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Locally conformal cosymplectic manifolds foliated
by generalized Hopf manifolds

J.C. MARRERO®

RIASSUNTO - Si studia una classe particolare di varietd cosimplettiche localmente
conformi che sono foglicitate da varieta generalizzate di Hopf e, come principale risul-
tato, si dimostra che lo spazio di rivestimento universale di tale varieté é il prodotto di
una varieta c-Sasakiana con lo spazio iperbolico di dimensione 2.

ABSTRACT — In this paper, we study a particular class of locally conformal cosym-
plectic manifolds which are foliated by generalized Hopf manifolds and, as main result,
we prove that the universal covering space of such manifolds is the product of a c-
Sasakian manifold with the 2-dimensional hyperbolic space.
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— Introduction

An almost Hermitian manifold Af2" is called locally conformal Kéhler
if its motric is conformally related to a Kithler metric in some neighbour-
hood of every point of A/?". Such manifolds have been studied by various
authors (sce, for instance, (12, {19], [20], {22]. [13], (8], ... ). Examples
of locally conformal Kihler manifolds are provided by the gencralized
Hopf manifolds which are locally conformal Kihler manifolds with Lee
form parallel (see [20] and [22]). The main non-Kiihler example of such
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manifolds is the Hopf manifold (see [19]), which is defined as the quo-
tient H = 9%’:{91, where A, is a cyclic group of transformations (it is
known that H is diffeomorphic with S* x S2"~!  gee [11]). Other exam-
ple of non-Kahler compact generalized Hopf manifold is the nilmanifold
N(r,1) x S, where N(r,1) = I'(r,1) \ H(r,1) is a compact quotient of
the gencralized Heisenberg group H(r,1) by a discreet subgroup I'(r,1)
(see [3]).

On the other hand, if M?*"*! is a differentiable manifold endowed
with an almost contact metric structure (y,£,7,g), a conformal change
of the metric g leads to a metric which is no more compatible with the
almost contact structure (i, £, 7). This can be corrected by a convenient
change of £ and # which implies rather strong restrictions. Such a defini-
tion is given by I. VAISMAN in [21]. Using this definition for the confor-
mal change of an almost contact metric structure Vaisman introduces, in
[21]. a class of almost contact metric manifolds, called locally conformal
cosymplectic manifolds. An almost contact metric manifold (M, ¢, &,7, 9)
is said to be locally conformal cosymplectic if the structure (¢, £,7,g) is
conformally related to a cosymplectic structure in some neighbourhood of
every point of M, or equivalently if N, = 0 and there is a closed 1-form
w on M, which we call Lee form of M, such that d® = —2® A w and
dn = n Aw, where N, and ® are the Nijenhuis torsion of ¢ and the fun-
damental 2-form of M, respectively. Recently, in [5], (6] and [7], we have
continued the study of the locally conformal cosymplectic manifolds, and
we have obtained some interesting examples of locally conformal cosym-
plectic structures on the real Hopf manifolds ([23]) and on a compact
quotient of a certain solvable non-nilpotent three-dimensional Lie group.

In this paper, we study a particular class of locally conformal cosym-
plectic manifolds which we call PC-manifolds. A PC-manifold is a locally
conformal cosymplectic manifold (M, ¢, €,7n,g) with Lee form w # 0 at
every point and such that w(€) = 0 and the leaves of the foliation n =0
with the induced almost Hermitian structure are generalized Hopf mani-
folds. In section 1, we give some results on locally conformal cosymplectic
and c-Sasakian manifolds. In section 2, we define and characterize the
P C-manifolds (see proposition 2.3) and we obtain some properties of these
manifolds (see proposition 2.4). We also prove that a compact manifold
can not be a PC-manifold. In section 3, we study the Riemann curvature
tensor R of a PC-manifold (M, p,£,7, g). We determine the vector fields
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R(X,Y)E, R(X,Y)U and R(X,Y)V, for all X,Y vector fields on M, in
terms of 7,4, v = —uop,£,U and V = U, where « and U are the unit
Lee form and the unit Lee vector ficld respectively of M (see propositions
3.1 and 3.2). In particular, we obtain explicit formulas for the sectional
curvature of a plane section containing &, U or V and for the Ricci cur-
vature in the direction of these vectors (see corollary 3.1). Finally, in
section 4, by using the results of the above sections, we prove that the
universal covering space M of a PC-manifold (M, ¢,&,7,g) is the prod-
uct of a c-Sasakian manifold (N, ¢n, &N, 8, gn) with the 2-dimensional
hyperbolic space and we describe the induced P C-structure (3, &, 7, §)
on M. Moreover, if N is of constant py-sectional curvature, then we
determine, up to almost contact isometries, the almost contact metric
manifold (M, @, €,7,3) (see theorem 4.2).

