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Approximation numbers of continuous linear
mappings and compact operators

on non-archimedean spaces

A K. KATSARAS - J. MARTINEZ - MAURICA®™

RIASSUNTO ~ Si studicno operatori compalti e semi-compatli tra spazi localmente
convessi su un campo non archimedeo e st esamina la connessione irg operatori compatti
e i loro “numeri di approssimazione”, precedentlemente introdotti.

ABSTRACT - Compact and semi-compact operutors between locally conver spaces
over a non-Archimedean valued field are investigated and the connection between com-
pact operalors and lheir approTimation numbers is examined.

Key WoRDS ~ Apprezimetion numbers - Compact operator - t-orthogonal sequence
- Pseudo-reflerive space.
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— Introduction

Throughout this paper, IK will be a complete non-archimedcan non-
trivially valued ficld. If the valuation is discrete, we will denote by 7 an
clement of IK such that |r] < 1 is the generator of the value group of K.
For a subsct § of u vector space E over K, we will denote by co(S) the
absolutely convex hult of §. For A C E, the linear subspace spanned by
A will be denoted by [A].

(*)Research partially supported by grant PS 870094 (DGICYT)
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Let now E be a locally convex space over IK. If B is a bounded
absolutely convex subset of E, we will denote by Eg the vector space
[B] equipped with the Minkowski functional pg of B (i.e. for z €[B],
pe(z) = inf{|A| : £ € AB}) . B is said to be completing if the normed
space Ejg is complete. For V, W convex neighborhoods of zero, we write
V < W if W absorbs V. In this case, for each non-negative integer n, we
define 6,(V, W) = inf{|A]| : A € K,V C F + AW, F linear subspace of E,
dim F < n}. The diametral dimension space A(F) of E is the collection
of all sequences (8,)n>0 of non-negative real numbers such that, for each
convex neighborhood W of zero in E, there exists another one V < W
such that §,(V, W) < 8, for all n.

We will denote by E the completion of a separated locally convex
space E over IK. If E, F are locally convex space over K, L(E, F) is the
space of all linear continuous maps from £ nto F. By T.E - F we
mean the extension of T € L(E, F) to the completions of E and F.

If E is a non-archimedean normed space over IK , Bg will denote the
unit ball in E (i.e. By = {z € E: ||z|| < 1}). Also for 7 > 0, we denote
by B(0,r) the set {z € E: |z|l £ r}.

For all further basic notions and notations we refer to [10].

1 - Approximation numbers of linear mappings

It this section E, F are going to be non-archimedean normed spaces
over K. For cach non-negative integer n, we will denote by A,(F, F) the
subset of L{E, F') consisting of those T € L(E, F) for which dimT(E) £
n.

1.1. Recall, for each non-negative integer n, T € L(E,F) and a
bounded subset B of E, the following definitions:

(a) an(T) :=inf{||T — 4| : A€ A, (E,F)}.
(b) un(T) := inf{|IT|D)| : D is a linear subspace of E of codimension
< mn}.
(¢) 6:(B) := inf{r > 0 : B C G + B(0,r), G linear subspace of E,
dimG < n}.
The numbers a,,(T") were introduced by the first author in (6] where
they are called approximation numbers. The numbers u,(T) were intro-
duced by A.C.M. Van Rooij in [10, p. 144]. As concerning to 6,(B), the
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Kolmogorov diameters of B, they were introduced by authors in (7}. A
closely related diameter, 6,(B}, had been previously introduced by the
first author in [6].

The aim of this section is to compare o,(T) , u,(T) as well as
6n(T(BE)).

The following lemma is in fact a part of the proof of theorem 4.7 in
[8]. For the sake of completeness we include a sketch of the proof.

LEMMA 1.2, Let D be a linear subspace of a normed space E with
finite codimension. Then, for each ¢ > 0 there exists e conlinuous linear
projection P from E onto D such that ||P| €1+e.

