Nodal solutions of some elliptic problems with critical nonlinearities

M.V. MARCHI

RIASSUNTO – Si dimostra che l'equazione semilineare ellittica con esponente critico e con condizione al bordo di tipo misto (1) ammette soluzioni che cambiano segno: se $\lambda > 0$, per ogni dominio limitato Ω di \mathbb{R}^n , se $\lambda = 0$, sotto opportune ipotesi di carattere geometrico su quella parte di frontiera su cui è data la condizione di Neumann.

ABSTRACT – We study the semilinear elliptic problem with critical exponent and mixed boundary conditions (1). We prove the existence of nodal solutions for any bounded domain $\Omega \subset \mathbb{R}^n$, when $\lambda > 0$, and, under some geometrical assumptions on Ω , also when $\lambda = 0$.

KEY WORDS - Critical Sobolev exponent - Mixed boundary problem - Nodal solutions.

A.M.S. CLASSIFICATION: 35J65

- Introduction

Let us consider the problem

(1)
$$\begin{cases} \Delta u = \lambda u + |u|^{2^{*}-2}u & \text{on } \Omega \\ u = 0 & \text{on } \Gamma_{0} \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \Gamma_{1} \end{cases}$$

where $\Omega \subset \mathbb{R}^n$, $n \geq 3$, is a bounded domain with regular boundary, $\Gamma_0 \cup \Gamma_1 = \partial \Omega$ and ν is the outer normal to Γ_1 .

It is easy to see that the weak solutions of (1) in the space $V(\Omega) = \{u \in H^1(\Omega), u = 0 \text{ on } \Gamma_0\}$ correspond to the critical points of the functional

(2)
$$F_{\lambda}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \frac{\lambda}{2} \int_{\Omega} |u|^2 - \frac{1}{2} \int_{\Omega} |u|^{2^*}.$$

As it is well known for this type of problems (see [4], [5] and [7]), the difficulty arising in studying problem (1) is that 2^* is the critical esponent for the Sobolev embedding $V(\Omega) \to L^q(\Omega)$, so that the compactness condition of Palais-Smale fails for the functional (2).

Analogously to the results of BREZIS, NIREMBERG, LIONS and STRUWE for the Dirichlet problem (see [7], [4], [5], [16], [20]), LIONS, PACELLA, TRICARICO and GROSSI prove in [18] and [14] that the Palais-Smale condition for the functional F_{λ} fails only at certain levels. Starting from this result GROSSI proves in [13] the existence of positive solutions of (1), for any $\lambda \in [\lambda^*, \lambda_1[$, where λ_1 is the first eingevalue of $-\Delta$ in $V(\Omega)$ and λ^* is 0 if $n \geq 4$ and is a positive constant depending on Ω if n = 3.

In this paper, using some techniques introduced for the Dirichlet problem in the papers [8], [9], [10], we study the existence of solutions of (1) which change sign, both in the case $\lambda > 0$ or $\lambda = 0$ (at least for some particular domains).

Let us remark esplicitely that in the Dirichlet problem the case $\lambda=0$ has not been treated in the above papers since the techniques there applied do not work in this case. Instead, in the mixed boundary problem (1), using the results of [18] for positive solutions, we are able to extend the method of [10] to find nodal solutions also in the case $\lambda=0$, under some geometrical assumptions on the domain Ω .

The outline of the paper is the following.

In section 1 we give some preliminaries. In section 2 we prove some compactness results. In section 3, following [8], we prove that (1) has at least two solutions for any $\lambda > 0$. In the same section we also show, as in [9], that, for λ in a suitable neighborhood of the eigenvalue λ_m of $-\Delta$, problem (1) has at least 2m solutions, where m is the multiplicity of λ_m .

Since it is easy to see (see for example [7]) that for $\lambda \geq \lambda_1$, (1) does

not have positive solutions, we have implicitely proved in this way the existence of nodal solutions for $\lambda \ge \lambda_1$.

For $0 < \lambda < \lambda_1$ we prove in section 4 that (1) has at least two nodal solutions, using the method of [10]. Finally in section 5 we treat the case $\lambda = 0$.

1 - Notations and preliminaries

Let G be an open set in \mathbb{R}^n . We define

$$\begin{split} H^1(G) &= \left\{ u \in L^2(G) \quad \text{such that} \quad |\nabla u| \in L^2(G) \right\} \\ D(G) &= \left\{ u \in L^{2^*}(G) \quad \text{such that} \quad |\nabla u| \in L^2(G) \right\}, \qquad 2^* = \frac{2n}{n-2} \\ H^1_0(G) &= \left\{ u \in H^1(G) \quad \text{such that supp } u \subset \subset G \right\}. \end{split}$$

By the Sobolev embedding theorem $H^1(G) \hookrightarrow D(G)$ and, if G has finite measure, $H^1(G) = D(G)$.

The usual scalar product in $H^1(G)$ is

$$(1.1) (u,v) = \int\limits_{G} \nabla u \cdot \nabla v + \int\limits_{G} uv, u,v \in H^{1}(G).$$

From now on we will denote by Ω a bounded domain in \mathbb{R}^n with regular boundary and set $\partial\Omega=\Gamma_0\cup\Gamma_1$ with $H_{n-1}(\Gamma_0)>0$ and $H_{n-1}(\Gamma_1)>0$, H_{n-1} being the (n-1) dimensional Hausdorff measure. For such a domain Ω we define

$$V(\Omega) = \left\{ u \in H^1(\Omega) \colon u \equiv 0 \text{ on } \Gamma_0 \right\}.$$

If H is either $H^1_0(G), D(G)$ or $V(\Omega)$, we consider the following infimum:

(1.2)
$$S_{H} = \inf_{\substack{u \in H \\ u \neq 0}} \frac{\int_{G} \left| \nabla u \right|^{2}}{\left(\int_{G} \left| u \right|^{2^{*}} \right)^{2/2^{*}}}$$

and set $S = S_{D(\mathbb{R}^n)}$, $\Sigma = S_{D(\mathbb{R}^n)}$, $S(\Omega) = S_{V(\Omega)}$ where

$${\rm I\!R}_+^n = \left\{ (x_1,y) \in {\rm I\!R} \times {\rm I\!R}^{n-1}, x_1 > 0 \right\}.$$

The following results hold:

THEOREM 1.1.

i) S > 0 $\Sigma > 0$ (Sobolev's inequalities)

ii)
$$S = \sum 2^{2/n}$$

The proof of i) can be found in [3] while ii) follows from symmetrization arguments used in [21].

THEOREM 1.2.

i) $S_{H_{\lambda}^{1}}(\Omega) > 0$ (Poincaré's inequality)

ii)
$$S_{H^1_0}(\Omega) = S$$

Again the proof of i) can be found in [3], while ii) follows from symmetrization and rescaling arguments (see [1], [5] and [21]).

Theorem 1.3. ([18])
$$0 < S(\Omega) \le \Sigma$$
.

From Theorem 1.2 and 1.3 we immediately deduce that $||u|| = (\int_{\Omega} |\nabla u|^2)^{1/2}$ is a norm equivalent to that induced by the scalar product (1.1) and, from now on, we will use this norm.

By $|u|_s$ instead we will mean the norm $(\int_{\Omega} |u|_s)^{1/s}$, s > 0, whenever this norm is defined for the function u.

