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Nodal solutions of some elliptic problems
with critical nonlinearities

M.V. MARCHI

RIASSUNTO — Si dimostrn che l'equazione semilineare ellittica con esponente critico
e con condizione al bordo di tipo misto (1) ammetle soluzioni che cambiano segno: se
A > 0, per ogni domirio limitato Q2 di R", se A = 0, sotto opporiune ipotesi di caratiere
geometrico su gquella parte di froniiera su cut é data la condizione di Neumnann.

ABSTRACT — We study the semilinear elliptic problem with critical exponent and
mized boundary conditions (1). We prove the existence of nodal solutions for any
bounded domain @ C R®, when X > 0, and, under some geometrical assumptions on
1, also when A =0.
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— Introduction

Let us consider the problem

Au=xu+pu>%u on
(1) u=_0 on Po

Ou

5-0 on [
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where 2 C IR™, n > 3, is 2 bounded domain with regular boundary,
ToUT, = 5 and v is the outer normal to I';.

It is easy to see that the weak solutions of (1) in the space V() =
{u € H(),u = 0 on Ty} correspond to the critical points of the func-
tional

A 2*
@) Fw)=3; f vul - 5 f -3 / ol

As it is well known for this type of problems (see [4], [5] and [7]), the
difficulty arising in studying problem (1) is that 2* is the critical espo-
nent for the Sobolev embedding V(Q2) — L%(f), so that the compactness
condition of Palais-Smale fails for the functional (2).

Analogously to the resulis of BREZIS, NIREMBERG, LIONS and
STRUWE for the Dirichlet problem (see [7}, [4], [5], [16], [20]), Lions,
PacCeELLA, TRICARICO and GROSSI prove in [18] and (14] that the Palais-
Smale condition for the functional F) fails only at certain levels. Starting
from this result GROSS!I proves in [13] the existence of positive solutions
of (1), for any A € [A*, A;[, where A, is the first eingevalue of —A in V(Q2)
and A* is 0 if » > 4 and is a positive constant depending on 2 if n = 3.

In this paper, using some techniques introduced for the Dirichlet
problem in the papers (8], [9], [10], we study the existence of solutions of
(1) which change sign, both in the case A>0 or A = 0 (at least for some
particular domains).

Let us remark esplicitely that in the Dirichlet problem the case A=0
has not been treated in the above papers since the techniques there ap-
plied do not work in this case. Instead, in the mixed boundary problem
(1), using the results of [18] for positive solutions, we are able to extend
the method of [10] to find nodal solutions also in the case A = 0, under
some geometrical assumptions on the domain Q.

The outline of the paper is the following.

In section 1 we give some preliminaries. In section 2 we prove some
compactness results. In section 3, following [8], we prove that (1) has at
least two solutions for any A > 0. In the same section we also show, as
in {9], that, for A in a suitable neighborhood of the eigenvalue A, of —A,
problem (1) has at least 2m solutions, where m is the multiplicity of A,.

Since it is easy to see (see for example [7]) that for A = A1, (1) does
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not have positive solutions, we have implicitely proved in this way the
existence of nodal solutions for A > A;,

For 0 < A < A; we prove in section 4 that (1) has at least two nodal
solutions, using the method of (10]. Finally in section 5 we treat the case
A=0.

1~ Notations and preliminaries
Let G be an open set in R®. We define

H'(G)={u € L*G) suchthat |Vu|e L*G)}

D(G) = {u € I¥(G) such that |Vu|€ L’(G)} , =
H(G) = {u € H'(G) such that supp u CC G} .

By the Sobolev embedding theorem H'(G) — D(G) and, if G haes finite
measure, H(G) = D(G).
The usual scalar product in H(G) is

(1.1) (w,v) = [ Vu-Vv+ [uv, u,v € H'(G).
R A

From now on we will denote by §2 a bounded domain in R" with regu-
lar boundary and set 8Q = [y UT; with H,_1(Io) > 0 and H,_, (I} > 0,
H,,_, being the (n—1) dimensional Hausdorff measure. For such a domain
2 we define
V(@) ={ue H'(Q):u=00nTo}.