PROOF. Let ¢ > 0 and choose ¢ € (0,1) such that 7= < ¢. Let
{Qe;...,Q{es)} be a t-orthogonal basis of E/D where Q : E — E/D
denote the quotient map. For eachi€ {1,...,n}, choose z; € Q(e,) such
that ||z;|| < t(1+ £)}|Q(e;)||- Then the linear map H : E/D — E defined
by Q(e;) — z; is injective and || H|| € 1+¢. Finally P = I - HQ satisfies
the required conditions.

THEOREM 1.3. an(T) = u,(T).

PROOF. Let A € A,(E, F). Then Ker A is a linear subspace of E of
codimension € n. Also ||T| Ker 4| = (T ~ A)|Ker 4| £ [T — A[f. So,
uﬂ(T) < an(T)'

Conversely, let D be a linear subspace of E of codimension < n and
let € > 0. By 1.2 there exists a projection P from E onto D such that
IP| £1+¢€ Set A:=T({I —-P). Then A € A,(E,F) and ||T - 4| £
(1+€)|IT| D). So, an(T) < ua(T).

THEOREM 1.4, Assume F to be pseudoreflerive. Then,
(2) an(T) < &6;(T(BE)) if the valuation of IK is dense.

(b) [m|aa(T) £ 6,(T(Bg)) if the valutation of K is discrete.
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ProoF. Let T(Bg) ¢ G + B(0,r), where G is a subspace of F with
dim G < n. Since F is pscudoreflexive, there exists for any given ¢ > 0
a projection P of F onto G with {|P|| < 1+ ¢ ([8], theorem 2.1). Let
A= PT € A,(E,F) and let v € K, [v| > 1. Given z # 0 in E, there
exists an integer k such that [v*~! < ||z|| < |v|*. Now v~*Tz = y + w,
where y € G and Jjw| < r. Since Py =y, we have v"*Az = y + Pw and

80
v~ *|ITz — Az} = lw - Pwl| £ (1 +€&)r.

Thus
ITz — Azl < [v{(1 +&)rflz]],

which implies that
an(T) S IIT - Al € i1 +&)r

and s0 &, (T) < |vjr since € > 0 was arbitrary. Now (a) and (b) follow.

LEmMMA 1.8, &(T(Bg)) < a.(T).

ProOF. It takes only the obvious changes with respect to the proof
of the propasition 3.7 in [6].

COROLLARY 1.6. Assume F lo be pseudoreflerive. Then,
(8) an(T) =6,(T(Bg)} if the valuation of IK is dense.
(b) |7|a,(T) < 6:(T(Bg)) € an(T} if the veluation of K is discrete.

REMARKS 1.7. The hypothesis of pseudorefiexivity on F' can not be
dropped in general as the following example shows.

EXAMPLE ([8)]. Let F be a Banach space for which F* = {0} (e. g.
€= /cy over a non-spherically complete ground field). Let 8 € K — {0},
e € F - {0} and v € K such that 0 < || < |le||. Let E be the space F
endowed with the Minkowski functional p,(z} = inf{|\| : £ € XA} where
A = (v/B)Br +co{e}.The identity map T : E — F is continuous {in fact,
it is a homcomorphism) and for all n > 1, a,(T) = ||T|| > |v| because
AE, F) = {0} whereas §,(T(Bg)) = 6;({z € E : pa(z) < 1}) <
6;((3;4)1) < lyv/B| fer all y € K, |y| > 1. It follows that [8|6:(T(Bg)) <
o, (T).
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1.8. From the above theorem it follows that lim &, (T'(Bg)) =lim u,(T)
if the valuation on KK is dense and lim&,(T(Bg)) < limu,(T) £ |x|!
lim 6, (T(Bg)) otherwise. So, we have abtained with a different proof
lemma 4.8 of [8].

LEMMA 1.9. Assume F to be complete. Let M be a dense subspace
of E, G a dense subspace of F and T € L(M,G). IfT € L{E,F)is the
extension of T, then an(T) = a,(T’) for alln.

