ are Lefschetz manifolds.

As we see, the manifold $M^6(k)$ satisfies the conditions (1)-(5). Next we shall recall the following theorem due to Benson and Gordon [2]:

THEOREM 2. ([2]) If G is a completely solvable Lie group with Lie algebra g and Γ/G is a solvmanifold which admits a Kähler structure, then

- (1) there is an Abelian complement a in g of the derived algebra n = [g, g],
- (2) a and n are even dimensional,
- (3) the center of g intersects n trivially,
- (4) the Kähler form is cohomologous to a left invariant symplectic form $\omega = \omega_0 + \omega_1$, where $\mathfrak{n} = \ker \omega_0$ and $\mathfrak{a} = \ker \omega_1$,
- (5) both ω_0 and ω_1 are closed but not exact in g (and also in a and n),
- (6) the adjoint action of a on n is by infinitesimal symplectic automorphisms of (n, ω).

For the manifold $M^6(k)$ the derived algebra \mathfrak{n} of $\mathfrak{g}(k) \times \mathbb{R}$ is generated by X_1, Y_1, X_2, Y_2 . Then there exists an Abelian complement \mathfrak{a} of \mathfrak{n} in $\mathfrak{g}(k) \times \mathbb{R}$ generated by Z, T. Hence \mathfrak{a} and \mathfrak{n} satisfy the conditions (1)-(3) of Theorem 2. Furthermore, $M^6(k)$ satisfies conditions (4) and (5) of Theorem 2.

Next, we shall construct an indefinite Kähler metric on $M^6(k)$. Define an almost complex structure J on $M^6(k)$ by

(1)
$$JX_1 = X_2, JY_1 = Y_2, JZ = T.$$

A direct computation shows that the Nijenhuis tensor of J vanishes. Consequently, J is complex. A basis $\{\lambda, \mu, \nu\}$ for the 1-forms of bidegree (1,0) is given by

$$\lambda = \alpha_1 + \sqrt{-1} \alpha_2,$$

$$\mu = \beta_1 + \sqrt{-1} \beta_2,$$

$$\nu = \gamma + \sqrt{-1} \eta.$$

Thus, we have

$$\begin{cases} d\lambda = -\frac{k}{2} \lambda \wedge (\nu + \bar{\nu}), \\ d\mu = \frac{k}{2} \mu \wedge (\nu + \bar{\nu}), \\ d\nu = 0. \end{cases}$$

Define

$$\Omega = \lambda \wedge \bar{\mu} + \bar{\lambda} \wedge \mu + \sqrt{-1} \, \nu \wedge \bar{\nu} \, .$$

Then Ω is closed, and it is easy to see that Ω has maximal rank. Furthermore Ω is a symplectic form of bidegree (1,1) on $M^6(k)$; and so the metric g given by $g(U,V) = \Omega(U,JV)$ for vector fields U,V on $M^6(k)$ is an indefinite Kähler metric.

Therefore we have

THEOREM 3. $M^6(k)$ possesses an indefinite Kähler metric. Hence, $M^6(k)$ has symplectic and complex structures.

REMARK. If the coordinate functions x_i , y_i , $1 \le i \le 2$ of the Lie group G(k) are such that $x_1 = x_2$ and $y_1 = y_2$ on G(k), then the compact solvmanifold $M(k) = (G(k)/\Gamma(k)) \times S^1$ is 4-dimensional. This manifold was studied in [6], and there was proved that M(k) carries no complex structures.

Next, we shall consider the Frölicher spectral sequence $\{E_r\}$ associated to the complex structure on $M^6(k)$ defined by (1). Let $\bigwedge^*(M^6(k), \mathbb{C}) = \bigoplus_{p,q \geq 0} \bigwedge^{p,q}$ be the usual decomposition of the complex valued differential

forms, and $d = \partial + \overline{\partial}$ with ∂ of type (1,0) and $\overline{\partial}$ of type (0,1), $\partial^2 = \overline{\partial}^2 = 0$ and $\partial \overline{\partial} + \overline{\partial} \partial = 0$.

Then it is known [7] that

$$\begin{split} E_1^{p,q} &= \frac{\{\alpha \in \bigwedge^{p,q} \; ; \; \overline{\partial}\alpha = 0\}}{\{\alpha \in \bigwedge^{p,q} \; ; \; \alpha = \overline{\partial}\beta \; \text{ for some } \; \beta \in \bigwedge^{p,q-1}\}} \\ &= H_{\overline{\partial}}^{p,q}(M^6(k)), \end{split}$$

$$E_2^{p,q} = H^{p,q}\left(H_{\overline{\partial}}^*(M^6(k)),\partial\right),$$

that is, the term E_1 of the spectral sequence is the cohomology of the differential algebra $(\bigwedge^{p,q}, \overline{\partial})$ and the term E_2 is the cohomology of the differential algebra $(\overline{\partial}$ -cohomology, ∂).