Let us define in $V(\Omega)$ the functional

$$(1.3) F_{\lambda}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \frac{\lambda}{2} \int_{\Omega} |u|^2 - \frac{1}{2^{\bullet}} \int_{\Omega} |u|^{2^{\bullet}}, \ \lambda \in \mathbb{R}.$$

It is easy to see that F_{λ} is of class C^1 and that we have

$$(1.4) \ \langle dF_{\lambda}(u), \varphi \rangle = \int\limits_{\Omega} \nabla u \cdot \nabla \varphi - \lambda \int\limits_{\Omega} u \varphi - \int\limits_{\Omega} \left| u \right|^{2^{*}-2} u \varphi \, , \, \forall \, \varphi \in V(\Omega) \, .$$

It is useful to observe that

(1.5)
$$F_{\lambda}(u) = \frac{1}{2} \langle dF_{\lambda}(u), u \rangle + \left(\frac{1}{2} - \frac{1}{2^{*}}\right) \int_{\Omega} |u|^{2^{*}}.$$

When $\lambda = 0$ it is also possible to define $F_0(u)$ in $D(\mathbb{R}^n)$ and $D(\mathbb{R}^n_+)$ substituting obviously Ω with \mathbb{R}^n or \mathbb{R}^n_+ , in this case (1.4) and (1.5) also hold.

2 – Compactness theorems

Let F_{λ} be defined as in the previous section.

LEMMA 2.1. Let λ belong to $[0, \lambda_1[$ and $u_m \in V(\Omega)$ be a sequence such that

$$(2.1) \langle dF_{\lambda}(u_m), u_m \rangle \to 0.$$

Then either

i) $u_m \to 0$ in $V(\Omega)$ (up to a subsequence) or

ii)
$$|u_m|_{2^*}^{2^*} \ge \left(1 - \frac{\lambda}{\lambda 1}\right)^{n/2} [S(\Omega)]^{n/2} + o(1)$$

PROOF. We have

$$\begin{split} F_{\lambda}(u_m) & \geq \frac{1}{2} \Big(1 - \frac{\lambda}{\lambda_1} \Big) \big\| u_m \big\|^2 - \frac{1}{2^*} \big| u_m \big|_{2^*}^{2^*} \geq \\ & \geq \frac{1}{2} \Big(1 - \frac{\lambda}{\lambda_1} \Big) S(\Omega) \big| u_m \big|_{2^*}^2 - \frac{1}{2^*} \big| u_m \big|_{2^*}^{2^*} \,. \end{split}$$

From (2.1), (1.5) we get

$$|u_m|_{2^*}^{2^*} \ge \left(1 - \frac{\lambda}{\lambda_1}\right) S(\Omega) |u_m|_{2^*}^2 + o(1).$$

Since

(2.3)
$$||u_m||_2^2 = \langle dF_{\lambda}(u_m), u_m \rangle + |u_m|_{2^*}^{2^*} + \lambda |u_m|_2^2$$

0

0

then $u_m \to 0$ in $V(\Omega)$ iff $u_m \to 0$ in $L^{2^*}(\Omega)$.

If i) does not hold, from (2.2) we obtain:

$$|u_m|_{2^*}^{2^*-2} \ge \left(1 - \frac{\lambda}{\lambda_1}\right) S(\Omega) + o(1)$$

which implies ii).

COROLLARY 2.1. Let λ belong to $[0, \lambda_1[, u \in V(\Omega)]$ and $(dF_{\lambda}(u), u) = 0$. Then either u = 0 or

$$F_{\lambda}(u) \geq \frac{1}{n} \Big(1 - \frac{\lambda}{\lambda_1}\Big)^{n/2} S(\Omega)^{n/2}.$$

PROOF. It follows immediately from (1.5) and Lemma 2.1.

COROLLARY 2.2. Let λ belong to $[0, \lambda_1[$, $u \in V(\Omega)$ changes sign and $(dF_{\lambda}(u^{\pm}), u^{\pm}) = 0$. Then:

$$F_{\lambda}(u) \geq \frac{2}{n} \Big(1 - \frac{\lambda}{\lambda_1}\Big)^{n/2} S(\Omega)^{n/2}$$
.

PROOF. It is a consequence of Corollary 2.1 observing that

$$F_{\lambda}(u) = F_{\lambda}(u^+) + F_{\lambda}(u^-).$$

REMARK 2.1. If in the Lemma 2.1 and Corollary 2.1 and 2.2 we consider the functional F_0 on $D(\mathbb{R}^n)$ or $D(\mathbb{R}^n_+)$, we get the same results with S or Σ instead of $S(\Omega)$.

The same is true with the constant Σ if the functional F_0 is considered on the space $H=D(\mathbb{R}^n_+)\cap\{u \text{ such that } u\equiv 0 \text{ on } \Gamma_0\}$, where $\Gamma_0=\{(x_1,x_2,y)\in\mathbb{R}\times\mathbb{R}\times\mathbb{R}^{n-2}x_1=0x_2>0\}$. In fact in this case it is obvious that $S_H\geq \Sigma$.

Let us now consider the following problems:

(2.4)
$$\begin{cases} w \in D(\mathbb{R}^n) \\ -\Delta w = |w|^{2^*-2} w & \text{on } \mathbb{R}^n \end{cases}$$

(2.5)
$$\begin{cases} w \in D(\mathbb{R}^n_+) \\ -\Delta w = |w|^{2^*-2} w & \text{on } \mathbb{R}^n_+ \\ \frac{\partial w}{\partial \nu} = 0 & \text{on } (\partial \mathbb{R}^n_+) \end{cases}$$

(2.6)
$$\begin{cases} w \in D(\mathbb{R}^n_+) \cap \{u \text{ such that } u \equiv 0 \text{ on } \Gamma_0\} \\ -\Delta w = |w|^{2^*-2}w & \text{on } \mathbb{R}^n_+ \\ w = 0 & \text{on } \Gamma_0 \\ \frac{\partial w}{\partial u} = 0 & \text{on } \Gamma_1 \end{cases}$$

where Γ_0 is as in Remark 2.1 and $\Gamma_1 = \partial \mathbb{R}^n_+ \setminus \Gamma_0$.

THEOREM 2.1. Let $u_m \in V(\Omega)$ be such that

$$F_{\lambda}(u_m) \to c$$

 $dF_{\lambda}(u_m) \to 0 \text{ in } V^*(\Omega)$.

Then there exist $u \in V(\Omega)$ such that $u_m \to u$ weakly in $V(\Omega)$ and u is a solution of (1) and w_1, w_2, \ldots, w_h , solutions of problems (2.4)-(2.6), such that:

$$c = F_{\lambda}(u) + \sum_{j=1}^{h} F_0(w_j).$$

Moreover h > 0 iff u_m does not converge to u in $V(\Omega)$.

PROOF. The proof is implicitely contained in that of Theorem 2.1 of [14].

COROLLARY 2.3. Let u_m and u be as in Theorem 2.1. Then we have

- i) if $c < \frac{1}{n} \Sigma^{n/2}$, then $u_m \to u$ in $V(\Omega)$.
- ii) If $\lambda \in [0, \lambda_1[$ and $c < \frac{1}{n} \left(1 \frac{\lambda}{\lambda_1}\right)^{n/2} S(\Omega)^{n/2} + \frac{1}{n} \Sigma^{n/2}$ and $u \neq 0$, then $u_m \to u$ in $V(\Omega)$.
- iii) Let λ and c be as in ii) and there exists $\alpha > 0$ such that $||u_m^{\pm}|| > \alpha$, then $u_m \to u$ in $V(\Omega)$.

PROOF.

- and ii) follow immediately from Theorem 2.1 Corollary 2.2 and Remark 2.1.
- iii) From Theorem 1.3, Theorem 2.1, Corollary 2.2 and Remark 2.1 it follows that, if u_m does not converges to u, then h=1 and $w_1 \geq 0$ (or $w_1 \leq 0$). By the proof of Theorem 2.1 of [14] that, for brevity, we do not repeat, starting from the function $w_1 \geq 0$, it is possible to construct a sequence $w_m \geq 0$ in $V(\Omega)$, such that $w_m v_m \to 0$ in $L^{2^*}(\Omega)$, where $v_m = u_m u$. Therefore setting

$$\Omega_+ = \left\{ x \in \Omega \colon v_m(x) = v_m^+(x) \right\}$$
 and $\Omega_- = \Omega \setminus \Omega_+$,

we obtain

$$\begin{split} o(1) &= \left| v_m - w_m \right|_{2^*}^{2^*} = \int\limits_{\Omega_+} \left| v_m^+ - w_m \right|^{2^*} + \int\limits_{\Omega_-} \left| - v_m^- - w_m \right|^{2^*} \geq \\ &\geq \int\limits_{\Omega_-} \left(v_m^- + w_m^- \right)^{2^*} \geq \int\limits_{\Omega_-} \left(v_m^- \right)^{2^*} = \left| v_m^- \right|_{2^*}^{2^*}. \end{split}$$

From this we get that $v_m^- \to 0$ in $L^{2^*}(\Omega)$. Thus, by hypothesis on $||u_m^-||$ it follows that $u \neq 0$. Thus iii) follows from ii).