If H is either H)(G),D(G) or V(f2), we consider the following infi-
mum:

(1.2) Su = inf —L
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and set § = Spn), T = Spmn), S(§2} = Sy(q) where

R} = {(:cl,y) eRxR*Y 2 > D} .
The following results hold:

THEOREM 1.1.
i) §>0 I >0 (Sobolev’s inequalities}
ii) § = 32%/n 1]

The proof of i) can be found in [3] while ii) follows from symmetriza-~
tion arguments used in [21].

THEOREM 1.2.
i) Sy (R} > 0 (Poincaré’s inegquality)
it) Sﬁé =245 a

Again the proof of i} can be found in [3], while ii) follows from sym-
metrization and rescaling arguments (see [1], [5] and [21}).

TaeoreMm 1.3. {[18])
0<S(Y<E. 0

From Theorem 1.2 and 1.3 we immediately deduce that flul| = (f, |V1.e.|2)1/2
is a norm equivalent to that induced by the scalar product (1.1) and, from
now on, we will use this norm.

By |u], instead we will mean the norm ( [, |'u|,)ll',s > 0, whenever
this norm is defined for the function wu.
Let us define in V(£2) the functional

1 A -
1) A@=z [Ivef-3 [w' - [p, rer.
1] 4] Q

It is easy to see that F, is of class C! and that we have

(1.4) (dFs(u), @) = f V. Ve — A f up ~ [ e Pup, Vo € V).
n 1 4]
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It is useful to observe that

1.5) R =R, + (3~ 5) [ 1o
¢

When A = 0 it is also possible to define Fo(x) in D(IR") and D(IR?)
substituting obviously Q with IR” or IR], in this case (1.4) and (1.5) also
hold.

2 — Compactness theorems

Let F) be defined as in the previous section.

LEMMA 2.1. Let A belong to [0, M| and u,, € V() be a sequence
such that

(2.1) . (dF\(um) um} — 0.
Then either
i) upm — 0 in V(§2) (up to a subseguence)

or
i) fuml3. 2 (1 2)" (S@)]™ +o(1)

ProoOF. We have
1 A 2 1 2*
Fi(um) 2 '2'(1 - «\_1)"%" - 5‘“1“‘2- 2

1 A 2 1 2"
2 5(1- ) S@lunlz. - gl -

From (2.1), (1.5) we get

3

(2.2) fuml3- 2 (1= 22)S@fuml. + o(0).

Since

(2.3) lemlls = (dFr(m), tm) + [um|3 + Mtim|y
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then 4, — 0 in V() iff 4, — 0 in L¥(R).
If 1) does not hold, from (2.2) we obtain:

-2 A
femly- 2 (1- -)1—1)5(0) +0(1)
which implies ii). D

COROLLARY 2.1. Let X belong to [0, \[, u€ VD end @F)(u),4) =0.
Then eitheru=0 or

1 AN/E
F;(u)za(l—,\—l) S,

Proo¥. It follows immediately from (1.5) and Lemma 2.1. a

COROLLARY 2.2.  Let X belong to [0, \[, u € V() changes sign
and {dF)(u®),u*} =0. Then:

B2 2(1-5) " s@r.

PROOF. It is a consequence of Corollary 2.1 observing that
Fx(u) = Fx(u'}) + F,\(tl._) .

o

REMARK 2.1. If in the Lemma 2.1 and Corollary 2.1 and 2.2 we
consider the functional F5 on D(IR") or D{IR} ), we get the same results
with S or ¥ instead of S(Q2).

The same s true with the constant X if the functional Fp is con-
sidered on the space H = D(IR}) N {u such that © = 0 on I'y}, where
To = {(z1,%2,¥) € R x RxR*?z, = 0z; > 0}. In fact in this case it is
obvious that Sy > I,
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Let us now consider the following problems:

w € D(R")
(2.4) ’s
~Aw=lw|" "w onR"
w & D(RY)
2.5) - Aw = |u| ™ on R}
Gw n
W 0 on (OR7)
[ w € D(R}) N {u such that ¥ = 0 on Ty}
—-Aw= |“’|2.d2‘” on R}
(2.6) <
w=0 onT,
ow
| 'a—v' =0 on I‘;

where Iy is as in Remark 2.1 and T’y = 3R} \ T.

