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New results on univalence of Gelfond-Leontev
derivatives of functions defined by gap power series

J. PATEL

RIASSUNTO - Sia f(z) una funzione analitica definita mediante una serie di po-
tenze con raggio di convergenza R e lacune non superiori a (k— 1), essendo k un intero
positivo > 1. Sia D" f I'n-esima iterata della derivata secondo Gelfond-Leontev di f.

Nel presente lavoro vengono dimostrate delle relazioni che collegano R con il raggio di
univalenza p, di D" f e con i parametri di crescenza -y e § della stessa f.

ABSTRACT — Let f(z) be an analytic function defined by a power series of radius
convergence R and gaps no greater than (k — 1), k being a positive integer > 1. Let
D" f be the n-th iterate of the Gelfond-Leontev derivative of f. In the present paper, we
find relations connecting R, the radii of univalence pn, of D" f and the growth numbers

v and § of an entire function f.
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1 - Introduction

Let

(11) 1) =Y a2

where a; # 0 and {A;}$2, is a strictly increasing sequence of positive
integers, be analytic in |2] < R, 0 < R < oo. For a strictly increasing
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sequence {d;}%, of positive numbers, the Gelfond-Leontev derivative of
f, given by (1.1), is defined as {1]

(1.2) Df(z) = dy,a;2M"
i=1
For n=1,2,..., the nth iterate D" f of Df is given by

D" f(z2) = Z da;dr;-1- -+ d.\,--n+1aj2'\""

j=n

We note that for d; = j,j = 1,2,3,...,Df is the usual derivative of f.
We shall assume throughout in the sequel that d; — oo as j — oo and

(1.3) {dj.*.]_/dj}‘:‘;l decreases to lasj — co.

A function f of the form (1.1) is said to be defined by a power
series with gaps no greater (k — 1), k being a positive integer > 1, if
limsup(Aj41 — A;) = k. If k = oo, we say that f is defined by a power

j—o0
series with unbounded gaps. Define,

e . 1/(\ig1—~A
R = limsup{|a;/a;4,[} /17
J—0
. 1/(A41—=2
R =liminf{ja;/a;5, |}/

If R is the _x:_adius of convergence of the power series given by (1.1), then
R < R < R[7,p422]. If f is an entire function, i. e, R = oo, we set
ulr) = r?ggc{la,-]r"f} » ¥(r) = max{\; : u(r) = |a;|r*} and define the
growth number 7y and § of f as

v= limsup{ @}
(1.4) =

6 = lim inf{ﬁ}

J—oo T
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In [4.), it is proved that if {|a;/@;s1|" ("i“'*f)};l is an eventually non-
decreasing function of j, then

. A
v= hmsup{ laj/aj+1|l/(4\j+l—:\j) }

j—o

6 = liminf { A; }

i~ | la;/ajp|/Cisr=A)

(1.5)

Let h(z) = z+ X2, h;27 . It is known [2] that h(z) is univalent in
the disc of radius p centred at origin if

(L6) Y ilhslot < 1.

The radius of univalence of D™ f is defined to be the largest positive
number p, with the property that D" f is analytic and univalent in the
disc |z| < pp.

It this paper, we establish relations of the radii of univalence p, of
D f with R and R of the function f defined by (1.1) with gaps no greater
than (k—1). We further find relation between p, and the growth numbers
v and 6 of an entire functiom f. The results obtained here generalize the
corresponding results of Shah and Trimble [6)].

For ease of notations we shall sometimes write a, = a(n), pa = p(n)
and d, = d(n).

2 - Statements and Proofs of the results

THEOREM 1.  Let f(z) = 3725 a;2% ,a; # 0,{)\;}%2, is a strictly
increasing sequence of positive integers, be analyticin |zl <R, 0< R <
oo , and have gaps no greater than (k—1), k being a positive integer > 1.
Let p, be the radius of univalence of D" f about the origin. Then there is
a strictly increasing sequence {yx}2, of positive numbers given by

(21 >+

=k 2
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such that
aR vk < ko
(22)  wR<limsupdap, < { <2dk Li"x"'d2>l/ "1—2 k> ko
where a = max{(Q%"l‘;d’-)”k :1<k< 5} and
. dk+l---d2)l/k}
= . < —nes
ko mm{k a< (2 Py

We need the following lemmas.