3 – Existence and multiplicity theorems for $\lambda_1 \leq \lambda$

Let us start by recalling a critical point theorem proved in [2].

THEOREM 3.1. Let H be an Hilbert space with norm $\|\cdot\|$ and $I: H \to \mathbb{R}$ an even functional satisfying

- I_1) $I \in C^1(H, \mathbb{R}), I(0) = 0$.
- I₂) There exists $\beta > 0$ such that the Palais-Smale condition holds for I in $]-\infty, \beta[$.
- I₃) There exists two closed subspaces V, W, numbers $\delta > 0$, $\rho > 0$, $0 < \varepsilon < \beta$ such that
 - i) Codim $V < +\infty$.
 - ii) $I(u) > \delta$ for any $u \in V$ with $||u|| = \rho$.
 - iii) $I(u) < \varepsilon$ for any $u \in W$.

Then I has at least $m = \dim W - \operatorname{codim} V$ pairs of critical points.

Let F_{λ} be the functional on $V(\Omega)$ considered in the previous sections. The following estimates are easily deduced.

(*) If $||u||^2 - \lambda |u|_2^2 > 0$ then the function $F_{\lambda}(tu)$ is increasing, with rispect to t in $[0, t_0]$, decreasing to $-\infty$ in $[t_0 + \infty[$, where

(3.1)
$$t_0 = t_0(u) = \left(\frac{\|u\|^2 - \lambda |u|_2^2}{|u|_2^{2^*}}\right)^{(n-2)/4}.$$

Thus

$$|t_0u|_{2^*}^{2^*} = \left(\frac{\|u\|^2 - \lambda |u|_2^2}{|u|_{2^*}^2}\right)^{n/2}.$$

Moreover observing that for t > 0

(3.3)
$$\langle dF_{\lambda}(tu), tu \rangle = 0 \text{ iff } t = t_0(u)$$

from (1.5), (3.2) and (3.3) we get:

(3.4)
$$\max \{F_{\lambda}(tu) \colon t \in \mathbb{R}\} = F_{\lambda}(t_0u) = \frac{1}{n} \left(\frac{\|u\|^2 - \lambda |u|_2^2}{|u|_{2^*}^2} \right)^{n/2}.$$

Finally let us point out that, since $F_{\lambda}(tu) < 0$ iff $t > \left(\frac{2^{\bullet}}{2}\right)^{(n-2)/4} t_0(u)$

(3.5)
$$F_{\lambda}(u) \leq 0 \text{ iff } t_0(u) \leq \left(\frac{2}{2^*}\right)^{(n-2)/4}$$

and

 F_{λ} is bounded from above on any finite

(3.6) dimensional subspace of $V(\Omega)$.

Let us remark that in (3.6) we have also used the continuity of $t_0(u)$ with respect to $u \in V(\Omega)$, $u \neq 0$.

Denoting by $\lambda_1 < \lambda_2 < \dots \lambda_n < \dots$ the eigenvalues of $-\Delta$ in $V(\Omega)$, let (M_{λ_j}) be the eingenspace corresponding to λ_j . Moreover for any $\lambda > 0$ we set:

$$\lambda_{+} = \min \left\{ \lambda_{j} \text{ such that } \lambda_{j} > \lambda \right\}$$

$$M_{+} = \bigoplus_{\lambda_{j} \geq \lambda_{+}} M(\lambda_{j})$$

$$M_{-} = \bigoplus_{\lambda_{j} < \lambda_{+}} M(\lambda_{j})$$

Denoting by |E| the Lebesgue measure of a set $E \subset \mathbb{R}^n$, we have:

LEMMA 3.1.

- a) There exist $\delta > 0$, $\rho > 0$ such that $F_{\lambda}(u) \geq \delta$, for any $u \in M_{+}$ with $||u|| = \rho$.
- b) $F_{\lambda}(u) \leq \frac{1}{n}(\lambda_{+} \lambda)^{n/2} |\Omega|$ for any $u \in M_{-} \oplus M(\lambda_{+})$.

PROOF. If $u \in M_+$ then $F_{\lambda}(u) \geq \left(1 - \frac{\lambda}{\lambda_+}\right) \|u\|^2 - \frac{S(\Omega)}{2^*} \|u\|^{2^*}$ from which a) follows choosing ρ and δ in a suitable way. To prove b) we observe that for $u \in M_- \oplus M(\lambda_+)$ we have

$$\frac{\|u\|_{2^*}^2 - \lambda |u|_2^2}{|u|_{2^*}^2} \le \frac{(\lambda_+ - \lambda)|u|_2^2}{|u|_{2^*}^2} \le (\lambda_+ - \lambda)|\Omega|^{2/n}$$

and therefore b) follows from (3.4) if u satisfies (*). If u does not satisfy (*), $F_{\lambda}(u) \leq 0$. This ends the proof.

THEOREM 3.2. If $\lambda \in]\lambda_j - \Sigma |\Omega|^{-2/n}$, λ_j there exist at least m_j pairs of solutions of (1) where m_j is the dimension of $M(\lambda_j)$.

PROOF. As in [9] we prove that F_{λ} satisfies the hypotheses of Theorem 3.1, choosing $V = M_{+}, W = M_{-} \oplus M(\lambda_{+})$ and $\beta = \frac{1}{2} \Sigma^{n/2}$.

In fact I_1) and i) of I_3) are immediately verified. I_2) follows from Corollary 2.3, while ii) of I_3) is deduced from Lemma 3.1 a).

Finally inequality b) of Lemma 3.1 implies iii) of I_3) as soon as $(\lambda_+ - \lambda) < \frac{1}{n} \Sigma |\Omega|^{-2/n}$.

The following lemma will also be used in the next sections.

LEMMA 3.2. Let M be a finite dimensional subspace of $V(\Omega) \cap W^{2,\infty}(\Omega)$. If $\varphi \in V(\Omega)$ and

(3.7)
$$|\varphi|_{2^{\bullet}}^{2^{\bullet}} - c(|\varphi|_{1}^{2^{\bullet}} + |\varphi|_{2^{\bullet}-1}^{2^{\bullet}}) > 0$$

for some c > 0.