THEOREM 2.1. Let v € V(S2) be such that

Fy(um)} = ¢
dF)(tpm) —= 0 in V().

Then there exist u € V(S2) such that uy — u weakly in V() andu és o

solution of (1) and wy,wa, ..., ws, solutions of problems (2.4)-(2.6), such
that:

L]
c=Fa(u)+ Y Fo(w;).

J=1

Moreover h > 0 iff u,, does not converge to u in V(Q).
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PRoOOF. The proof is implicitely contained in that of Theorem 2.1 of
(14]. 0

COROLLARY 2.3, Let u,, and u be as in Theorem 2.1. Then we
have

i) ifc < L2, then um — u in V().

n/2
i) FaeO[endc< ;‘;(1 - %) S + 2172 and u £ 0, then
u, — u in V(Q).
iii) Let A and c be as in ii) and there ezists & > 0 such that |lu| > a,
then u, — u in V().

PrOOF.

i) and ii) follow immediately from Theorem 2.1 Corollary 2.2 and Remark
2.1

iii) From Theorem 1.3, Theorem 2.1, Corollary 2.2 and Remark 2.1 ijt
follows that, if u,, does not converges to u, then h = 1 and w, > 0 (or
wy < 0). By the proof of Theorem 2.1 of [14] that, for brevity, we do
not repeat, starting from the function w, > 0, it is possible to construct
a sequence wep = 0 in V(Q), such that wm — vm — 0 in L¥ (), where
Um = Um — u. Therefore setting

2, = {x € Q: vp(x) = ,'f;(z)} and Q_ =0\ Q,,

we obtain

2* a2 - o
o(1) = |vm = Wl = flv:;—wml +f|—v,,,-wm| >
Q4 .
- —32" 2 2
> [(n+wn)" 2 [ 02) =l
Y 2.

From this we get that v — 0 in L?"(Q). Thus, by hypothesis on flu ||
it follows that u # 0. Thus iii) follows from ii).
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3 — Existence and multiplicity theorems for A\, < A

Let us start by recalling a critical point theorem proved in [2].

THEOREM 3.1. Let H be an Hilbert space with norm || - || and
I: H — IR an even functional satisfying

I,) I € C{H,R), I(0) =0.
I;) There exists 8 > 0 such that the Palais-Smale condition holds for I
in | — 00, 8.
Io) There exists two closed subspaces V, W, numbers § > 0, p > 0,
0 < e < 3 such that
i) Codim V' < +oo.
ii) I(w) > & for any u € V with |[u| = p.
iii} J(u) <¢ foranyueWw.
Then I has at least m = dimW — codim V' pairs of critical points. 1]
Let F, be the functional on V(52) considered in the previous sections.
The following estimates are easily deduced.

(*) If ||u]l®* — Aul? > O then the function Fj(tu) is increasing, with
rispect to ¢ in (0, &), decreasing to 00 in [tg + oco|, where

Lo = N2
3.1 o = tolu) = (—.—— .
( ) 0 0( ) Iulg'
Thus
. ull? — Alujz\"?
3 ol = (L2
|2¢|Ze

Moreover observing that for £ > 0
(3.3) (dF\(tu), tu) = 0iff ¢ = to(u)
from {1.5), (3.2) and (3.3) we get:

ffeell® — Ahtl%)“’ :

(3.4) max {F(tu): t € R} = Fy(tou) = %( N
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.y (R=2)/.
Finally let us point out that, since F\(tu) < 0iff ¢ > (%—) ‘to (w)
2 (n-2)/:
(3.5) F(w <0iffto(w) < ()
and
(3.6) F, is bounded from above on any finite
3.6

dimensional subspace of V().

Let us remerk that in (3.6) we have also used the continuity of to(x)
with respect to u € V(§2), u # 0.
Denoting by A, < Az <...Ay < ... the eigenvalues of —A in V(2),
let (M),) be the eingenspace corresponding to A;. Moreover for any A > 0
we set:
A4+ = min {A; such that A; > A}

M, = @ M(A;)

Aj2Ay
M_ = @ M(Xz)
Ajchy
Denoting by |E| the Lebesgue measure of a set E C IR", we have:
LeMMA 3.1.

a) There exist § > 0, p > 0 such that Fy(u) = §, for any u € M, with
llull = p.

b) Fa(w) < 2(Ay — ™[9] for anyu € M_ @ M()\,).