1 — Preliminaries

All the manifolds considered in this paper are assumed to be con-
nected and of class C*.

Let V be an almost Hermitian manifold with metric g and almost
complex structure J. Denote by X(V') the Lic algebra of C* vector fields
on V. The Kihler form Q is given by Q(X,Y) = g(X,JY) and the Lee
form is the 1-form @ defined by 8(X) = 1/(n—1)6§2(J X), where é denotes
the coderivate, dimV = 2n and X,Y € X(V).

Recall that V is said to be Kahler if d2 = 0 and N; = 0 and locally
conformal Kahler (L.c.K.) if dQ = 8§ AQ and N; = 0, N, becing the
Nijenhuis tensor of J. Among the locally conformal Kéhler manifolds,
those such that the Lee form 6 is parallel are called generalized Hopf
manifolds.

On the other hand, let A be an almost contact metric manifold with
metric g and almost contact structure (¢,&,7). Then, we have

=-I+7®E, nE)=1
(X, 9Y) = 9(X,Y) — n(X)n(Y)

for X, Y € X(M), where I denotes the identity transformation. Using
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the above relations we deduce that

p(€)=0, nop=0, n(X)=g(XéE)),

for all X € X(M). The fundamental 2-form @ of the almost contact
metric manifold (M, p, £, 7, g) is defined by $(X,Y) = g(X, YY) and the

Lec form by w(X) = (V¢®)(£,9X)+32n(X), where V is the Riemannian
connection of g and dim M =2n + 1.

An almost contact metric structure (p,£,7,g) on M is said to be:

Normal if N, + 2dn ® £ = 0, N, being the Nijenhuis tensor of ¢;
Cosymplectic if it is normal and dn = 0, d® = 0; Locally conformal
cosymplectic (l.c.C. ) if every point £ € M has an open neighbourhood
U such that the structure (p,e™?¢,e°n,e?* g) is cosymplectic on U, where
o: U — R is a real differentiable function on U (see [16], [1], [5] and [6]).

Let (M, ¢, £&,7,g) be an almost contact metric manifold with Lee form
w and V the Riemannian connection of g. Consider

(1.1) VxY = VxY +w(X)Y +w(Y)X — g(X,Y)B

for all X, Y € X(M), where B is the Lee vector field on M given by
w(X) = g(X, B). V is a torsionless linear connection on M. Moreover, if
(M, p,€,m,9) is 1.c.C. then V is the Riemannian connection of the local
metrics ¢2°g (see [6]). In fact, in [6], the authors prove

THEOREM 1.1. Are equivalent:
i) (M, p,€,1m,9) is a lL.c.C. manifold.
ii) The Lee form w is closed and

(1.2) Vxp=0

for all X € X(M).
iii) The Lee form w is closed and

(13)  (Vxp)Y = w(Y)pX - w(pY)X + ®(X,Y)B - g(X,Y)pB

for all X, Y € X(M).
iv) The Lee form w is closed and

(1.4) dd =-20Aw, dn=nAw, N,=0.
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We remark that if (M, ¢, £,7, g) is an almost contact metric manifold
with Lee form w and ¢ is a real differentiable function on an open U such
that the structure (p, e °£,e°7,e2°g) is cosymplectic on U, then w = do
onU.

Let (M,p,€,1m,9) be a l.c.C. manifold with Lee vector field B and
Lee form w # 0 at every point. Then, through of this paper, we shall use
the following notation,

(1.5) c¢=|w|, u=wle, U=Bjfc, v=—uop, V=pU.

From (1.5) we obtain that u{(V) = v(U) = 0.

A l.c.C. manifold (M, ¢, &, 1, g) with Lee form w is of class C; & Cy,
if w(€) =0 (sce [5]). Consequently, if B is the Lee vector field of M then
n(B) =0.

If (M,p,€,n,9) is & l.c.C. manifold of class Cy & C); and w and B
are the Lee form and the Lee vector field of M respectively then, using
(1.3) and the fact that @(£) = 0, we deduce

(1.6) VE=n®B

(1.7) Vn=n®uw.
Morcover, if w # 0 at cvery point, we have

(1.8) P=2vAu+y

where & is the fundamental 2-form of the structure (p, £,7,g) and ¢ is a
2-form of rank 2n — 2 such that

(1.9) YX,U)=9(X,V)=9(X,6) =0, uAvAY " #£0

being dim A = 2n 4+ 1.