Then there exist two positive constants $l_1(\varphi)$ and $l_2(\varphi)$ such that

$$(3.8) \begin{cases} \text{i)} & \sup\{F_{\lambda}(w+t\varphi) \colon w \in M, \ t \in \mathbb{R}\} \leq \\ & \leq \sup\{F_{\lambda}(w+t\varphi) \colon w \in M, \ t \in \mathbb{R}, \ |w|_{2^{*}}^{2^{*}} \leq \\ & \leq l_{1}(\varphi), \ |t|^{2^{*}} \leq l_{1}(\varphi)\}. \end{cases}$$

$$(3.8) \begin{cases} \text{ii)} & F_{\lambda}(v+t\varphi) \leq F_{\lambda}(v) + F_{\lambda}(t\varphi) + \\ & + l_{2}(\varphi) \left[\left(|v|_{2^{*}} + |v|_{2^{-1}^{*}}^{2^{-1}}\right) |\varphi|_{1} + |v|_{2^{*}} |\varphi|_{2^{*}-1}^{2^{*}-1} \right] \\ & \text{for any } v \in M, \ t \in \mathbb{R}, \ |v|_{2^{*}}^{2^{*}} \leq l_{1}(\varphi), \ |t|^{2^{*}} \leq l_{1}(\varphi). \end{cases}$$

Proof.

i)

$$|w + t\varphi|_{2^{*}}^{2^{*}} - |w|_{2^{*}}^{2^{*}} - |t\varphi|_{2^{*}}^{2^{*}} =$$

$$= 2^{*} \int_{\Omega} \int_{0}^{1} \left[|w + \sigma t\varphi|^{2^{*}-2} (w + \sigma t\varphi) - |\sigma t\varphi|^{2^{*}-2} \sigma t\varphi \right] t\varphi d\sigma dx =$$

$$= 2^{*} (2^{*} - 1) \int_{\Omega} \int_{0}^{1} |\vartheta w + \sigma t\varphi|^{2^{*}-2} w t\varphi d\sigma dx \leq$$

$$\leq 2^{*} (2^{*} - 1) \int_{\Omega} \left(|w|^{2^{*}-1} |t\varphi| + |w| |t\varphi|^{2^{*}-1} \right)$$

where $\theta \in]0,1[$.

Since M is finite dimensionale all the norms in M are equivalent, thus, from (3.9), using, twice Young's inequality with $p = p^*$ and $p = p^*/(p^*-1)$ we get

$$\begin{split} \left| \left| w + t\varphi \right|_{2^{*}}^{2^{*}} - \left| w \right|_{2^{*}}^{2^{*}} - \left| t\varphi \right|_{2^{*}}^{2^{*}} \right| & \leq \\ & \leq 2^{*}(2^{*} - 1) \left(\left| w \right|_{\infty}^{2^{*} - 1} \left| t\varphi \right|_{1} + \left| w \right|_{\infty} \left| t\varphi \right|_{2^{*} - 1}^{2^{*} - 1} \right) \leq \\ & \leq c(M) \left(\left| w \right|_{2^{*}}^{2^{*}} \left| t\varphi \right|_{1} + \left| w \right|_{2^{*}} \left| t\varphi \right|_{2^{*} - 1}^{2^{*} - 1} \right) \leq \\ & \leq \frac{2^{*} - 1}{2^{*}} \frac{1}{4} \left| w \right|_{2^{*}}^{2^{*}} + \left| t \right|^{2^{*}} c(M) \left| \varphi \right|_{1}^{2^{*}}^{2^{*}} + \frac{1}{2^{*}} \frac{1}{4} \left| w \right|_{2^{*}}^{2^{*}} + \left| t \right|^{2^{*}} c(M) \left| \varphi \right|_{2^{*} - 1}^{2^{*}} = \\ & = \frac{1}{2} \left| w \right|_{2^{*}}^{2^{*}} + \left| t \right|^{2^{*}} c(M) \left(\left| \varphi \right|_{1}^{2^{*}} + \left| \varphi \right|_{2^{*} - 1}^{2^{*}} \right). \end{split}$$

Therefore

$$\big|w+t\varphi\big|_{2^*}^{2^*}\geq \frac{1}{2}\big|w\big|_{2^*}^{2^*}+\big|t\big|^{2^*}\big|\varphi\big|_{2^*}^{2^*}-\big|t\big|^{2^*}c(M)\Big(\big|\varphi\big|_1^{2^*}+\big|\varphi\big|_{2^*-1}^{2^*}\Big)\,.$$

From here it follows that, whenever $|w+t\varphi|_{2^*}^{2^*} \leq \text{const.}$ and φ satisfies

(3.7), then:

i)
$$|w|_{2^{\bullet}}^{2^{\bullet}} \leq 2$$
 const.

(3.11) ii)
$$|t|^{2^{*}} \leq \frac{\text{const.}}{|\varphi|_{2^{*}}^{2^{*}} - c(M)(|\varphi|_{1}^{2^{*}} + |\varphi|_{2^{*}-1}^{2^{*}})}$$
.

Thus we prove i) whenever we prove that there exists $l_1(\varphi) > 0$ such that

$$\sup\{F_{\lambda}(w+t\varphi)\colon w\in M,\ t\in\mathbb{R}\}\leq \\ \leq \sup\{F_{\lambda}(w+t\varphi)\colon w\in M,\ t\in\mathbb{R},\ |w+t\varphi|_{2^{\bullet}}^{2^{\bullet}}\leq l_{1}(\varphi)\}.$$

Suppose, by contradiction, that this is not true, then, by (3.3) and (3.4), There exists a sequence $u_m = w_m + t_m \varphi$ such that

$$||u_m||^2 - \lambda |u_m|_2^2 = |u_m|_2^{2^*}$$

$$|u_m|_{2^*}^{2^*} > m.$$

In this case $v_m = u_m/|u_m|_{2^*} = w_m' + t_m' \varphi$ satisfies

$$|v_m|_{2^*}^{2^*} = 1$$

(3.12')
$$||v_m||^2 - \lambda |v_m|_2^2 > m.$$

Since

$$||v_{m}||^{2} - \lambda |v_{m}|_{2}^{2} =$$

$$= ||w'_{m}||^{2} - \lambda ||w'_{m}||_{2}^{2} + ||t'_{m}\varphi||^{2} - \lambda ||t'_{m}\varphi||_{2}^{2} +$$

$$+ 2 \left(\int_{\Omega} \nabla w'_{m} \nabla t'_{m} \varphi - \lambda \int_{\Omega} w'_{m} t'_{m} \varphi \right) \leq$$

$$\leq F_{\lambda}(w'_{m}) + F_{\lambda}(t'_{m}\varphi) + \frac{1}{2^{*}} \left[|w'_{m}|_{2^{*}}^{2^{*}} + |t'_{m}\varphi|_{2^{*}}^{2^{*}} \right] +$$

$$+ c(M)|w'_{m}|_{2^{*}}|t'_{m}\varphi|_{1}$$

by (3.6), (3.12) and (3.11) $||v_m||^2 - \lambda |v_m|_2^2$ is bounded. This contradicts (3.12').

0

ii). By (3.9) and by i) we get

$$F_{\lambda}(w+t\varphi)=$$

$$\begin{split} F_{\lambda}(w) + F_{\lambda}(t\varphi) + \int_{\Omega} \nabla w \nabla (t\varphi) - \lambda \int_{\Omega} wt\varphi + \\ + \frac{1}{2^{\bullet}} [|w|_{2^{\bullet}}^{2^{\bullet}} + |t\varphi|_{2^{\bullet}}^{2^{\bullet}} - |w + t\varphi|_{2^{\bullet}}^{2^{\bullet}}] \leq \\ \leq F_{\lambda}(w) + F_{\lambda}(t\varphi) + l_{2}(\varphi) \Big[\Big(|w|_{2^{\bullet}} + |w|_{2^{\bullet}-1}^{2^{\bullet}-1} \Big) |\varphi|_{1} + |w|_{2^{\bullet}} |\varphi|_{2^{\bullet}-1}^{2^{\bullet}-1} \Big] \cdot \Omega \end{split}$$

REMARK 3.1. We observe that from the extimates (3.11) and (3.13) it follows that the functions $l_1(\varphi)$ and $l_2(\varphi)$ are bounded on a subset H of $V(\Omega)$ as soon as there exist $L_1 > 0$ and $L_2 > 0$ such that $\sup\{F_{\lambda}(t\varphi): t \in \mathbb{R}\} < L_1$, $|\varphi|_1 < L_1$ and $|\varphi|_{2^*}^{2^*} - c(|\varphi|_1^{2^*} + |\varphi|_{2^*-1}^{2^*}) > L_2$ for any $\varphi \in H$.