LEMMA 1. (3]. Let g(2) = z + T2 ,a,42"*" be analytic and
univalent in the unit disc U = {z: |2| < 1} . Then

2
(2.3) lay| < =1

LEMMA 2. Let k be any positive integer > 1. If {A\,}=_, is a
strictly increasing sequence of positive integers, then there is a unique,

strictly increasing sequence {ym i}>2_, of positive numbers with the fol-
lowing properties.

(ke a ia nGAm HE+5) . dAm 4+ 1) [ yms \
(24) Jz:%(’"*’]'*'l) dik+j+1)...d(2) (d(/\m)) =1

(2‘5) lim ym.k = yk

m—o0

Further, {y,}32, is a strictly increasing sequence of positive number such
that

00 ] yi

2.6 +1)—F
(26) jzk(J Vit 4
and

(2.7) fim —2 1

k= (i ... dg) /%
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PROOF. Define ®,, . on (0,d(An)) by

(2.8) mkm—}:(“ e :i; i)l) du&)ﬂ)(d(im)) E

Clearly, @, ; is a strictly increasing function of z. Moreover, ®,, +(0) =0

k 1/k
and &, () > zd(/\d.,(,z-;' 1) (d(:m)) . Letting t = d()\m)(d(Td(?_—l)> ,

we have ®,, .(t) > 2 and thus by Intermediate Value Theorem there is a
unique positive number yp, ». in (0,d(A,)) such that &, 1 (ymai) = 1.

We claim that {y,.}2_, is an increasing function of m. Since, for a
fixed m, @, is a strictly increasing function of z, it is enough to show
that for a fixed value of z, ®,,« is a strictly decreasing function of m.
From (1.3), {d(Am+1 + j)/d(Am + j)} is a decreasing function of j and

hence

dAmsr +k+7)...dAmsy +1) (d(Am“ + 1))“*’
dOm + k+7)...dAm+1) d(Am + 1)

That is,

, d(A,,.+,+k+j)...d(,\,,,+,+1)( T )"“’
kit ) O ¥+ 7)o dOm + 1) D)) <

O th+5)..d0n +1) (s ™

which shows that ®,,, is a decreasing function of m.
: is bounded above. From (2.4), we

Next, we prove that {yma},
have for all m,

. k
d(An, + k). d(A, + 1)( Yok ) <1

b+ D=+ D@ \dOw)
or,
. dy l...dg 1/k d(/\m)
2.9) s < (555 ) @O T8 dOwm ) <

diyr - dye .. dp\ V¥
<( a1 * di dz)
k+1
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Since the right side of the above inequality is independent of m, the
sequence {ymi} is bounded above. And, since this sequence {ymk} in-
creases with m, it converges to a finite limit. Let limpn_oo Ymk = Yk (say)-
This proves (2.5).

To prove (2.6), we note that our hypothesis (1.3) gives, d(Am +
1)/d(An) decreases to 1 as m — oo, from which it follows that the radius
of convergence of the series in (2.8) is atleast d()\,). Let K be any com-
pact subset of {z : 0 < z < sup,,d()\,)}. Then, we can find an integer

N so large that K is contained in {z : 0 < z < d(Ay)}. Further, {®m.x}
being decreasing function of m, we have for m > N

Sni(z) < Pyi(z) forall zeK.

This gives {®,, } is locally uniformly bounded. Also, it is easily seen that
{®..4} is equicontinuous on (0,d(Ay)). Hence, the sequence {®mx()}
converges uniformly on compact subsets of {z : 0 < z < d(Am)}. But,
since liMmy .o Ym k. = Y and

. AAmtk4G) . dAm+1)
Jm d0\)* =Lji=12,...

it follows that yj satisfies (2.6).
To see that {y.}, is strictly increasing, define v, on (0, 00) by

k41
Y

11’1:(3/)=§)(k+j+1)d(k+j+1)...d(2)