On the other hand, an alinost contact metric manifold (M, ¢, £,1, 9)
is snid to be c-Sasakian (c € IR, ¢ # 0) if it is normal and dn = c®,
where @ is the fundamental 2-form (sce [10]). The structure (@, €, 1, g) is
snid to be Sasakian if it is 1-Sasakian.

Let (A, 4, &,1, g) be an almost contact metric manifold and x a point
of M. A planc scction IT in the tangent space to M at x, T.M, is called
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a -section if there exists a unit vector X in T, M orthogonal to £ such
that {X, X} is an orthonormal basis of II. Then the sectional curvature
Kxox = g(R(X,pX)pX, X) is called a p-sectional curvature.

A c-Sasakian manifold is said to be a ¢c-Sasakian space form if M has
constant (-sectional curvature. Examples of Sasakian space forms are
provided on the manifolds $2"*!, R?"*! and IR x CD". In fact, the unit
sphere 52"+! has a Sasakian structure of constant y-sectional curvature
k, for all k > —3 (see (17] and [18]); the real (2n+ 1)-dimensional number
spacc R*"*! is a Sasakian space form with k = —3 [14]; and the product
manifold IR x CD", where CD" is a simply connected bounded complex
domain in €C" with negative constant holomorphic sectional curvature,
has a Sasakian structure of constant yp-sectional curvature k, for all k <
-3 (18].

Let (M,,£,1,9) be a Sasakian manifold with constant ¢-sectional
curvature k. Put

¢ =9, &=c, n=1/cn, ¢=1/dg

where ¢ € R, ¢ # 0. Then, (M,¢',¢&,7n',g') is a ¢-Sasakian space form
of constant -sectional curvature kc2. We denote by M/(c, kc?), the ¢
Sasakian manifold with this structure.

In (18], TANNO proves that if (M, ¢,€,7n,9) and (M’,¢', &', 7', g') are
(2n + 1)-dimensional complete simply connected Sasakian manifolds of
constant ¢-sectional curvature k, then, M is almost contact isometric to
Al', i.c. there exists an isometry F of M into M’ such that F.op = ¢'oF,
and F.£ = &', Therefore, by using this result, we deduce

THEOREM 1.2. Let M be a (2n + 1)-dimensional complete simply
connected c-Sasakian manifold with constant p-sectional curvature k.

i) If k > —3¢, then M is almost contact isometric to S***!(c, k).
it) If k = —3c?, then M is almost contact isometric to

IR2n+l(C, —3/62) — ]R2n+l (c) .
iii) If k < —3c2, then M is almost contact isometric to

(R x CD")(c, k).
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2 - PC- manifolds

Let (M, p,£,n,g) be a l.c.C. manifold with Lee form w.

Let i: F — M be the immersion of a generic leaf of the foliation G
given by n = 0. Then, F carries an induced natural almost Hermitian
structure (J, h), which is l.c.K. with Lee form wp = —2i"w (see [6]). If
we denote by V and V¥ the Riemann connections of the metrics ¢ and
h on M and F respectively, we have

PROPOSITION 2.1.
(VEwr)Y = -2[(Vxw)Y + (@(§))"9(X,Y)],
for all XY € X(F).
ProorF. If X, Y € X(F), then we deduce
(VEWr)Y = X (we(Y)) —wr(VRY).
Using this relation and the equation of Gauss, we obtain
(VEwr)Y = =2((Vxw)Y — w(€)g(VxE,Y)) -
Now, from (1.3) and since ¢(£) = 0 and n(X) = 0, we deduce that
Vx§=—-w(§)X,

which ends the proof of our assertion. a
Using the above result, we have

COROLLARY 2.1. Let (M,p,£,1m,9) be al.c.C. manifold. Then, the
leaves of G carry an induced l.c. K. structure with parallel Lee form if and

only if
(Vxw)Y = —w(€)?9(X,Y),

for all X, Y € X(M) such that n(X) =n(Y) = 0.
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Next, we shall suppose that (p,£, 7, g) is, moreover, of class Cy® Ci3.
Let c be as in (1.5). We deduce

ProposITION 2.2.  If (M,p,£,7,9) i3 a Lc.C. manifold of class
C4 143) Clg, then,

(2.1) (Vew) X = (Vxw)€ = —c*n(X),
Jor all X € X(M).
PROOF. Since w is a closed 1-form, we obtain the first relation of

(2.1). The second relation follows from (1.6) and using that w(€) =0. O
Now, by using (2.1), corollary 2.1 and the relation w(£) = 0, we have

COROLLARY 2.2.  Let (My,£,7,9) be a l.c.C. manifold of class
C, ® C13. Then, the leaves of G carry an induced l.c.K. structure with
parallel Lee form if end only if

Vw=-cn®7.