Let $x_0 \in \Gamma_1$. Let $\rho > 0$ and $\tilde{\psi} \in C_0^{\infty}(B_{\rho}(x_0))$, $\tilde{\psi} \equiv 1$ on $B_{\rho/2}(x_0)$. Define for $\mu > 0$:

(3.14)
$$\varphi_{\mu}(x) = \varphi_{\mu,x_0,\rho}(x) = \psi(x) \cdot \frac{n(n-2)\mu^{(n-2)/4}}{\left(\mu + \left|x - x_0\right|^2\right)^{(n-2)/2}},$$

where $\psi = \tilde{\psi}\chi_{\Omega}$ and χ_{Ω} is the characteristic function of Ω .

Whenever ρ is sufficiently small φ_{μ} belongs to $V(\Omega)$.

In the following lemma we list some results about the functions φ_{μ} (see [7]).

LEMMA 3.3. Let $n \ge 4$. There exists K > 0

$$\|\varphi_{\mu}\|^{2} = \Sigma^{n/2} + 0(\mu^{(n-2)/4})$$

$$|\varphi_{\mu}|_{1} \leq K\mu^{(n-2)/4}$$

$$|\varphi_{\mu}|_{2^{*}-1}^{2^{*}-1} \leq K\mu^{(n-2)/4}$$

$$|\varphi_{\mu}|_{2^{*}}^{2^{*}} = \Sigma^{n/2} + 0(\mu^{n/2})$$
Let $n \geq 5$, then
$$|\varphi_{\mu}|_{2}^{2} = K\mu + 0(\mu^{(n-2)/2}).$$

From the estimates (3.15) and (1.3) it follows:

(3.16)
$$F_{\lambda}(\varphi_{\mu}) = \frac{1}{n} \Sigma^{n/2} - \lambda \frac{K}{2} \mu + 0(\mu^{(n-2)/2})$$

(3.17)
$$\sup \left\{ F_{\lambda}(t\varphi_{\mu}) \colon t \in \mathbb{R} \right\} = \frac{1}{n} \Sigma^{n/2} - \lambda \frac{K}{2} \mu + 0 \left(\mu^{(n-2)/2} \right)$$

and also that, fixed c > 0 there exist $\bar{\mu} > 0$, $L_1 > 0$ and $L_2 > 0$ such that for any $\mu < \bar{\mu}$:

(3.18)
$$\sup\{F_{\lambda}(t\varphi_{\mu}) \colon t \in \mathbb{R}\} < L_{1}, \quad |\varphi|_{1} < L_{1} \text{ and } \\ |\varphi_{\mu}|_{2^{*}}^{2^{*}} - c(|\varphi_{\mu}|_{1}^{2^{*}} + |\varphi_{\mu}|_{2^{*}-1}^{2^{*}}) > L_{2}.$$

If μ is sufficiently small, from (3.16) it follows that $F_{\lambda}(\varphi_{\mu}) > 0$, thus $\varphi_{\mu} \notin M_{-}$.

Therefore

$$\dim W_{\mu} - \operatorname{codim} M_{+} = 1$$

where

$$W_{\mu} = \{ u \in V(\Omega) \colon u = w + t\varphi_{\mu} \ w \in M_{-}t \in \mathbb{R} \}.$$

THEOREM 3.3. Let $n \ge 5$. Then for any $\lambda > 0$ there exists at least a pair of solutions of the problem (1).

PROOF. As in [8] we apply Theorem 3.1 to F_{λ} , with $\beta = \frac{1}{n} \sum^{n/2}$ and $V = M_{+}$. Thus I_{1} , I_{2} , I_{3} ii) hold as in Theorem 3.2. We set $W = W \mu$ choosing μ sufficiently small in such a way that (3.19), i.e. I_{3} i), and (3.7) hold. Setting in Lemma (3.2) $M = M_{-}$ and $\varphi = \varphi_{\mu}$, we get, by Remark 3.1, (3.16), (3.17), (3.18):

$$(3.20) F_{\lambda}(v+t\varphi_{\mu}) \leq -\frac{1}{2^{*}} |v|_{2^{*}}^{2^{*}} + \frac{1}{n} \Sigma^{n/2} - \lambda \frac{K}{2} \mu + L_{2} (|v|_{2^{*}} + |v|_{2^{*}-1}^{2^{*}-1}) \mu^{(n-2)/4}$$

where $v \in M_{-1} |v|_{2*} < L_1$.

If $n \ge 7$ from (3.20) it follows I_3iii) for μ sufficiently small. Finally let us point out that if $\lambda \ne \lambda_i$

$$(3.21) A(\mu) = -\frac{1}{2^*} |v|_{2^*}^{2^*} + L_2 \Big(|v|_{2^*} + |v|_{2^*}^{2^*-1} \Big) \mu^{(n-2)/4} < c\mu^{\frac{n-2}{4} \frac{2^*}{2^*-1}}.$$

In fact either $A(\mu) < 0$ or $|v|_{2^*} \le L\mu^{\frac{n-2}{4}\frac{1}{2^*-1}}$ therefore by (3.20) we obtain I_3 iii) for μ sufficiently small.

If $\lambda = \lambda_j$ we get (3.20) and (3.21) with $\tilde{w} = w - \pi_j w$ instead of w, where π_j is the projector on the subspace $M(\lambda_j)$.

From the previous theorems we immediately have

COROLLARY 3.2.

If $\lambda \geq \lambda_1$ there exist at least two nodal solutions of problem (1).

If $\lambda \geq \lambda_1$ and $\lambda \in]\lambda_j - \Sigma |\Omega|^{-2/n}, \lambda_j]$, there exist at least $2m_j$ nodal solutions of (1).

4 − Existence of nodal solutions. Case $\lambda \in]0, \lambda_1[$

Let us start by giving some results that we will also use in the next section. Let $\lambda \in [0, \lambda_1[$, by Lemma 2.1, the nodal solutions of (1) belong to

$$(4.1) U = \{u \in V(\Omega) : \langle dF_{\lambda}(u^{\pm}), u^{\pm} \rangle = 0 \text{ and } u^{\pm} \neq 0\}.$$

Setting

$$c=\inf\left\{F_{\lambda}(u)\colon u\in U\right\}$$

from Corollary 2.2 it follows that

$$(4.2) c \ge \frac{2}{n} \left(1 - \frac{\lambda}{\lambda_1}\right)^{n/2} S(\Omega)^{n/2} > 0.$$

Let $P = \{u \in V(\Omega) : u \ge 0\}$ and \mathcal{M} be the set of maps σ such that

(4.3) ii)
$$\sigma \in C(Q, V(\Omega))$$
 $Q = [0, 1] \times [0, 1]$
ii) $\sigma(s, 0) = 0$ for any $s \in [0, 1]$
iii) $[1/(t_0(\sigma(s, 1))]^{4/(n-2)} \ge 2^*$ for any $s \in [0, 1]$
iv) $\sigma(0, t) \in P$ for any $t \in [0, 1]$
v) $-\sigma(1, t) \in P$ for any $t \in [0, 1]$

We have the following

LEMMA 4.1.

$$c = \inf_{\sigma \in \mathcal{M}} \max \left\{ F_{\lambda}(v) \colon v \in \sigma(Q) \right\}$$

PROOF. We observe that by (3.5) for any u>0, v>0 linearly independent, the map $\sigma_{u,v}$ defined by

(4.3')
$$\sigma_{u,v}(s,t) = t(2^*)^{(n-2)/4} t_0^s [(1-s)u - sv]$$

where $t_0^s = t_0[(1-s)u - sv]$ as in (3.1), belongs to \mathcal{M} . Thus $\mathcal{M} \neq \emptyset$ and in particular for any $u \in U$, the map $\sigma_u = \sigma_{u^+,u^-}$ belongs to \mathcal{M} . For such a map we have:

$$(4.4) F_{\lambda}(u) = \max \left\{ F_{\lambda}(v) \colon v \in \sigma_{u}(Q) \right\}.$$