PROOF. If u € M, then Fa(w) > (1~ & |Jull* - S22 "|ju|*" from

which a} follows choosing p and § in a suitable way. To prove b) we
observe that for u € M_ & M(),) we have

Jlulf” = Aluf; < e = Ny
] ot z
|"'[2- |“|2°

2/n

< (A =9

and therefore b) follows from (3.4) if u satisfies (*). If © does not satisfy
(*), Fi(u) < 0. This ends the proof. 0
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THEOREM 3.2. If A €]A;— S|/, \,| there exist ot least my pairs
of solutions of (1) where m; is the dimension of M(};).

PROOF. As in (9] we prove that F) satisfies the hypotheses of Theo-
rem 3.1, choosing V = M, , W = M_@® M();) and g = 1E"/2,

In fact I;) and i) of I3) are immediately verified. I;) follows from
Corollary 2.3, while ii) of I3) is deduced from Lemma 3.1 a).

Finally inequality b) of Lemma 3.1 implies iii) of I3) as soon as
(As — A) < L2|Q7". y

The following lemma will also be used in the next sections.

LEMMA 3.2. Let M be e finite dimensional subspace of V(§2) N
W2=()). If p € V() and

3.7) ol — (el +lelz_,) >0

for somec> 0.
Then there exist two positive constants I, () and Ix(p) such that

i) sup{F(w+tp): we M, te R} £
<sup{Fw+tp):we M, telR, |lwi <
< hle), I < hLip)}-

B8 i)  Fu+ip) <)+ Rlte)+

+500) ok + W2l ol bl

foranyv € M, t e R, [vi5 < hie), ItI* S h{e).
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Proor.

i)
w + teolz. — lwly — |tz =
1
=2 / f [lw + ote]* *(w + otp) — oty otpltidodz =
o
(3.9) 1 .
=2%(2" - 1)/]'1911: + at(p[z _zwtgodcrda: <
HIR

< 2@ -1 [ (ol el + ol [t )
a

where @ €10, 1].

Since M is finite dimensionale all the norms in M are equivalent, thus,
from (3.9), using, twice Young’s inequality with p = p* and p = p*/(p*—1)
we get

e 2. -
[lw+ toly. = wls. — Itel5.] <
< 2°(2" = D{fwls el + bl fteln ) <
2% =1
2o1) S

1 - - - 11 - - -
Xl + 7 ellT + 3 5ol + T Ml =

< o(M)(|wl3-ltel, + hwl,.lte

<2"—1
=

1 - 2z~ 2" 2*
= '2'|w|:- + ¢} C(M)("i‘"h + |5°|2-—1) .

Therefore
- 1 - - - - > 2*
w+tel3. = glwl. + 16 kel — 17D (lel} +lel_.) -

From here it follows that, whenever |w+tzp[:: < const. and ¢ satisfies
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(3.7), then:

i) I“’l:: < 2 const.

(3-11) . 2" const.
i) ¢

= Vol D) (jol + oh)

Thus we prove i) whenever we prove that there exists I;{p) > 0 such
that

sup{Fa{(w+tp): we M, teR} <
<sup{Fa(w+tp): we M, t€ R, [w+to|Z <hL{p)}.

Suppose, by contradiction, that this is not true, then, by (3.3) and (3.4),
There exists a sequence t, = Wy + tmi such that

liwml? = Mtsm|Z = himlz.
[tm|2e > m.