The corollary 2.2 suggests us to give the following definition.

DEFINITION 2.1. A l.c.C. manifold of class C; @ C,2 with Lee form
w # 0 at every point is called a PC-manifold if

Vw=—-*nQn
where ¢ = ||w||.

If (M,p,£,1,9) is a PC-manifold then M is said to have a PC-
structure (¢, &,7,9).

Let (M, ¢, €,7,9) be al.c.C. manifold of class C4®Ci2 with Lee form
w # 0 at every point and consider ¢,u,U,v,V as in (1.5). Denote by L
the Lie derivate and by 4 the 2-form on M given by ¢ = ® ~2v Au, (see
(1.8)). Then, using (1.3) and the expression VxV = (Vxp)U +p(VxU),
we obtain



19] Locally conformal cosymplectic manifolds foliated etc. 313

ProposiTION 2.3. If (M,¢,£,7,9) i8 a lL.c.C. manifold of class
C, ® C\2 with Lee form w # 0 at every point, then, (M,p,€,7,9) is a
P C-manifold if and only if c = constant and one of the following relations
holds

Vau = -en®@n, VW= -n®€ Vv=-cp, VV=c(p+v@U—~-ulV).

Next, we deduce another results for a PC-manifold.

PROPOSITION 2.4. Let (M, p,£,1,9) be a PC-manifold. Then, V is
a Killing vector field for the metric g. Moreover, the following relations
hold

(2.2) U, V=0, [V]=0, [Ué€=ct.
(2.3) Lyp=0, Lepg=cv®é, Lyv=0, Lev=0.
(2.4) dv = —cp.

PROOF. Since V is a torsionless linear connection on M, from (1.6)
and proposition 2.3, we obtain (2.2).
Let X be a vector field on M. From proposition 2.3 we deduce that

(Lup)X = (Vue)X

and thercfore, by using (1.3), Ly = 0.
The second relation of (2.3) follows from (1.3), (1.6) and the formula

(Lew) X = (V) X + o(Vx€) — Vox€.
Now, we shall prove (2.4). Let X, Y € X(M), then
(25)  24u(X.Y) = =X (u(p?)) + ¥ (u(¢X)) +u(e[X,Y]).
Replacing the two first terms according to the formula

X(uY)) = u(Vx¥) - en(X)n(Y)



314 J.C. MARRERO (10]

obtained from proposition 2.3, (2.5) gives
2dv(X,Y) = u((Vye)X — (Vxp)Y).

Then, by using (1.3) and (1.8}, we get just the desired relation.
On the other hand, by the classical formula of the Levi-Civita con-
nection [11] we have that,

(Lvg)(X,Y) =2¢(VxV,Y) — 2dv(X,Y)

and thus, from (2.4) and proposition 2.3, we deduce that V' is a Killing

vector field.
Finally, using (1.9), (2.4) and the relations

Lyv = d(iyv) + iy(dv), Lev = d(i¢v) + ig(dv)

we obtain that Lyv = Lev = 0. a

In [5] (see also [6]) we have obtained an example of locally conformal
cosymplectic structure on the real Hopf manifold RH?"**! ([23]) and on
a certain quotient M?3(k) of a solvable non-nilpotent three-dimensional
Lie group. M?®(k) and RA?**! are compact manifolds which can have
no cosymplectic structures. Moreover, the locally conformal cosymplectic
structures on M3(k) and IRH?"*! obtained in [5] are not P Cstructures.
In fact, using the proposition 2.4, we deduce the following result.

COROLLARY 2.3. A compact manifold can not admit a P C-struc-
ture.

PROOF. Let (M, ¢,£,n,g) be a compact PC-manifold with dim M =
2n + 1 and let ® be the fundamental 2-form of the structure (v, £, 7, g).
Then, from (1.8) and (1.9), we obtain that
(2.6) (M AUAVAY ) =nAP".

Therefore, if v is the (2n + 1)-form on M given by

Yy=nAuAvAyY"!,
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using (2.6), we deduce that v # 0 at every point, i.e. < is a volume
element.
On the other hand, from (1.4) and (2.4), we obtain that

y=d(1/c(n AvAyp™))

which, in view of Stoke’s theorem, is a contradiction. 0

3 — The curvature tensor on a PC-manifold

In this section, we shall study the Riemann curvature tensor of a
P C-manifold.

Let (M,¢,€,1,9) be a PC-manifold with dimM = 2n + 1 and let
¢,u,U,v,V, be as in (1.5). Then, if R is the Riemann curvature tensor
of M, we have

PROPOSITION 3.1.