PROOF. Since G is dense in F, we have a,(T) = of(T') by (6, propo-
sition 2.4, where af (T) denotes the nth approximation number of T con-
sidered as a map fram M to F. Hence we may assume that F = G. Given
A € A, (M, F), the space A(M) is closed in F and so A(E) = A(M).Thus

an(T) < T~ A = |IT - Al

which proves that a.(T) < an(T). On the other hand, if B € A,(E, F)
and if A = B|M, then

an(T) < IT - A = T - B,
and so a,(T) € a, (f‘)

ProrosiTION 1.10. Let T € L(E, F). If there ezists S € L(F, E)
such that TS = Ip, where Iy is the identity map on F, then forn < dim F
we have a,(T)]S|| = 1.

Proor. If T € L(E, F)and § € L(F, E) are the extensions of T" and
S respectively, then T8 = I, an(T) = aa(T) and |||} = ||S||. Hence,
we may assume that both E and F are complete. Suppose now that
a, (T)|S) < 1. Then, there exists A € A,(E, F) such that [T - A][[|S] <
1. Thus (T — A)S|) <1 and so AS = Ir — (T — A)S is invertible, which
is a contradiction since the range of AS is a proper subspace of F.

CoOROLLARY 1.11.

(1) If there exists a linear homeomorphism T from E onto F, then
an(THT | €1 for each n < dim F.

(2) For n < dimE, we have a,(Ig) = 1 while for n > dim E we have
an(lg) =0.
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PROOF.
(1) If follows from the preceding proposition.

(2) Clearly a,(Ig) =0 if n 2 dim E. For n < dim E, we have

1 =Tzl 2 anle) = anllE) 5 2 1.

COROLLARY 1.12. Let T € L(E,F). Then, T € A.(E,F) if and
only if an(T) = 0.

PROOF. Clearly o,(T) = 0if T € A,(E, F). Conversely, if a.(T) =

0, then
6:(T(Bg)) £ on(T) =0,

which implies that dim T(E) < n by (7, Corollary 2.7].

2 — Compact operators in normed spaces

2.1. Recall that, if E, F are locally convex spaces over IK, then a

lincar map T : E — F is called (see [3, 2.1] and [4, 2.1 and 2.10}):

(a) Compact if there exists a neighborhood V of zero in E such that
T(V') is compactoid and T(V) is complete. The set of all compact
operators from E to F will be denoted by C(E, F).

(b) Semi-compact if there exists a compactoid, completing subset D of
F such that T~*(D) is a neighborhood of zero, The set of all semi-
compact operators from E to F will be denoted by SC(E, F’).

(c) Compactoid if there exists a neighborhood of zero in £ such that
T(V) is compactoid. The set of all compactoid operators from E to

F will be denoted by CO(E, F).

2.2. Lt is obvious that C(E, F) c SC(E,F) Cc CO(E, F). Also, if
F is a complete space then C(E, F) = SC(E, F) = CO(E, F}. However,
in general the above inclusions are strict even when E and F' are normed
spaces ({3]). N. de Grande-de Kimpe and the second author have recently
developed ({4]) a Fredholin theory for semi-compact operators. Notice
that the composition of a compact operator with a continuous one does
not need to be compact in general ([4], 2.10).
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The next theorem is basically a slight generalization of [10, theorem
4.40] to the context of normed (not necessarily complete) spaces.

THEOREM 2.3. Let E,F be normed spaces over IK and let T €
L(E,F). Then the following are equivalent,
(1) T is compactoid.
(2) lima,(T) = 0.
(3) limu, (T} =0
(4) For eacht € (0, 1) there exists ¢ sequence {g.) in E' and a t-orthogonal
sequence (yn) in F, with ||g.]| € 1 and y, converging to zero such that

Tz=) g.(2)yn (z€E).
!