In this case vy = um/|timl2r = Wi, + ¢/, satisfies

(3.12) [vml3- =1
(3.12") l[vmll® = Alvmf2 >m.
Since

“"-’m“2 - Al”mlg =
= |l ® ~ A2 + el — Mtmpliz+

+2(wa:,,Vt:,, —Ajw’t’m )5
(3.13) J ¥ J O ¢

1 . .
< Fa(Wh) + Fa(tn®) + 5z Wl + el ]+
+ (M) wey |2~ ity

by (3.6), (3.12) and (3.11) ||vml|* — Aluml3 is bounded. This contradicts
(3.12‘)‘
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ii). By (3.9) and by i) we get
Fy(w+tp) =

Fa(w) + Fi(ty) +waV(tgo) - /\fwttp-!-
[ 3 4
l - - -
+ s [lwhi + Il —tw + tol3.] <
< Fa(w) + Fa(te) + ba(@) [(jwles + [wiZ3)lels + lwlrlelE23] .

REMARK 3.1. We observe that from the extimates (3.11) and
(3.13) it follows that the functions !;(¢) and () are bounded on a
subset H of V() as soon as there exist Ly > 0 and L; > 0 such that
sup{Fa(tg): t € R} < Ly, lpls < Ly and |plp. —c(foly +el3_,) > Ls
for any ¢ € H. _ ~

Let 2o € I). Let p > 0 and ¢ € C°(B,(z0)), ¥ = 1 on B,s3(x0).
Define for u > 0

nfn — 2)uln-2/1
(n-2)/2°
(o o)

(3.14) Pu(T) = Vp,z0.(T) = V() -

where ¢ = 1:6)(9 and xq is the characteristic function of £2.
Whenever p is sufficiently small ¢, belongs to V(§2).
In the following lemma we list some results about the functions ¢,

(see [7]).
LEMMA 3.3. Letn>4. There exists K > {
lioulf = =2+ 0(u*-%)

uly < Ko

(3.15) .
[Pulzey S Kutn=2/4
loulis =572+ 0(u")
Let n > 5, then

|l = Ki + 0(u>=27%). 0
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From the estimates (3.15) and (1.3) it follows:

(3-16} Fa(pu} = %E”’ i f\%n +0(ut~=27%)

1 K
(3.17) sup {Fu(tp,): t e R} = SV AT a4+ 0(uH)

and also that, fixed ¢ > 0 there exist @ > 0, L, > 0 and L, > 0 such that
for any u < ji

sup{F(te,): t€ R} < L;, |¢)) < L; and
- L ] 2.
l‘Pnli- - c(l‘r"#lf + |9°n|2-—1) > L.

If i is sufficiently small, from (3.16) it follows that F(¢p,) > 0, thus

wu ¢ M_.
Therefore

(3.18)

(3.19) dim W, — codim M, =1

where
W.={veVQ):u=wt+ip, we M_tcR}.

THEOREM 3.3. Letn > 5. Then for any A > 0 there erists at least
e pair of solutions of the problem (1).

PROOF. As in [8] we apply Theorem 3.1 to F), with 8 = L1£/2 and
V = M,. Thus L), I2), Isii) hold as in Theorem 3.2. We set W = Wy
choosing u sufficiently small in such a way that (3.19), i.e. I; i), and (3.7)
hold. Setting in Lemma (3.2) M = M_ and ¢ = ¢, we get, by Remark
3.1, (3.16), (3.17), (3.18):

(3.20)
1, 2« 1 K .
Fa(v+t9,) < —o- ol + 257 — At L (Jul,e + Joffu ) w274

where v € M_, |v|,. < L,.
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If n > 7 from (3.20) it follows I5iii) for u sufficiently small.
Finally let us point out that if A # A;

1 - -_ - o -
(321) A(p) = —E.-Ivﬁ_ + Ly ([o]pe + ol )24 < =8

In fact either A(y) < Oor |v|,. < L™ 7T therefore by (3.20) we obtain
I5iii) for u sufficiently small.

If A = ); we get (3.20) and (3.21) with & = w — 7;w instead of w,
where 7; is the projector on the subspace M(};). 0

From the previous theorems we immediately have
COROLLARY 3.2.
If A > A\, there exist at least two nodal solutions of problem (1).

IfA > ) and A €)X — |0 7Y", A;], there exist at least 2my nodal
solutions of (1). 0

4 — Existence of nodal solutions. Case A €]0, )|

Let us start by giving some results that we will also use in the next
section. Let A € [0, A\;[, by Lemmma 2.1, the nodal solutions of (1) belong

to

1) U={ueV(Q): (dF(u*),u*) =0 and ut#0}.