(3.1) R(X,Y)E = 2 [(n Au)(X,Y)]U,

(3.2) R(X,6)Y = A {u(X)u(Y)§ ~ w(X)n(Y)U),
(3.3) R(X,Y)U = —2¢*[(n A u)(X,Y))E,

(34) R(X,U)Y = E(m(Xn(Y)U — w(Y)n(X)E) ,

for all X, Y € X(M).
PRrOOF. From (1.6) and proposition 2.3 we deduce that

R(X,Y)E = c[2dn(X, Y)U +n(Y)VxU ~ n(X)VyU] = 2edn(X,Y)U

R(X,Y)U = —c[2dn(X, Y )€ + 7(Y)Vx€ — n(X)VyE] = —2¢dn(X, Y)E

for all X, Y € X(M).
Thus, using (1.4), we obtain (3.1) and (3.3).
(3.2) and (3.4) follow from (3.1) and (3.3) respectively and using the

rclation
(3.5) g(R(X,Y)Z, W) = —g(R(Z, W)Y, X)
for all X,Y, 2, W € X(M). 1]
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Also, we deduce
PROPOSITION 3.2.
(36) R(X,Y)V =c (2(1; Au)(X,Y)U + 2w An)(X,Y)E+
~v(X)Y +()X),
37 R(X,V)Y =(v(Y)X - u(X)o(Y)U + (u(X)u(Y )+
+ (X)) - g X, Y)V - n(X)p(¥)E),
for all X,Y € X(M).
PROOF. By using proposition 2.3 we obtain that
R(X,Y)V =c((Vxp)Y — (Vy@)X + 2dv(X, Y)U +v(Y)VxU+
~u(Y)VxV — o(X)VyU +u(X)VyV) =
=c((Vx9)Y = (Vy @) X+2du(X, Y)U +eu(X)p¥ —cu(Y o X+
+e(u(X)n(Y ) ~v(Y)X))E+e((X)o(Y) —u(Y (X))

Thus, from (1.3), (1.8) and (2.4), we deduce (3.6).
(3.7) follows from (3.5) and (3.6).

Let z be a point of M. Denote by Kxy and by p(X, X) the sectional
curvature for the plane section in T:M with orthonormal basis {X,Y}
and the Ricci curvature in the direction X respectively. Then, by using

(3.2), (3.4) and (3.7), we obtain

0

COROLLARY 3.1.

Kxe = —u(X)?, Kxy = ~¢n(X)?, Kxy =¢(1-u(X)*~n(X)).

pl6,6)=—-¢, pUU)=-, p(V,V)=2(n-1).
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If for all X € X(M) we denote by X’ the vector field on M defined
by X' = X —uw(X)U — n(X)E, then, from proposition 3.1, we have

COROLLARY 3.2.
R(X,Y)Z = R(X"Y')Z' + 22 (n A u)(X,Y)[n(Z)U —uw(Z)¢€],
forall X,Y,Z € X(M).

Next, we obtain the relation between R and the curvature tensor R
of the connection V given in (1.1).

PROPOSITION 3.3.
R(X,Y)Z=R(X,Y)Z—-{ (n(X)n(2) + w(X)u(2))Y — (n(Y)n(2)+
+u(Y)u(Z) X - g(¥, Z)(n(X)€ +u(X)U)+
+ 9(X, Z)(n(Y)E +u(Y)U) + g(¥, Z) X+
- 9(X,2)Y},
for all X,Y,Z € X(M).

Proor. This follows from proposition 2.3 and using a well-known
formula (sec [9], pag. 115). 0

Now, from corollary 3.2 and proposition 3.3, we deduce
COROLLARY 3.3.
(3.8) R(X.Y)Z = R(X',Y")Z' - g(Y',Z2") X' — g(X', 2')Y"},

for all X,Y,Z € X(M).
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4 — The universal covering space of a PC-manifold

Let (M, p,€,7, g) be a PC-manifold and let ¢, u, U, v,V be as in (1.5).

Denote by F the foliation given by 7 =0, u = 0. F defines on M a
foliation of codimension two, which we call the canonical foliation of M.
Using (1.6), (1.7), (2.2), proposition 2.3 and corollary 3.1, we deduce

THEOREM 4.1. The canonical foliation F of a PC-manifold M is
totally geodesic with integrable normal bundle. Moreover, if F* is the
foliation determined by the normal bundle of F, then F' also is totally
geodesic and its leaves are of constent sectional curvature —c2.