In fact $u = \sigma_u \left(\frac{1}{2}, \left(\frac{1}{2^*}\right)^{(n-2)/4}\right)$ and, from (3.3) and (4.1), for any $\alpha, \beta > 0$

$$F_{\lambda}(\alpha u^+ - \beta u^-) = F_{\lambda}(\alpha u^+) + F_{\lambda}(\beta u^-) \le F_{\lambda}(u^+) + F_{\lambda}(u^-) = F_{\lambda}(u).$$

From (4.4) it follows

$$\inf_{\sigma \in \mathcal{M}} \max \{ F_{\lambda}(v) \colon v \in \sigma(Q) \} \le$$

$$\inf_{u \in U} \max \{ F_{\lambda}(v) \colon v \in \sigma_{u}(Q) \} =$$

$$\inf \{ F_{\lambda}(u) \colon u \in U \} .$$

On the other hand, fixed $\sigma \in \mathcal{M}$, $U \cap \sigma(Q) \neq \emptyset$. In fact we observe that

$$\left[\frac{1}{t_0(u)}\right]^{4/(n-2)} = \frac{\left|u\right|_{2^*}^{2^*}}{\left\|u\right\|^2 - \lambda \left|u\right|_2^2} \leq \frac{S(\Omega)^{-2^*/2}}{1 - \frac{\lambda}{\lambda 1}} \left\|u\right\|^{2^*-2}.$$

Thus, setting

$$f_1(s,t) = \left[\frac{1}{\bar{t}_0(\sigma^+(s,t))}\right]^{4/(n-2)} - \left[\frac{1}{\bar{t}_0(\sigma^-(s,t))}\right]^{4/(n-2)}$$

$$f_2(s,t) = \left[\frac{1}{\bar{t}_0(\sigma^+(s,t))}\right]^{4/(n-2)} + \left[\frac{1}{\bar{t}_0(\sigma^-(s,t))}\right]^{4/(n-2)} - 2$$

where

$$\frac{1}{\tilde{t}_0(u)} = \begin{cases} \frac{1}{t_0(u)} & \text{if } u \neq 0 \\ 0 & \text{if } u = 0 \end{cases}$$

we can prove that f_1 and f_2 belong to $C(Q, \mathbb{R})$. Moreover from (4.3) iv), v) and i) we get

 $f_1(0,t) \ge 0$, $f_1(1,t) \le 0$ for any $t \in [0,1]$ and $f_2(s,0) < 0$ for any $s \in [0,1]$.

Furthermore from

$$\frac{\left|u\right|_{2^{*}}^{2^{*}}}{\left\|u\right\|^{2}-\lambda\left|u\right|_{2}^{2}}\leq\frac{\left|u^{+}\right|_{2^{*}}^{2^{*}}}{\left\|u^{+}\right\|^{2}-\lambda\left|u^{+}\right|_{2}^{2}}+\frac{\left|u^{-}\right|_{2^{*}}^{2^{*}}}{\left\|u^{-}\right\|^{2}-\lambda\left|u^{-}\right|_{2}^{2}}$$

and from (4.3) iii) and (3.5) it follows

$$f_2(s,1) \ge \left[\frac{1}{t_0(\sigma(s,1))}\right]^{4/(n-2)} - 2 \ge 2^* - 2 > 0.$$

Thus from a fixed point theorem of C. MIRANDA [19] it follows that there exists a point $(\bar{s}, \bar{t}) \in Q$ such that

$$f_1(\bar{s},\bar{t})=f_2(\bar{s},\bar{t})=0.$$

Ω

Obviously for such a point

$$t_0\Big(\sigma(\bar{s},\bar{t})^+\Big)=t_0\Big(\sigma(\bar{s},\bar{t})^-\Big)=1$$
,

from which, by (3.3) and Lemma 2.1, we deduce

$$(4.6) u_{\sigma} = \sigma(\ddot{s}, \bar{t}) \in U \cap \sigma(Q).$$

Thus

$$c = \inf \{ F_{\lambda}(u) \colon u \in U \} \le \inf \{ F_{\lambda}(u_{\sigma}) \colon \sigma \in \mathcal{M} \} \le$$
$$\le \inf_{\sigma \in \mathcal{M}} \max \{ F_{\lambda}(v) \colon v \in \sigma(Q) \}$$

This ends the proof.

LEMMA 4.2. There exists $\alpha>0$ and a sequence $v_m\in V(\Omega)$ such that

$$egin{aligned} F_{\lambda}(v_m) &
ightarrow c \ dF_{\lambda}(v_m) &
ightarrow 0 \ in \ V^*(\Omega) \ &\left\|v_m^{\pm}
ight\|^2 > lpha \, . \end{aligned}$$

PROOF. Let $u_m \in U$ be a minimizing sequence for $F_{\lambda}(u)$. Setting, for brevity, $\sigma_m = \sigma_{u_m}$ as in (4.3)', we claim that there exist two sequences (v_m) and (w_m) in $V(\Omega)$, such that

(4.7)
$$\begin{aligned} \text{i)} & F_{\lambda}(v_m) \to c \\ & \text{ii)} & dF_{\lambda}(v_m) \to 0 \text{ in } V^*(\Omega) \\ & \text{iii)} & w_m = \alpha u_m^+ - \beta u_m^- \in \sigma_m(Q) \quad \alpha, \beta > 0 \\ & \text{iv)} & \|w_m - v_m\| \to 0. \end{aligned}$$

In fact if (4.7) are not true, there exists $\delta > 0$ such that we get definitively

$$(4.8) \sigma_m(Q) \cap A_i = \emptyset$$

where

$$A = \Big\{ v \in V(\Omega) \colon \|v - u\| < \delta \text{ for some } u \in V(\Omega) \text{ such that } |F_{\lambda}(u) - c| < \delta$$
 and $|dF_{\lambda}(u)| < \delta \text{ in } |V^{*}(\Omega)| \Big\}.$

M.V. MARCHI

Using a deformation lemma by H. HOFER [15], we can construct a continuous map

 η : $[0,1] \times V(\Omega) \to V(\Omega)$ such that, for some $\varepsilon \in]0,c/2[$

a)
$$\eta(0, u) = u$$
 for any $u \in V(\Omega)$

b) if $F_{\lambda}(u) > c + \varepsilon$ or $F_{\lambda}(u) \le c - \varepsilon$ then

$$\eta(t,u) = u \qquad \forall \ t \in [0,1]$$

c) if $F_{\lambda}(u) < c + \varepsilon/2$ and $u \notin A$ then

$$F_{\lambda}(\eta(1,u)) < c - \varepsilon/2.$$

- d) Moreover, in the same hypothesis of c), if $u \in P$ then $\eta(1, u) \in P$
- e) $\eta(t,-u) = -\eta(t,u)$ for any $t \in [0, 1]$.

Setting

$$\sigma_m^*(s,t) = \eta(1,\sigma_m(s,t))$$

from (4.3) ii), (4.2) and b) it follows

$$\sigma_m^*(s,0) = \sigma_m(s,0)$$

and from (4.3) iii), (3.5), (4.2) and b)

$$\sigma_m^*(s,1) = \sigma_m(s,1).$$

Thus σ_m^* satisfies (4.3) ii) and iii). Furthermore from d) and e) it follows that σ_m^* satisfies also (4.3) iv) and v). Thus $\sigma_m^* \in \mathcal{M}$.