(5) For eacht € (0,1) there exists a sequence (g,) in E' and a t-orthegonal
sequence (yn) in F such that ||ga||liva|| tends to zere and

Tz = Zgn(x)yn (€ E).
f

(6) There ezists a sequence (h,) in B’ with lim ||h,|l =0, such that

ITzl| < suplhalz)] (= € E).

(7) There ezists S € C(E, cq) such that |Tz}} < ||Sz|| for all z € E.

PROOF. (1) & (2). First assume that T is compactoid. Then, the
extension T € L(E F) is also compactmd Given ¢ > 0, there exists n
and A € A.(E, F) such that ||T — A]| < € (by (10, Theorem 4.39)). If

now m > n, then
an(T) = am(T) < an(T) < IT - A <5,

and so lim a,{T) = 0. The converse was proved in [6, Proposition 2.5].
(2) < (3). If follows from 1.3.
(1) = (4). Since T € CO(E, F), its extension T € L(E, F) is com-
pact. Then T(Bg) is a compactoid subset subset of the Banach space of
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countable type G = clz(D) where D = T(E). So, given t € (0,1) and
BeK 0« |8 <], there exists by [10, Lemma 4.36 (A)] a t-orthogonal
sequence (¥») in 8-'T(Bg) (and hence in F) such that limy, = 0 and
T(Bg) C cgco{yr,. . ¥ny--- }. Proceeding as in (10, Theorem 4.40,
(o) = ()] one can casily prove that there exists a sequence (g.) in £’
such that ||g.}| €1 for all n and

Tz = ig,.(x)y,. (zx e E).
i

(4) = (5). It is obvious.

(5) = (6). Let A € KK with 0 < |A| < 1. For each n with y, # 0
choose v, € K, |A] < |luntall € 1. Set hy =0 if y, =0 and h, = ;"9
otherwise. Now lim k, = 0 and

ITz)l < sup |hn ()] (z€E).

{6)= (7). It suffices to take
§:E — ¢y, 85z = (ha(2)).

(7) = (1). Let S ¢ C(E ) and T € L(E, F) be the extensions of S
and T. Then (|Tz|| < ||S:r[| for all z € E. Let (zi)igs be a bounded net
converging weakly to 0 in E. By compactness of 5, (5(z;))ies (2nd hence
(T(I Vier) converges to 0 in the norm topology. By [9, Theorem 1. 2], it
follows that T € C(E, F) and hence T € CO(E, F).

REMARKS 2.4.
a) The preceding theorem holds also for seminormed spaces B, F.

b) In the above theorem the assumption of t-orthogonality made in
{4) and (5) can be dropped. On the other hand it is possible to assume
in (4) and (5) that the sequence (y,) lies in 3-'T(Bg) for any choice of
3 € K with |3| € (0,1).

¢} If every one-dimensional subspace of f‘(F?) is orthocomplemented,
then the above theorem holds for ¢ = 1. Also, if the valuation of IK is
discrete one can assume in (4) and (5) that the sequence (¥, ) is orthogonal
and lies in T(Bg) (see |10, Lemma 4.36 (B), (C}]).
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COROLLARY 2.5. Let E,F be normed spaces over K and let T €
L(E,F). Then the following are equivalent,
(a) T is compact.
(b} For eacht € (0, 1) there exists a sequence (g,) in E' and a t-orthogonal
sequence (Yn) in F, with ||g,|| <€ 1 and y,, converging to zero such that

Tz=3 gu(e)yn (z€E)
I

and 6{yn : n € IN} is complete.

Proor.
() = (b). It is left to prove that clzco{y, :n € N} C F. Since T is
compact, the F -closure of f(BE) lies in F ([3), Theorem 2.11). Then,

cpco{y. :n€ N} C B7'clpT(Bg) C F

where 8 is as in 2.4 (a).

(b} = (@). We know that T is compactoid. Also, if z € B, then
Tz € t{y, : n € IN}. Since this subset is complete, the F-closure of
T(Bg) lies in To{y, : » € IN} (and hence in F). By ([3]), Theorem 2.11
), T is compact.