Let i: F— M be the inmersion of a generic leaf of the canonical
foliation F. We define an almost contact metric structure (s, &F, F, 9F)
on F by

(4.1) prX = pX+("0)(X)Vipr € = -Vipr 7r=—(i"0) gr=1"9.
Then, we have

ProrOSITION 4.1. The almost contact metric structure (wr,fp,ni‘,gr)
on F is c-Sasakian.

Proor. If ® is the fundamental 2-form of the P C-structure (¢, &, 7, g)
then, using (4.1), we obtain that fundamental 2-form @ of the structure
(@r: €T, gF) is Pr = i"Yp = i°® — 2(i*v) A (i*u). Thus, from (2.4), we
deduce that

dnr = cbr.

On the other hand, if N, and N,,. are the Nijenhuis tensors of ¢ and
@r respectively then, from (1.4), (2.4) and using first and third relation
of (2.3) and the formula

Nop (X,Y)+2dnp (X, Y )er = No(X, V) +0(X){ (Lu@)Y +((Lov)Y)U
= o(V){(Lve)X + (Lov)X)U }+

+ 2(dv(pX,Y) + dv(X, oY))U

we see that the structure (¢r, £p,nF) is normal.
Consequently, (¢r, £F, 9F, gr) is a c-Sasakian structure on F. a
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Next, we shall suppose that F' with the c-Sasakian structure (¢r,r,7F,g5)
is of constant tpg-sectional curvature k. Then, from (4.1) and using a
theorem of OGUIE {15 and the fact that the foliation F is totally geodesic,
we have that

R(X,Y)Z = %(k +38)(g(Y, 2)X - 9(X. Z)Y )+

+ %(k - A {uX (DY - v(¥ W(Z)X+

+ (9(X, Z)v(Y) — g(Y, Z)v(X )V +

+ 9(9Y, Z)pX — gl X, Z)pY + 29(X, oY )pZ+
+ (v(X)g(pY, Z) - v(Y)g(v X, Z)+

(4.2)

+ 2v(2)g(X, Y ))U }

for all X,Y,Z € X(F), where R is the Riemann curvature tensor of M.
Now, we give the following definition.

DEFINITION 4.1. A PC-manifold is called a PC(k)-manifold (k €
R) if every leaf F of the canonical foliation F is of constant pg-sectional
curvature k, where (@r,EF,MF, gr) ts the induced c-Sasakian structure on

F given by (4.1).

If (M, ¢, €,7,9) is a PC(k)-manifold then M is said to have a P C(k)-
structure (@, &,7,9).

A PC-manifold M is a PC(k)-manifold if and only if the relation
(4.2) is satisfied for XY, Z € X(F), ie. for X,Y,Z € X(M) such that
n(X) = n(Y) = n(Z) = u(X) = u(Y) = u(Z) =

Let (M, ,£,7,9) be a Lc.C. manifold with Lee form w # 0 at every
point and let ¢,u,U, v,V be as in (1.5). Denote by R the Riemann cur-
vature tensor of M and by R the curvature tensor of the connection v

on M given by (1.1).
From (4.2) and using corollaries 3.2 and 3.3, we obtain

COROLLARY 4.1. If (M,p,€,n,g) is a PC-manifold then, the fol-
lowing conditions are equivalent:
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i) (M, p,€,1n,9) is a PC(k)-manifold.
ii) For all X,Y,Z € X(M)

R(X,Y)Z = %(k +32)(g(Y", Z')X' — g(X', Z')Y')+

+ %(k ~ A {oXUDY ~ u(¥)(2)X"+

+ (9(X’, Z2'Ww(Y) — g(YV', Z')0(X))V+

+ g(pY", 2" X' — g(pX', Z") oY’ +29(X', oY ") Z'+
+ (v(X)g(pY", Z') — v(Y)g(pX', Z')+

(4.3)

+20(2)g(X', @Y )U }+

+ 22 (n A u)(X,Y)((2)U — u(2)E),

where X', Y and Z' are the orthogonal projections of X,Y and Z respec-
tively onto the tangent planes of the leaves of the canonical foliation.

iii) For all X,Y,Z € X(M)

R(X,Y)Z = %(k - {g(v", 2)X' — g(X', Z)Y'+
+o(X)W(Z)Y — v(Y)u(Z) X'+
+ (9(X', ZW(Y) = g(Y", Z' V(X)) V+
+g(oY', 2o X' — gl X', Z')oY’ +29(X', oY ) Z'+
+ (u(X)g(vY", 2') = v(Y)g(eX', Z')+
+20(Z)g(X", oY)}

where X',Y' and Z' are the orthogonal projections of X,Y and Z respec-
tively onto the tangent planes of the leaves of the canonical foliation.
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Let (M,p,£,7,9) be a l.c.C. manifold. Then, every point z € M
has an open neighbourhood U such that the structure (p,e=?€,e%n,e?? g)
is cosymplectic on U and R is the curvature tensor of the local metric
¢?>?g, where 0: U — R is a real differentiable function on U (see §1).
Moreover, using (3.8), (4.3) and (4.4) we deduce