Setting
¢ = inf {F\(u): v € U}

from Corollary 2.2 it follows that

nf2
(4.2) cz %(1 - %) s > 0.
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Let P = {u€ V(): u >0} and M be the set of maps & such that

i) o€ C(Q, V() Q=1[0,1] x [0,1]
ii) o(s,0) =0 for any s € [0,1)
(4.3) iii) [1/(tolo(s, ))¥""P 2 2° for any s € [0,1]
iv) o(0,t)e P for any ¢ € [0,1]
v)., -—-o(l,{)jelP for any ¢ € {0,1]

‘We have the following

LEMMA 4.1.
c= ,i&f,: max {Fy(v): v € ¢(Q)}

PROOF. We observe that by (3.5) for any u > 0, v > 0 linearly
independent, the map o, defined by

(4.3") Gun(s,t) = 1(2) O DAG[(1 - s)u - sv]

where t3 = t[(1 — s)u — sv] as in (3.1), belongs to M. Thus M # @ and
in particular for any u € U, the map 0 = Ou+u- belongs to M. For

such a map we have:

(4.4) Fi(u) = max { Fa(v): v € 0u(Q)} .
In fact u = o, (g, (%.)‘""” ") and, from (3.3) and (4.1), for any &, 8 > 0
Fy(au* — fu~) = Fi(au*) + K (fu7) < Bt + )= F(u).

From (4.4) it follows
jnf max{Fy(v): v € o(Q)} <

(4.5) inf max {F(v):ve o (Q)} =

inf {F(u): w € U}.
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On the other hand, fixed o € M, UNo(Q) # 0. In fact we observe that

L sy
to(u) leall” ~ A |2 1-5%
Thus, setting
4/(n—2) 4/(n-2)
1e0=lemn) - lzee)
1 4/(n=2) 4/ (”'3’
0=l * leeew)
h
where 1 if u % 0
- { to(u)
@) g ifu=0,

we can prove that f; and f, belong to C(Q,R).
Moreover from (4.3) iv), v) and i) we get

£(0,£) 20, £i(1,£) <0 for any t€[0,1] and f(s,0) < 0 for any s€{0,1).
Furthermore from

2* 2* Y
Julp PSP . e
lafl” = Al = fletl” = Mutly - fel” - Al

and from (4.3) iii) and (3.5) it follows

4/{r-2)

1 ]
fz(-’:”?[m] -22>2"-2>0,.

Thus from a fixed point theorem of C. MIRANDA {19] it follows that there
exists a point (3,%) € Q such that

f1(§,f) = f2(§1f) =0.
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Obviously for such a point

to(o(5,9)*) =to(0(5,07) =1,
from which, by (3.3) and Lemma 2.1, we deduce
(4.6} u, = o(5,8) € UNco(Q).
Thus

c=inf {F\(u): v € U} < inf {Fy(u,): 0 € M} <

< jnf max { Fa(v): v € 0(Q)}

This ends the proof. a
LEMMA 4.2. There exisis o > 0 and a sequence vy, € V(§) such

that
Fi(vm) — ¢

dF3(vm) — 0 in V* ()

2
lvall” > a.

PRrROOF. Let u,, € U be a minimizing sequence for F, (u). Setting, for
brevity, o,, = 0., asin (4.3), we claim that there exist two sequences
(vm) and (wy,) in V(Q), such that

iy Fvm)—c
@7 i) dF\(vm) = 0in V()
i) wm=aul, —Pug €on(Q) «F>0
iv)  |Jwm —va]| — 0.

In fact if (4.7) are not true, there exists § > 0 such that we get definitively

(48) om(@)NA=0
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where
A ={v € V(): |lv — u|| < 6 for some ue V() such that |Fi(u) —c|< §
and |dFy(u)| < §in V*(@)}.