COROLLARY 2.6. Let E,F be normed spaces over K and let T €
L(E,F).
(a) If T is semi-compact then for each t € (0,1) there exists a sequence
(g9n) in E’ and a t-orthogonal sequence (y,) in F, with ||g.]] <1 and
yn converging to zero such that

Tz = ign(:’;)yﬂ (z€E)
H

and co{yn, : n € IN} is contained in a completing subset of F.

(b) If for eachk t € (0,1) there exists a sequence (g,) tn E' and a t-
orthogonal sequence (y,) in F, with |lg.|| € 1 and y,, converging to
zero such that

Te=3 g(eln (2€E)
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and ca{y, : n € IN} is completing, then T is semi-compact.

Proor.

(a) Let 8 € K — {0} with |8] < 1. By 2.3 there exists a sequence
(g.) in E’ and a t-orthogonal sequence (yn) in 8~'T(Bg), with |lgn]| <1
and y, converging to zero such that

Ty = ign(x)yn (z€E).
I

Alsa, there exists a completing compactoid D in F such that T(Bg} C D.
Hence co{y, : n € IN} is contained in the completing subset 3-'D.

(b) By hypothesis T(Bg) C &{yn : n € IN} is completing and com-
pactoid, then T is semi-compact.

COROLLARY 2.7. Let E F be normed spaces and let T,T) €
L(E,F). If T is compactoid and |Tyz| < [Tzl for ollz € E, then
T, is also compactoid.

3 - Compact operators in locally convex spaces

In this paragraph E, F are locally convex spaces over K Ifpisa
continuous seminorm on E, then for f € (E,p)’ we define || ]|, by

(£l ;= inf{M 2 0:|f(z)| £ Mp(z),¥z € E}.

TheOREM 3.1. Let E,F be locally convex over IK. For o T €
L(E. F) the following are equivalent:
(1) T is compactoid.
(2) There erists @ continuous seminorm p on E such that, for each con-
tinuous seminorm g on F, there is a sequence (f,) in (E,p) such that
tim || full, = 0 and ¢(Tz) < sup, |fo(z)| for ellx € E.
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PROOF.

(1) = (2). Since T is compactoid, there exists a continuous seminorm
p on E such that T(V})} is compactoid in F where

Vo={xr€E:p(z) <1}.

Since T(V,) is bounded, it follows that ¢(Tx) = 0 for each z € Kerp and
each continuous seminorm g on F. Set E, := E/Kerpand F, := F/Kerg
normed by l|fzl,l = p(z) and fllulell = a(v), respectively. Let

T E—E, , wm,:F—=F,
be the canonical surjections and let
V=W, Ep— Fo,lz], — [T,

The set m,(V,) is the closed unit ball in E,. Since ¥(7,(V})) = m (T(V})),
the mapping ¥ is compactoid. In view of Theorem 2.3, there exists a
scquence (gn) in E, with lim ||gajf = 0, such that

1¥(2)]l < suplga(2)l (2 € Ep).
If fo = gam,, then f, € (E,p) and || full, = llgall. Moreover,
¢(Tz) < sup (@)t (z€E).

(2) = (1). Let p be as in (2) and let V = V,,. In order to show
that the set A = T(V) is compactoid in F, it suffices to prove that m (A)
is compactoid in F, for cach continuous seminorm g on F. So, let ¢ be
given. Our assumption (2) implics that ¢(Tz) = 0 if p(z) = 0. Consider
the mapping

V=V, B — Fylzlp — [Tz,

Let (f,) be a sequence in (E,p)’, with lim || f.]l, = 0, such that ¢(Tx) <

sup, |fu{z)). If
90 By = K, [x]p = fu(x),
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and TO{y., : n € IN} is completing, then T is semi-compact.

ProoO¥F.