COROLLARY 4.2. If (M, p,€,n,9) is a PC-manifold with Lee form
w and ¢ = [|w||, then the following conditions are equivalent:

i) (M, p,€,7,9) ts a PC(c?)-manifold.

ii) The leaves of the canonical foliation are of constant sectional cur-
vature c2.

iii) The local metrics €*°g are flat, i.e., R =0.

Next, we give some results about the universal covering space of a
P C-manifold. First, we introduce some definitions and we prove some
previous results.

Let N, k be a (2n — 1)-dimensional manifold and a real number
respectively and let H? be the 2-dimensional hyperbolic space, i.e., H? is
the space of 2-tuples of real numbers (s,t) with the Riemannian metric
given by

dr? = ds® + e~ %**dt?

where ¢ is a positive constant. Then,

DEFINITION 4.2. A distinguished P C(c) (respectively P C(c, k) )-
structure on M = N x H? is a P C(respectively P C(k) )-structure (¢,§,n, g)
on M, such that:

a) The metric g is of the form

g = do? + ds? + ¢ 2%dt? = do? + dr?,

where do? is a Riemann metric on N and,
b) £ = e“*d/8t and the unit Lee vector field is U = 3/s.

PROPOSITION 4.2. If {p,£€,7,9) is e distinguished P C(c)-structure
on M = N x H2, then the manifold N carries an induced c-Sasakian
structure (On,En v, gn).  Moreover, if (p,€,7,9) is a distinguished
PC(c, k)-structure on M, then N is of constant py-sectional curvature
k.



322 J.C. MARRERO [18]

PROOF. From definition 4.2, we have that
(4.5) g=do’+ds* +e*dt*, U=20/0s, €£=e"0/0t

where do? is a Riemann metric on N. Thus, if w and u are the Lee 1-form
and the unit Lee 1-form on M respectively, then we obtain that

(4.6) w=cds, u=ds, n=e“dt.

By using first and second relation of (2.2) and third and fourth re-
lation of {2.3) we deduce that éy = —pU = =V and gy = uop = —v
define a vector field and a 1-form respectively on N.

Let X be a vector field on N. Then, X = X +v(X)V with v(X) =
Define pn X = pX.

From first and second relation of (2.3) we obtain that ¢y defines a
(1,1)-tensor field on N.

Now, it is easy to check that (¢n,&n,7n,gv = do?) is an almost
contact metric structure on N.

On the other hand, from (4.6), we deduce that the leaves of the
canonical foliation of M are N x {(so,to)}, with (so,%0) € IR?. Thus,
by proposition 4.1, we get a c-Sasakian structure on each NV x {(s0,t0)},
(s0.to) € IR2. In fact, if (so,%0) € IR? then, it is not difficult to check that
the application 4, o) of N x {(So0,%0)} into N given by i(s,¢0)(Z) S0, to) =
z is an almost contact isometry. This, in view of proposition 4.1 and
definition 4.1, ends the proof of proposition. 0

Reciprocally, let (N, on,En, v, gn = do?) be an almost contact met-
ric manifold with dimN = 2n — 1.

Then, we define an almost contact metric structure (g, §,n, g) on
M =N x H? by

(X aaa gt) = (SDNX_O'EN,WN(X)%vo'aa_t)
o .90
§=(0,05;,e 55)
g ,0

n(X,ag-,bﬁ) =e b

8 a 1 Ia ;a — 2 ’ ¢ —2coppt
g((Xaa =) (%' a—bat))-do(X,X)+aa+e bb
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for all X, X’ € X(N) and q,d/,b,t’ differentiable functions on M, where
(s,t) are the coordinates on H?.