From (2), we have

$$\begin{split} &H^{0,1}_{\overline{\delta}}(M^{6}(k)) = \{[\bar{\nu}]\}, \\ &H^{0,2}_{\overline{\delta}}(M^{6}(k)) = \{[\bar{\lambda} \wedge \bar{\mu}]\}, \\ &H^{0,3}_{\overline{\delta}}(M^{6}(k)) = \{[\bar{\lambda} \wedge \bar{\mu} \wedge \bar{\nu}]\}, \\ &H^{1,0}_{\overline{\delta}}(M^{6}(k)) = \{[\nu]\}, \\ &H^{1,1}_{\overline{\delta}}(M^{6}(k)) = \{[\lambda \wedge \bar{\mu}], [\mu \wedge \bar{\lambda}], [\nu \wedge \bar{\nu}]\}, \\ &H^{1,2}_{\overline{\delta}}(M^{6}(k)) = \{[\lambda \wedge \bar{\mu} \wedge \bar{\nu}], [\mu \wedge \bar{\lambda} \wedge \bar{\nu}], [\nu \wedge \bar{\lambda} \wedge \bar{\mu}]\}, \\ &H^{1,3}_{\overline{\delta}}(M^{6}(k)) = \{[\nu \wedge \bar{\lambda} \wedge \bar{\mu} \wedge \bar{\nu}]\}, \\ &H^{2,0}_{\overline{\delta}}(M^{6}(k)) = \{[\lambda \wedge \mu]\}, \\ &H^{2,0}_{\overline{\delta}}(M^{6}(k)) = \{[\mu \wedge \nu \wedge \bar{\lambda}], [\lambda \wedge \nu \wedge \bar{\mu}], [\lambda \wedge \mu \wedge \bar{\nu}]\}, \\ &H^{2,1}_{\overline{\delta}}(M^{6}(k)) = \{[\lambda \wedge \mu \wedge \bar{\lambda} \wedge \bar{\mu}], [\mu \wedge \nu \wedge \bar{\lambda} \wedge \bar{\nu}], [\lambda \wedge \nu \wedge \bar{\mu} \wedge \bar{\nu}]\}, \\ &H^{2,1}_{\overline{\delta}}(M^{6}(k)) = \{[\lambda \wedge \mu \wedge \bar{\lambda} \wedge \bar{\mu}], [\mu \wedge \nu \wedge \bar{\lambda} \wedge \bar{\nu}], [\lambda \wedge \nu \wedge \bar{\mu} \wedge \bar{\nu}]\}, \\ &H^{2,1}_{\overline{\delta}}(M^{6}(k)) = \{[\lambda \wedge \mu \wedge \bar{\lambda} \wedge \bar{\mu} \wedge \bar{\nu}]\}, \\ &H^{3,0}_{\overline{\delta}}(M^{6}(k)) = \{[\lambda \wedge \mu \wedge \nu \wedge \bar{\lambda} \wedge \bar{\mu}]\}, \\ &H^{3,1}_{\overline{\delta}}(M^{6}(k)) = \{[\lambda \wedge \mu \wedge \nu \wedge \bar{\lambda} \wedge \bar{\mu}]\}, \\ &H^{3,1}_{\overline{\delta}}(M^{6}(k)) = \{[\lambda \wedge \mu \wedge \nu \wedge \bar{\lambda} \wedge \bar{\mu}]\}. \end{split}$$

Now it is easy to see that $\partial: H^{p,q}_{\overline{\partial}} \longrightarrow H^{p+1,q}_{\overline{\partial}}$ is the zero mapping, and hence $E_1 \cong E_2 \cong \cdots \cong E_{\infty}$.

Acknowledgements

We wish to thank M. Saralegui for several useful conversations.

REFERENCES

- CH. BENSON C. GORDON: Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), 513-518.
- [2] CH. BENSON C. GORDON: Kähler structures on compact solumanifolds, Proc. Amer. Math. Soc. 108(4)(1990), 971-990.
- [3] L.A. CORDERO M. FERNÁNDEZ A. GRAY: Compact symplectic manifolds not admitting positive definite Kähler metrics, to appear in Proc. Intern. Cong. on Topology and its Appl., Baku, 1987.
- [4] D. CHINEA M. DE LEÓN J.C. MARRERO: Stability of invariant foliations on almost contact manifolds, (Preprint).
- [5] P. DELIGNE P. GRIFFITHS J. MORGAN D. SULLIVAN: Real homotopy theory of Kähler manifolds, Invent Math. 29 (1975), 245-274.
- [6] M. FERNÁNDEZ A. GRAY: Compact symplectic four dimensional solumanifolds not admitting complex structures, Geometriae Dedicata 34 (1990), 295-299.
- [7] A. FRÖLICHER: Relations between the cohomology groups of Dolbeault and topological invariants, Proc. Nat. Acad, Sci. U.S.A. 41(1955), 641-644.
- [8] P. GRIFFITHS J. MORGAN: Rational homotopy theory and differential forms, Progress in Math., 16, Birkhäuser, Boston, 1981.
- [9] K. HASEGAWA: Minimal models of nilmanifolds, to appear in Proc. Amer. Math. Soc.
- [10] A. HATTORI: Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac. Sci. Univ. Tokyo (8) Sect. 1 (1960), 289-331.
- [11] D. McDuff: The momentum map for circle actions on symplectic manifolds, J. G. P. (5)2 (1988), 149-160.
- [12] A. Weil: Introduction a l'étude des variétés kählériennes, Hermann, Paris, 1958.

Lavoro pervenuto alla redazione il 7 dicembre 1990 ed accettato per la pubblicazione il 24 giugno 1991 su parere favorevole di G. Ferrarese e di A. Lichnerovicz

INDIRIZZO DEGLI AUTORI:

Luis C. de Andrés - Marisa Fernández - José J. Mencia - Departamento de Matemáticas - Facultad de Ciencias - Universidad del País Vasco - Apartado 644, 48080 Bilbao - Spain

Manuel de León - Unidad de Matemáticas - Consejo Superior de Investigaciones Científicas - Serrano 123, 28006 Madrid - Spain