Then ¥i(yx) =1. For j=0,1,2,... and k=1,2,3,..., we have

k4542
<
(2.10) "+ + (ke <1

and from (2.9)

dit1

deai -dk...dz)"" <
(k+ 1)1k

Yk = rll_{nmym.k < ( E+1
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The above inequality followed by (2.10) gives

k+j+1
Yi+l

(3 =1=§:(k+j+2)d(k+y+2).--d(2) <

i (k+3j+2) gkt <
5 (k+2)/®+ D d(k+35+1)...d(2)
3 yf*i
. + _

and ¥ being strictly increasing function of y, we must have yx < yx+1,

showing that the sequence {yx}52,, is strictly increasing.
It remains to see that {y;} satisfies (2.7). From (2.6), we get

k oo
_ y dk+1...d2 ;
1= (et s 2+ ) g+ ) LA

. 2 2
yk k+2> Yk (k+2) ( Yk )
<Y
(dkklxdz) [1 * (k+1 dry2 * k+1/ \dis2 *

oY [1 - (512)_%_]“‘
(dk.,.,...dg) E+1 dk+2 .

k41
Thus,

(k + 2)yx Ui <1
(k + l)dk+2 (&ﬂ_d_z) )
k+1

(2.11) 1-

On taking limit superior, the second inequality in (2.11) yields

2.12 limsup —— %
(212) i E A A TV
Now,

(k + 2)y, (k + 2)yx

(k+ Ddivz (K +1)(disr ... do) V5
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(8]

Using the above inequality followed by the first inequality in (2.11), we
get y
o . k
— —— >1.
B i .y 2 L

Combining this with (2.12), we immediately get (2.7). This completes
the proof of Lemma 2.

LEMMA 3.  Let k be any positive integer > 1. Let {dn}5-; be
a strictly increasing sequence of positive numbers defined as in (1.1) and

{An )., be a strictly increasing sequence of positive integers as in Lemma
2. If {ymi )., is defined by (2.4), then

Yo (k + 1)d(k + 2)
(2.13) A0 S T+ 2d0m R+ 1)

PROOF. From (2.4), we get

o dQm k1) dOn + 1) (Y \H
(k42 d(k +2)...d(2) (d(,\,:)) <1

By (1.3), it casily follows that {d(Am+7+1)/d(Am~+37)}%., is a decreasing
function of m and thus

dAn+k+1)  yma k+1
(k+ 2’( dkr2) d(A:,)) <1
or,

Ym .k < d(k + 2)
dAm) 00 + K+ 1)(K + 2) 104D

which gives (2.13), because (k + 2)* < (k4 1)**! for k =1,2,3,....

ProOF OF THEOREM 1. For m > 1, let

_ D (o0 = 1)2) = Do) _
Fnl2) = (v~ DD [(0) -

e FAmer). dAm 41 alm)
d(Ams1 — A+ 1)...d(2)a(m + 1)

. p(Am — 1)(Am+l—xm)z(xm+|~km+l) + .
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Then F,, is univalent in the unit disc U and Lemma 1 gives

2

a(m)
Am+l - /\m )

a(m+1)

A1) - d(Am + 1)

— 1YAm41=2m)
d(Ams1 = Am +1)...d(2) ’p(,\.,. 1) <

Since d(Am +1) < (d(Am +1)...d(Ap41))/Pm+1-2m) it follows that

(2.14)  d(Am + 1)p(Am — 1) <

dAms1 — Am +1)...d(2) ,a(m +1) 1/(Am+1—Am)
: |

’\m+l - /\m
Therefore,

(2.15)  limsupd,p, <

=00

[2 d(’\m+l - /\m + 1) ves d(Z)} l/('\md-l—a\m)

< Rlimsup 3 3
m+1 — ‘m

m—o0

1/n
Let b, = (ZM,:'—i(ﬁ) . We note that {b,}2; is a strictly in-
creasing sequence of n so that ,
aR vk <ko

n—00

limsupd,p, < 17k
(2—:—“~k;;'d=) B k> k

1/k .
where a = max{(d—"—&'i'—d’-) 1<k < 5} and

. dk+1...d2)l/k}
oy = : < ———
ko mm{k a< (2 )

This proves the right side incquality of (2.2).
To prove the left side inequality of (2.2), assume that R > 0 and let

0 < r < R. Then, for sulficiently large m,

a("l) 1/('\m+l‘)‘m)

a(m+1)
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That is, for sufficiently large m,
la(m + 1)|r*m+t < Ja(m)|r*=

Now, an inductive argument on m in the above inequality gives for suffi-
ciently large m and for j > m