Using a deformation lemma by H. HOFER [15], we can construct a con-
tinuous map

7 [0,1] x V() — V(52) such that, for some ¢ €]0,¢/2|
a) n(0,u) =u for any wu€ V()
b) if Fa(u) > ¢+ € or Fy(u) < c— e then

n(tu) =u Yete0,1)
¢} if Fi(u) < c+¢&/2 and u ¢ A then

F(m(Lw) <c—e/2.

d) Moreover, in the same hypothesis of ¢}, if « € P then n(l,u) € P
e) n(t, —u) = —n{t,u) for any t € [0,1].

Setting
om(3,t) = n(1, om(s, t)}
from (4.3) ii}, (4.2) and b) it follows
05.(3,0) = om(s,0)
and from (4.3) i), (3.5), (4¢.2) and b)
on(s,1) =om(s,1).
Thus o, satisfies (4.3) ii) and iii). Furthermore from d} and e) it follows
that o7, satisfies also (4.3) iv) and v). Thus o7, € M.
On the other hand, from {4.8) and ¢) it follows that for m sufficientely
large .

(4.9) max {F;k(v): vE o,‘,,(Q)} <e-%,
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which contradicts Lemma 4.1, Therefore (4.7) holds and, by continuity
of F), we get:

(4.10)- Fi(wm) = Fa(um) +0(1).

We claim that neither w} nor w,, converges to 0 in V(§2). In fact
assume that w}, converges to 0, then from (4.7) iii), (4.10) and Corollary
(2.1}, it follows, for m sufficiently large:

F\(fuy,) = Fa(wy) = Fa(un) +0(1) =
= Fy(uf) + Fa(uy) +o(1) >

n/2
> (1 - Ail) S + of1) + Fa(u) > Fa(u)

which contradicts (3.3) since u,,, € U.
Thus there exists & > 0 such that Jw¥||® > a. By (4.7) iv) the same
holds for v,,. a

We recall that

THEOREM 4.1. [13] Let n > 4 and X €]X*, A)[ where A* < 0 is @
constant depending on the geomelry of 2. Then there exists a posilive
solution uy of (1) such that

n/2
(4.11) Fa(uo) = f—li(l - ,\i,) Sz,

We observe that from (3.3) it follows that F(uo) = sup { Fa(tuo) t € IR}.

LEMMA 4.3. Letn> 7,0 < A < A. Then there exists o0 € M such
that

1
n

A

n/2
(412) max {Fa(v): vEo(Q)} < %(1 - XI) S@)™? + ~x2n.
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ProorF. From (4.11), (3.16) and Theorem 1.3 it follows that, for u
sufficiently small, Fi(p,)} > Fa(uo), where i, is defined as in (3.14) and
ug as in Theorem 4.1, Thus p, and u are linearly independent. Set
O = Oygq,, dSsuming that p is sufficiently small in such a way that (3.7)
holds. Then, setting in Lemma 3.2 M = {{uy: € R} and ¢ = , from
Remark 3.1, (3.18), (3.17) and (4.11) we get

Fi(auo — By,) < F(aue) + Fr(Bp,) + dpn—t <
1 A 2 n/2 1 2/n {(n—2)/4
<z l‘x S(@Q)™* + T ~ AKp+dp ",

from which {4.12) follows for p sufficiently small and n > 7. 1]
Finelly, from Lemma 4.2, Lemma 4.3 and Corollary 2.3 iii), we get:

THEOREM 4.2. Letn 27, 0 < A < ), then there exists a least a
pair of nodal solutions of the problem (1). 0

5 — Existence of nodal solutions in the case A=0

In this section we will assume n > 4. When A = 0 the mixed bound-
ary problem is quite different from the Dirichlet problem. In fact in [17)
it is proved that, whenever € is regular and 8(Q) < I, the infimum in
(1.2) is achieved. This implies the existence of a positive solution o of
(1) such that:

(5.1) Foft) = =S

Therefore we could think of repeating the same procedure of the
previous section in case A=0.

Using the same definition for the family M and the value c as in the
previous section, we prove that Lemma 4.1 and Lemma 4.2 bold also in
the case A= 0.

To prove the analogue of Lemma 4.3, instead, we need to have two
positive functions v, ¢o, linearly independent, to be replaced in the proof

of Lemma 4.3, i.e. such that:

(62)  max{F(o): v € Tumeo(@) < 2SO + %znﬁ’.
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If this is true, then the existence of a pair of nodal solutions of the
problem (1) follows from Corollary 2.3.