(a) Let 8 € K — {0} with |8] < 1. By 2.3 there exists a sequence
(g.) in E’ and a t-orthogonal sequence (y,) in 8~*T(Bg), with g}l <1
and y, converging to zero such that

Tz = ign(a:)y,. (re k).

Also, there exists a completing compactoid D in F such that T'(Bg) € D.
Hence co{y, : » € IN} is contained in the completing subset 8D,

(b) By hypothesis T(Bg) C t{y, : n € IN} is completing and com-
pactoid, then T is semi-compact.

COROLLARY 2.7. Let E,F be normed spaces and let T, T\ €
L(E,F). If T is compeactoid and |[Tyz|| < |Tx| for all z € E, then
T, is also compactoid.

l

3 - Compact operators in locally convex spaces

In this paragraph E, F are locally convex spaces over K. If p is a
continuous seminorm on E, then for f € (E,p)’ we define || ||, by

£l := inf{M 2 0:|f(x)| < Mp(z),¥z € E}.

THEOREM 3.1. Let E, F be locally convex over IK. For a T €
L{E, F) the following are equivalent:
(1) T is compactoid.
(2) There erists a continuous seminorm p on E such that, for each con-

tinuous seminorm q on F, there is a sequence (f,) in (E,p) such that
lim || f. ]}, = 0 and ¢(T'z) < sup, |fa(z)| for aellx € E.
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PROOF.
(1) = (2). Since T is compactoid, there exists a continuous seminorm
p on E such that T(V,) is compactoid in F' where

Vo={x € E:p(x)<1}.

Since T(V,) is bounded, it follows that ¢(Tz) = 0 for each z € Kerp and
each continuous seminorm g on F'. Set E, := E/Kerpand F, := F/Kerq
normed by {f[z],}j = p(z) and ||[].]l = 9(y), respectively. Let

fp: E—E, , m:F—-F,
be the canonical surjections and let
¥ =¥,,: B, — Fo,lzl, — [Tz],.

The set m,(V;) is the closed unit ball in E,. Since ¥(7,(V,)) = m,(T(V;)),
the mapping ¥ is compactoid. In view of Theorem 2.3, there exists a
sequence (g»} in Ej,, with lim [|ga|| = O, such that

le(2)] < Sl:plgn(z)l (z € E,).

If f. = gawp, then f, € (E,p) and ||fallp = |lgall. Moreover,

¢(Tx) < sup [/2(2)] (= € E).

(2) = (1). Let p be as in (2) and let V = V,. In order to show
that the set A = T(V) is comnpactoid in F, it suffices to prove that m{A)
is compactoid in F, for cach continuous seminorm ¢ on F. So, let g be
given. Our assumption (2) implics that ¢(Tz) = 0 if p{z) = 0. Consider
the mapping

V=V, By — Fy [zl = [Tz,

Let (f.) be a sequence in (£, pY, with lim || f.|l, = 0, such that ¢(Tz) <

Supn Ifﬂ (;r)l‘ If
ot By = K, [x], = Bi(x),
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then g, is well defined and lim ||g,|| = lim || f.], = 0. Moreover
e (felo)l = o(T2) < sup|fa(=)] = supga(lz]5)l -

By Theorem 2.3, it follows that ¥ is compactoid and so mg(4) = ¥(m,(V,))
is compactoid. This completes the proof.

As an application, we next give a different proof of a well known
result of N. de Grande-de Kimpe {2, Theorem 4.5 and Corollary 4.6 i)].
Notice that we have removed the hypothesis of polarity on the space E.

THEOREM 3.2. A locally convez space E is nuclear if and only if for
each continuous seminorm p on E there exist an equiconlinuous sequence
(g.) in E’ and an element (A,) of co such that p(z) < sup, |Aagn{z)| for
allz € E.