Denote by L the Lie derivate on N, by V the Riemann connection
of the metric g, by N, and N,, the Nijenhuis tensors of ¢ and py
respectively and by ® and ®5 the fundamental 2-forms of the structures
in M and N respectively. Then, by a direct computation, we have

LEMMA 4.1.
& 0\ (ysi 0 0
N ((x o5 b5): (x',a' bat))
- (va (X, X") + 2dnw (X, XVen + o' (Leyon ) X+
(4.7)

~a(Leyion) X', 2(dnwlpn X, X') = dnn (o X', X)+

N 0 é
+ a'dnn(En, X) — adnn(én, X ))-5; , 05) ,

(48) ®=IIdy+2sAll'ny, d®=d(lI"ey)~2dsAd(I'nw),

(4.9) dn =n A (cds),

(4.10) V(x.aa/a..w/az)(O, -aa—s,ogz) = (0,053;,—cb(%) ,

for all X, X' € X(N) and a,a’,b,V’ differentiable functions on M, where
[1: M — N is the projection onto the first factor.

Now, by using lemma 4.1, we deduce

COROLLARY 4.3. If the structure (on,€n,Tn,do?) on N is c-
Sasakian, then (@,&,7,9) s a distinguished PC(c)-structure on M. More-
over, if N is of constant py-sectional curvature k, then (p,€,7,9) is a
distinguished P C(c, k)-structure on M.
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PROOF. If the structure (¢~,&n, 7N, do?) is c-Sasakian then it is nor-
mal, dny = ¢®y and L¢,pn = 0 (see [10]). Thus, from (1.4) and from
lemma 4.1 and proposition 2.3, we obtain that (g,£,7,9) is a distin-
guished P C(c)-structure on M. Therefore, (N, oy, én, v, do?) is almost
contact isometric to the leaves of the canonical foliation of M with the
induced c-Sasakian structure (see proof of proposition 4.2). This proves
the rest of corollary. 0

Next, we give the announced results on the universal covering space
of a P C-manifold.

THEOREM 4.2. The universal covering space of a (2n 4 1)-dimen-
sional complete P C-manifold M with Lee form w, is a product space M =
N x H?, where N is the universal covering space of an arbitrary leaf of the
canonical foliation of M, ¢ = ||w|| and H? is the 2-dimensional hyperbolic
space. The lift of the PC-structure to M gives a distinguished PC(c)-
structure on M. Moreover, if the structure of M is a P C(k)-structure,
then, considering the induced c-Sasakian structure on N, we have:

i) If k > —3c?, then N is almost contact isametric to S*"~(c, k);
it) If k = —3c?, then N is almost contact isometric to R*"*(c);

iii) If k < —3c¢?, then N is almost contact isometric to (R x CD""?)
(e, k).

PROOF. Let (M,¢,£,m,9) be a (2n + 1)-dimensional complete PC-
manifold and w, u the Lee form and the unit Lee form respectively of
M.

Denote by § the induced metric on M. Then, using theorem 4.1
and theorem A of [2], we deduce that (M, g) is the Riemannian product
N x H?, where N is the universal covering space of an arbitrary leaf of
the canonical foliation F, ¢ = ||lw|| and H? is the hyperbolic 2-dimensional
space. Moreover, if F* is the foliation determined by the normal bundle
of F then, the lift of the foliations F and F'* to M are the foliations with
leaves of the form N x {q}{(g € H?) and {p} x HZ(p € N) respectively.

Now, let 7 and @ be the lift of 7, u respectively to M. Then, it is
clear, from (1.4) and from the fact that @ is a closed 1-form, that {7, 4}
is a global basis of 1-forms on HZ2. The dual basis of vector fields on H?
is given by {£,U}, being € and U the lift of € and U respectively to M.
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Thus, using the following lemma 4.2, we obtain that

'ﬁ=2_ é=eca

9
Os’ ot

where (s,t) are the coordinates on H?.

Consequently, the lift of the PC-structure (p,£,7,9) to M is a dis-
tinguished P C(c)-structure on M.

If (¢, €,7,9) is a PC(k)-structure on M, then the lift of this PC(k)-
structure to M gives a distinguished P C(c, k)-structure on M and there-
fore, since N is a simply connected complete manifold, the rest of theorem
follows using proposition 4.2 and theorem 1.2. a

LEMMA 4.2. Let M be a 2-dimensional complete, simply connected,
Riemannian manifold of constant negative curvature —c*(c # 0) and let
U, & be vector fields on M such that {U,€} form an orthonormal basis
for M and [U,€] = c£. Then, there is an isometry F of M to the 2-

dimensional hyperbolic space H?, satisfying
é é

F.U=a, F.6=e a

where (s,t) are the coordinates on H?.

PROOF. Let = be a point of M. We consider the linear isometry L
of T, M onto Tig0)(H?) given by

i} 0

LU L{&:) = Bt i00)"

=7 3100

Then, there is an isometry F of M onto H? such that the differential
of F at 2 is L (sce, for instance, [11]) and thus, using the relation [U, &] =
¢, we prove that

FU=— F.g:&%.
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