(2.16) la(3)IrX < la(m)r*m

Choose m such that (2.16) holds and A4y = A = k- Let ym x be defined
as in (2.4). Set,

o) = 01 (G55) -

— PPm-l dAm +4)...d(2)
b* f(0)+§)d()\m+,-—,\ +1)...402)

Am-{;j"'\m'i'l
Ym & Am4j=dm+l _
ca(m+ j )(d(/\ )) Zim+i

= DL1(0) + d(A) . dDalm) (T2 Yz 4.

we first show that H,, is univalent in U. In view of (2.16), we need to
prove

Z(Am+g An+1) d{Am+js1) - .. d(2)

Wi — S ¥ 1) D)
Amti=dm+1

. rym.k mEjTam
latm + )1 ) <

TYm,k

< oS la(m)ld(rn) .. d(2)

Since by (1.3), {d(Am+j41 +1)/d(Ansji1 = Am + 2)}2, is a decreasing
function of j, we get

d(Am+j+1 +1) < d(Ams1 + 1) - d(Am41 +1)
WOmrrrt =¥ = 0w = ¥ dk+2)
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Further, for  =0,1,2,... and £ =1,2,3,...

’\m+j+l_/\m+2 < k+2
Amtje1 —Am+1 7 k+1

Using Lemma 3 and the fact that (Am+1 — Am) = k, we have

Am+j+l - Am +2 . d(/\m+j+l + 1) ( Ym .k )
Ameitt —dm A1 APmsirr — Am + 2) \d(An)

E+2d0ms1 +1)  Yma
“k+1 d(k+2)  d(hn)

<

<1

This gives for j =0,1,2,...

(’\m+:i+l —Am+ 2)

d(Amsj+r +1) ( Y.k )’\m+j+l"4\m+l -

AAmsjs1 = Am +2) \d(Am)

d(/\m+j+l)' . -d(2) ( Ym.k )'\m+j+x—Am
dAmtjtr — Am + 1) \d(An)

L(Amtirr —Am +1)

Now, in view of (2.16), the above inequality gives

° d(Amsjs1) - --d(2)
Z(’\M+J+1 Am + l)d(/\m+j+1 iJ;rn +1)... d(2).

i=0

)'\m+j+l_'\m+l

Ym ik
latm + 7)1 S <
< 2 fam)ldOw) .. d(@) 3k +3+ 1)

J=0

BAm+E+5) . dAn +1) [ Yk
d(k+35+1)...d(2) (d(/\,,.)) B

r(y":")la(m)ld( m)..d(2),  by(2.4).
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Thus Hp,(2) is univalent in U and hence
(217) TYm,kx < d(’\m)p(Am - 1)
Since limp oo Yma = ¥k and 0 < 7 < R, on proceedings to limit as

m — oo, we get the left side inequality in (2.2). This completes the proof
of Theorem 1.

THEOREM 2. Let f,k ko, and {y.}2, be as in Theorem 1.
Suppose {|a;/a;,|"/Pi+172)}%2 ) is eventually a non-decreasing function
tending to co. Then f is entire. Further, if k < oo, then

3 , k<k

(2.18) 7 Z < llegp( ) ( dk+l )I/k
k + 1

y k2ko

PROOF. Since R < R < R and {|a;/a;,1|"/*+172)}%2 increases to
oc. we have R = oo and hence f is an entire function. Suppose k < oo.
Then (2.14) gives for all m > 1,

dAm +1)p(Am ~ 1) _ [2d(Am+1 —Am+1)...d(2)] Y/ Ams1=Am).
A"‘ +1 A"l-H - Am

1
" Do + 1)/1a(m)/a(m + 1) Omei—3m)

The right side inequality in (2.18) follows by using (1.5) and by fol-
lowing the same lines of proof that established the right side of (2.2).
To prove the left side inequality in (2.18), we let Apy1 — Am = k and
r = |a(m)/a(m + 1)|/Gm+1=2m) _ From (2.17), we have

ja(m)/a(m + D Cmri Ay A+ 1)pOm = 1)
Am - Am

Again, using (1.5) and the technique that proved the left side of (2.2), we
deduce the left side of (2.18). This proves Theorem 2.
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Remark. For d, = n the results of Shah and Trimble [6] follow from the
results found in this paper.
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