ProoF. First suppose E is nuclear. Given a continuous seminorm p,
there exists another continuous seminorm ¢ > p such that the canonical
mapping @, , : £, — E, is compactoid. The map

T=pemg: E— E,

s compactoid and thus (by Theorem 3.1) there exists an equicontinuous
sequence (g,) in E’ and (A,) € ¢o such that

p(z) < suplr.g.(z)] (z € E).

Conversely assume that the condition is satisfied. Given a continuous
seminorm p, let (g,) be an equicontinuous sequence in E' and (An) € co
such that p(z) < sup, [Angn(z)|. By Theorem 3.1, the canonical surjec-
tion 7, : £ — E, is compactoid. Let ¢ = p be a continuous seminorm
on E such that m,(V,) is compactoid in E,. Since m (V) is the closed
unit ball in E, and since ¢,(7,(Vy)) = mp(V}), it follows that o, is
compactoid, which proves that E is nuclear.

TREOREM 3.3. Let E be locally convez. If there exists (8,) € A(FE)
with inf é, = 0, then FE iz nuclear.
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PROOF. Let W be a convex neighborhood of zero in E and let V be
another one with V < W and 6.(V, W) < 6, for all n. Let p,q be the
Minkowski functionals of W and V' respectively. We will show that the
canonical mapping

P = Ppq: Eq— Ep

is compactoid. In fact, the set A = m(V) is a neighborhood of zero in
E, and @(A) = mp(V). By [6, Lemma 4.2], we have

n(p(A)) = 8,(V,W) < 6,

Since 6,(V, W) < 6,(V, W) for k < n, we have lim 6,(2(A4)) = 0 and so
{A) is compactoid by (6, Theorem 3.3], which completes the proof.

THEOREM 3.4. Let B, F be locally convex spaces, where T is metriz-
able, and let T € L(E,F). Then, T is compactoid if and only if there
are normed spaces X,Y and Ty € L{E, X), T € CO(X,Y), Tz € L(Y, F)
such that T = TLTT).

Proor. The sufficiency is clear. In order to prove the necessity, let
p be a continuous seminorm on E such that T(V;) is compactoid in F,
where V, := {z € E : p(z) € 1} . Since A = T(V}) is bounded, there
exists a bounded absolutely convex subset B of F containing A such that
F and Fg induce the same topology on A (by [1}, Lemma 11]). Since A
is absolutely convex and compactoid in F, it is also compactoid in Fg by
[5, Theorem 4.3]. Now, take X = E,, Y = Fg ,T1 =7, T2 : Fg = F
the injection map and

T.E, — Fg, [z}~ Tz

REMARK 3.5 Under the hypothesis of 3.4, T is compactoid if and
only if there arc a normed space X and Ty € L{E, X), Ty € CO(X, F)
such that T = T5,T).

Notice that the following related result has been recently proved in
[4, Prop. 10] under no additional hypothesis over F' : T is semicompact if
and only if there are a Banach space X and Ty € L(E, X) , T» € SC(X, F)
such that T = T;T). Another related result is proposition 12 in (1].
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THEOREM 3.6. Let T € L(E,F) where E,F are locally convez
spaces and F' i3 metrizable. Then, T is compactoid if and only if there
erist an equicontinuous sequence (f,) in E’, an element (X\,) of co and a
bounded absolutely convex subset B of F' such that T(E) C Fg and

pe(Tz) < sup [AnSfa(z)l (T € E)

where pp is the Minkowski functional of B in Fg.

ProoOF. First assume T to be compactoid. Let p be a continuous
scminorm on E such that T(V,,) is compactoid. As in the proof of the pre-
ceding theorem, there exists a bounded absolutely convex set B D T(V,)
such that T(V,) is compactoid in Fg and so T ; E — Fjp is compactoid.
Now the conclusion follows from Theorem 2.3.

Conversely, assume that T satisfies the condition in the statement of
the theorem. By Theorem 3.1 the mapping

TI:E———FFB + Tl:r::Tx

is compactoid and so T = T3T) is compactoid, where T, : Fp — F is the
injection map.
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