It is easy to see that we can prove (5.2) whenever we find v, ¢ and
n > 0 such that:

max {Fo(aw): a € R} < %S(fl)""‘1 +7
(5.3) max {Fy(Bdo): B € R} < %E“” ~7

supp o N supp ¢o = 0
‘We recall that by “isoperimetric constant of {2 relative to I';” we mean

IEll—l/n

Q(T,82) = sup FalE)

where the supremum is taken over all measurable subsets E of {1 such
that € Ny, does not contain any set of positive (n — 1)-dimensional
Hausdorff measure and Fy represents the perimeter of E relative to {1,
that is

Pa(B) =sup{| [dvwdal, vl <1 we [cr@)]"}.
F o4

Let £, be an open cone in IR™ with vertex in the origin and solid angle
o €)0,wy 1], where w,_, is the (n — 1) dimensional Hausdorff measure of
the unit sphere S*~!. We denote by Z{«, R) the open sector with solid
angle o and radius R > 0, that is Z(a, B) = £, N Br(0). By the symbol
a, we mean the measure of any unitary sector e, 1) with solid angle
o,

Define &,, the class of all open sets 2 C IR" such that Q(I',2) =
(nal/")™". We list some result contained in [17] and [18)].

THEOREM 5.1.
i) Any convez sector L(x, R) such that |IZ(a, 1}| = an belongs to &,

ii) Let Q2 belong to ¢,,,, then

(5.4) 8(Q) 2 B~V nall"
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where B > 0 is a constant depending only on the dimension n.
Moreover in (5.4) the equality holds whenever @ = E(a,R) as ini). 0O

We observe that, given a smooth domain §2, 8 = I'o UT;, using the
definition and the property of Q(T;, ), [18], we can deform T'; adding a
small convex angle of amplitude « in such a way that the new domain
and the convex sector Z{«, R} belong to the same class €,,,. Analogously,
if S(?) < Z, we can deform I'y adding a convex angle of amplitude 3 in
such a way that, 8 < I“’—";—‘J and IS(Q) - S(.Q‘)l <& €e>0.

We give now an example of a domain on which 5y has a nodal solution.

Let 2 be a smooth domain. Let us change I'; by adding two disjoint
convex angles with amplitude a < £ as above and denote by £2' the new
domain, by 2, and z the vertices of the angles. Set x,.(T) = @y z,,0()
and ¥(2) = @a,z4,0() where the functions ¢ are defined as in (3.14) and
p > 0 is such that

(5.5) B,(%e) N B,(zs) =0.

Then, given £ > 0 and 5 > O sufficiently small, we can choose 1 and
) sufficiently small in such & way that:

o
2 < B V¥ nal/" +¢ < 5(Q) + ¢ (because of (5.4))
[ bl

14

S IV%I

Finally take a smooth open set ' C €, such that I'y = Iy and
| — §¥| is small enough. Then:

T2
(5.6) “_f_,-.'—,_ — B M pal/n < 2¢
X

[yl
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[ [V
(5.7 <P -29
J I!b,\
A
and
(5.8) |s@") - B-/7 nai/| < 2¢

Choosing € and 7 in a suitable way, we get:
LEMMA 5.1.

max {Fo(v): U E Ty, v (Q)} < %S(Q")nﬁ + %2::/2 .

PRooOF. Fron (5.5), (5.6), (5.7), (6.8) and (3.17) it follows
Folax, — Bin) = Folax) + Fo(Bths) < %smm + %znﬂ.

Therefore (5.3) follows and hence (5.2). 0

Finally from Lemma 4.1, Lemma 4.2, Lemma 5.1 and Corollary 2.3
iii) we have:

THEOREM 5.2. Let Q, 8% = Ty UT, be e domain in R" as in
the previous sections. For eny € > 0 there exists & domain Q" with
" =T urYy, |H,,_1(I",') - Hoa(Dh)| < ¢, o - n| < € suck that the
problem (1), with A =0, has a pair of nodal solutions. 0
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