On the other hand, from (4.8) and c) it follows that for m sufficientely large

$$(4.9) \max \left\{ F_{\lambda}(v) \colon v \in \sigma_{m}^{*}(Q) \right\} < c - \frac{\varepsilon}{2},$$

which contradicts Lemma 4.1. Therefore (4.7) holds and, by continuity of F_{λ} , we get:

(4.10)
$$F_{\lambda}(w_m) = F_{\lambda}(u_m) + o(1).$$

We claim that neither w_m^+ nor w_m^- converges to 0 in $V(\Omega)$. In fact assume that w_m^+ converges to 0, then from (4.7) iii), (4.10) and Corollary (2.1), it follows, for m sufficiently large:

$$\begin{split} F_{\lambda}(\beta u_{m}^{-}) &= F_{\lambda}(w_{m}^{-}) = F_{\lambda}(u_{m}) + o(1) = \\ &= F_{\lambda}(u_{m}^{+}) + F_{\lambda}(u_{m}^{-}) + o(1) \geq \\ &\geq \left(1 - \frac{\lambda}{\lambda_{1}}\right)^{n/2} S(\Omega)^{n/2} + o(1) + F_{\lambda}(u_{m}^{-}) > F_{\lambda}(u_{m}^{-}) \end{split}$$

which contradicts (3.3) since $u_m \in U$.

Thus there exists $\alpha > 0$ such that $||w_m^{\pm}||^2 \ge \alpha$. By (4.7) iv) the same holds for v_m .

We recall that

THEOREM 4.1. [13] Let $n \geq 4$ and $\lambda \in]\lambda^*, \lambda_1[$ where $\lambda^* \leq 0$ is a constant depending on the geometry of Ω . Then there exists a positive solution u_0 of (1) such that

(4.11)
$$F_{\lambda}(u_0) = \frac{1}{n} \left(1 - \frac{\lambda}{\lambda_1}\right)^{n/2} S(\Omega)^{n/2}.$$

We observe that from (3.3) it follows that $F_{\lambda}(u_0) = \sup \{F_{\lambda}(tu_0) \ t \in \mathbb{R}\}.$

LEMMA 4.3. Let $n \ge 7$, $0 < \lambda < \lambda_1$. Then there exists $\sigma \in \mathcal{M}$ such that

$$(4.12) \quad \max \left\{ F_{\lambda}(v) \colon v \in \sigma(Q) \right\} < \frac{1}{n} \left(1 - \frac{\lambda}{\lambda_1} \right)^{n/2} S(\Omega)^{n/2} + \frac{1}{n} \Sigma^{2/n} \,.$$

PROOF. From (4.11), (3.16) and Theorem 1.3 it follows that, for μ sufficiently small, $F_{\lambda}(\varphi_{\mu}) > F_{\lambda}(u_0)$, where φ_{μ} is defined as in (3.14) and u_0 as in Theorem 4.1. Thus φ_{μ} and u_0 are linearly independent. Set $\sigma = \sigma_{u_0,\varphi_{\mu}}$, assuming that μ is sufficiently small in such a way that (3.7) holds. Then, setting in Lemma 3.2 $M = \{tu_0 : \in \mathbb{R}\}$ and $\varphi = \varphi_{\mu}$ from Remark 3.1, (3.18), (3.17) and (4.11) we get

$$\begin{split} F_{\lambda}(\alpha u_0 - \beta \varphi_{\mu}) & \leq F_{\lambda}(\alpha u_0) + F_{\lambda}(\beta \varphi_{\mu}) + d\mu^{(n-2)/4} \leq \\ & \leq \frac{1}{n} \left(1 - \frac{\lambda}{\lambda_1}\right)^{n/2} S(\Omega)^{n/2} + \frac{1}{n} \Sigma^{2/n} - \lambda K\mu + d\mu^{(n-2)/4} \,, \end{split}$$

from which (4.12) follows for μ sufficiently small and $n \geq 7$.

Finally, from Lemma 4.2, Lemma 4.3 and Corollary 2.3 iii), we get:

THEOREM 4.2. Let $n \ge 7$, $0 < \lambda < \lambda_1$, then there exists a least a pair of nodal solutions of the problem (1).

5 - Existence of nodal solutions in the case $\lambda = 0$

In this section we will assume $n \geq 4$. When $\lambda = 0$ the mixed boundary problem is quite different from the Dirichlet problem. In fact in [17] it is proved that, whenever Ω is regular and $S(\Omega) < \Sigma$, the infimum in (1.2) is achieved. This implies the existence of a positive solution u_0 of (1) such that:

(5.1)
$$F_0(u_0) = \frac{1}{n} S(\Omega)^{n/2}.$$

Therefore we could think of repeating the same procedure of the previous section in case $\lambda=0$.

Using the same definition for the family \mathcal{M} and the value c as in the previous section, we prove that Lemma 4.1 and Lemma 4.2 hold also in the case $\lambda = 0$.

To prove the analogue of Lemma 4.3, instead, we need to have two positive functions v_0 , ϕ_0 , linearly independent, to be replaced in the proof of Lemma 4.3, i.e. such that:

(5.2)
$$\max \left\{ F_0(v) \colon v \in \sigma_{v_0,\phi_0}(Q) \right\} < \frac{1}{n} S(\Omega)^{n/2} + \frac{1}{n} \Sigma^{n/2}.$$

If this is true, then the existence of a pair of nodal solutions of the problem (1) follows from Corollary 2.3.

It is easy to see that we can prove (5.2) whenever we find v_0 , ϕ_0 and $\eta > 0$ such that:

(5.3)
$$\begin{cases} \max \left\{ F_0(\alpha v_0) \colon \alpha \in \mathbb{R} \right\} < \frac{1}{n} S(\Omega)^{n/2} + \eta \\ \max \left\{ F_0(\beta \phi_0) \colon \beta \in \mathbb{R} \right\} \le \frac{1}{n} \Sigma^{n/2} - \eta \\ \operatorname{supp} v_0 \cap \operatorname{supp} \phi_0 = \emptyset \end{cases}$$

We recall that by "isoperimetric constant of Ω relative to Γ_1 " we mean

$$Q(\Gamma_1, \Omega) = \sup \frac{|E|^{1-1/n}}{P_{\Omega}(E)}$$

where the supremum is taken over all measurable subsets E of Ω such that $\partial E \cap \Gamma_0$ does not contain any set of positive (n-1)-dimensional Hausdorff measure and P_{Ω} represents the perimeter of E relative to Ω , that is

$$P_{\Omega}(E) = \sup \left\{ \Big| \int\limits_{E} \operatorname{div} \psi \, dx \Big|, |\psi| \leq 1 \quad \psi \in \left[C_0^{\infty}(\Omega) \right]^n \right\}.$$

Let Σ_{α} be an open cone in \mathbb{R}^n with vertex in the origin and solid angle $\alpha \in]0, \omega_{n-1}]$, where ω_{n-1} is the (n-1) dimensional Hausdorff measure of the unit sphere S^{n-1} . We denote by $\Sigma(\alpha, R)$ the open sector with solid angle α and radius R > 0, that is $\Sigma(\alpha, R) = \Sigma_{\alpha} \cap B_R(0)$. By the symbol α_n we mean the measure of any unitary sector $\Sigma(\alpha, 1)$ with solid angle α .

Define ε_{α_n} the class of all open sets $\Omega \subset \mathbb{R}^n$ such that $Q(\Gamma_1, \Omega) = (n\alpha_n^{1/n})^{-1}$. We list some result contained in [17] and [18].

THEOREM 5.1.

- i) Any convex sector $\Sigma(\alpha, R)$ such that $|\Sigma(\alpha, 1)| = \alpha_n$ belongs to ε_{α_n}
- ii) Let Ω belong to ε_{α_n} , then

$$(5.4) S(\Omega) \ge B^{-1/2^*} n \alpha_n^{1/n}$$

where B > 0 is a constant depending only on the dimension n. Moreover in (5.4) the equality holds whenever $\Omega = \Sigma(\alpha, R)$ as in i).

We observe that, given a smooth domain Ω , $\partial\Omega = \Gamma_0 \cup \Gamma_1$, using the definition and the property of $Q(\Gamma_1,\Omega)$, [18], we can deform Γ_1 adding a small convex angle of amplitude α in such a way that the new domain Ω' and the convex sector $\Sigma(\alpha,R)$ belong to the same class ε_{α_n} . Analogously, if $S(\Omega) < \Sigma$, we can deform Γ_1 adding a convex angle of amplitude β in such a way that, $\beta < \left|\frac{\omega_{n-1}}{2}\right|$ and $\left|S(\Omega) - S(\Omega')\right| < \varepsilon, \varepsilon > 0$. We give now an example of a domain on which F_0 has a nodal solution.

Let Ω be a smooth domain. Let us change Γ_1 by adding two disjoint convex angles with amplitude $\alpha < \beta$ as above and denote by Ω' the new domain, by x_{α} and x_{β} the vertices of the angles. Set $\chi_{\mu}(x) = \phi_{\mu,x_{\alpha},\rho}(x)$ and $\psi_{\lambda}(x) = \phi_{\lambda,x_{\beta},\rho}(x)$ where the functions ϕ are defined as in (3.14) and $\rho > 0$ is such that

$$(5.5) B_{\rho}(x_{\alpha}) \cap B_{\rho}(x_{\beta}) = \emptyset.$$

Then, given $\varepsilon > 0$ and $\eta > 0$ sufficiently small, we can choose μ and λ sufficiently small in such a way that:

$$\begin{split} & \frac{\int\limits_{\Omega'} \left| \nabla \chi_{\mu} \right|^{2}}{\int\limits_{\Omega'} \left| \chi_{\mu} \right|^{2^{*}}} \leq B^{-1/2^{*}} n \alpha_{n}^{1/n} + \varepsilon \leq S(\Omega) + \varepsilon \text{ (because of (5.4))} \\ & \frac{\int\limits_{\Omega'} \left| \nabla \psi_{\lambda} \right|^{2}}{\int\limits_{\Omega'} \left| \psi_{\lambda} \right|^{2^{*}}} \leq B^{-1/2^{*}} n \beta_{n}^{1/n} + \varepsilon < \Sigma - 2\eta \,. \end{split}$$

Finally take a smooth open set $\Omega'' \subseteq \Omega'$, such that $\Gamma_0 = \Gamma_0''$ and $|\Omega'' - \Omega'|$ is small enough. Then:

$$\left|\frac{\int\limits_{\Omega''} \left|\nabla \chi_{\mu}\right|^{2}}{\int\limits_{\Omega''} \left|\chi_{\mu}\right|^{2^{*}}} - B^{-1/2^{*}} n \alpha_{n}^{1/n}\right| \leq 2\varepsilon$$

0

(5.7)
$$\frac{\int\limits_{\Omega''} \left| \nabla \psi_{\lambda} \right|^{2}}{\int\limits_{\Omega''} \left| \psi_{\lambda} \right|^{2^{*}}} \leq \Sigma - 2\eta$$

and

$$\left|S(\Omega'') - B^{-1/2^*} n \alpha_n^{1/n}\right| < 2\varepsilon$$

Choosing ϵ and η in a suitable way, we get:

LEMMA 5.1.

$$\max\left\{F_0(v)\colon v\in\sigma_{\chi_\mu,\psi_\lambda}(Q)\right\}<\frac{1}{n}S\big(\Omega''\big)^{n/2}+\frac{1}{n}\Sigma^{n/2}\,.$$

PROOF. Fron (5.5), (5.6), (5.7), (5.8) and (3.17) it follows

$$F_0(\alpha\chi_\mu - \beta\psi_\lambda) = F_0(\alpha\chi_\mu) + F_0(\beta\psi_\lambda) \le \frac{1}{n}S(\Omega'')^{n/2} + \frac{1}{n}\Sigma^{n/2}.$$

Therefore (5.3) follows and hence (5.2).

Finally from Lemma 4.1, Lemma 4.2, Lemma 5.1 and Corollary 2.3 iii) we have:

THEOREM 5.2. Let Ω , $\partial\Omega = \Gamma_0 \cup \Gamma_1$ be a domain in \mathbb{R}^n as in the previous sections. For any $\varepsilon > 0$ there exists a domain Ω'' with $\partial\Omega'' = \Gamma_0'' \cup \Gamma_1''$, $\left|H_{n-1}(\Gamma_1'') - H_{n-1}(\Gamma_1)\right| < \varepsilon$, $\left|\Omega'' - \Omega\right| < \varepsilon$ such that the problem (1), with $\lambda = 0$, has a pair of nodal solutions.

REFERENCES

- [1] A. AMBROSETTI M. STRUWE: A note on the problem $-\Delta u = \lambda u + u |u|^{2^*-2}$. Manuscripta Math. 54 (1986) 373-379.
- [2] P. BARTOLO V. BENCI D. FORTUNATO: Abstract critical point theorems and applications to some nonlinear problems with "strong resonance" at infinity, Journal of nonlinear Anal. T.M.A. 7, (1983), 981-1012.
- [3] H. BREZIS: Analyse Fonctionelle, Masson Paris (1983).
- [4] H. BREZIS: Elliptic equations with limiting Sobolev exponents. The impact of topology, Comm. Pure Appl. Mat. XXXIX, (1986), 17-39.
- [5] H. Brezis: Nonlinear elliptic equations involving the critical Sobolev exponentsurvey and perspective, Directions in Part. Diff. Eq. - Acad. Press., (1987), 17-36.
- [6] H. BREZIS J.M. CORON: Convergence of solutions of H-Systems or how to blow bubbles, Arch. Rat. Mech. Anal. 89, (1985), 21-56.
- [7] H. BREZIS L. NIREMBERG: Positive solutions of nonlinear elliptic equations involving critical Sobolev Exponents, Comm. Pure App. Math. XXXVI (1983), 437-477.
- [8] A CAPOZZI D. FORTUNATO G. PALMIERI: An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Ins. H. Poincaré Anal, Nonlinéaire t. 2 (1985), 463-470.
- [9] G. CERAMI D. FORTUNATO M. STRUWE: Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents, Ann. Ins. H. Poincaré - Anal. Nonlinéaire t. I (1984), 341-350.
- [10] G. CERAMI S. SOLIMINI M. STRUWE: Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. of Funct. Anal. 69, (1986), 289-306.
- [11] H. EGNELL F. PACELLA M. TRICARICO: Some remarks on Sobolev inequalities, Nonlinear Analysis T.M.A. 9, (1989), 763-773.
- [12] B. GIDAS: Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic problems, Nonlinear Part. Diff. Eq. in Engineering and Applied Sciences. Ed. R. Sternberg. A. Kalinowski - J. Papadakis (New York - Dekker 1980).
- [13] M. GROSSI: On some semilinear elliptic equations with critical nonlinearities and mixed boundary conditions, Rend. Mat. Roma (199).
- [14] M. GROSSI F. PACELLA: Positive solutions of nonlinear elliptic equations with critical Sobolev exponent and mixed boundary conditions, Proceed. of Royal Soc. of Edimb. 116 a (1990), 23-45.
- [15] H. HOFER: Variational and topological methods in partially ordered Hilbert spaces, Math. Ann. 261, (1982), 493-514.

- [16] P.L. LIONS: The concentration compactness principle in the calculus of variations. The limit case (part 1 and part 2), Riv. Mat. Iberoamericana 1, (1985), 145-201 and 45-121.
- [17] P.L. LIONS F. PACELLA: Isoperimetric inequalities for convex cones, Proceed Amer. Math. Society. 109, (1990), 477-485.
- [18] P.L. LIONS F. PACELLA M. TRICARICO: Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions, Indiana Univ. Math. J. 37, (1988), 301-324.
- [19] C. MIRANDA: Un'osservazione sul teorema di Brouwer, Boll. Un. Mat. Ital. Serie II n°3, (1941), 5-7.
- [20] M. STRUWE: A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187, (1984), 511-517.
- [21] G. TALENTI: Best constants in Sobolev inequality, Ann. Mat. Pura e Appl. 110, (1976), 353-372.

Lavoro pervenuto alla redazione il 5 marzo 1991 ed accettato per la pubblicazione il 10 aprile 1991 su parere favorevole di U. Mosco e di F. Pacella