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On the maximum size of a maximal partial plane

K. METSCH

RIASSUNTO - Un piano parziale di ordine n ¢ costituito da un insieme din®+n+1
punti e da una famiglie di sottoinsiemi di cardinalita n + 1, detti rette, tali che due
rette qualsivoglia abbiano al pit un punto in comune. Per n > 15 si dimostra che un
piano parziale di ordine n o é immergibile in un piano proiettivo di ordine n, oppure
ha al pit n? + 1 rette e questa diseguaglianza é ottimale nel caso in cui n sia ’ordine
di un piano proiettivo.

ABSTRACT - A partial plane of order n consists of a set of n?+n+ 1 points and a
family of subsets of size n+ 1, called lines, such that any two lines meet in at most one
point. For n > 15, it is proved that a partial plane of order n can either be extended to
a projective plane of order n or has at most n? + 1 lines, and this inequality is sharp
whenever n is the order of a projective plane.
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1 - Introduction

A partial plane " of order n consists of a set of n? +n + 1 points and
a family B of b sets of n + 1 points, called lines, such that any two lines
have at most one point in common. The partial plane I' is called mazimal
if there is no partial plane containing I' properly. The number of lines is
denoted by b.

In this paper the possible number of lines in a maximal partial plane
of order n is investigated. Z. FUREDI and L. SpissICH [3] showed that
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a maximal partial plane has at least (3n + 4)/2 lines if n is even and
at lcast (3n + 3)/2 lines if n is odd and this bound is sharp. On the
other hand, any line of a partial plane of order n covers (n + 1)n of the
(n? +n+1)(n? + n) pairs of points so that the number of lines is at most
n?+n+1 (here equality holds only if and only if any two points are joined
by a line, which implies that every point lies on n + 1 lines and in turn
that any two lines meet so that the partial plane is a projective plane).
Using a theorem of S. VANSTONE [6], it follows that any partial plane
with mutually intersecting lines can be extended to a projective plane
provided that it has at least n? lines. Hence if I' is a maximal partial
plane with n? < b < n?+n+ 1 then I has a pair of disjoint lines. D.R.
STINSON [5] showed that every such partial plane has b < n? + n/2 lines,
and Z. FUREDI and J. KAHN {2] proved b < n? + n/3. In this paper, we
improve these bounds.

THEOREM. IfT is a partial plane of order n > 15 with two disjoint
lines then b < n®+1. Furthermore, this bound is sharp whenever n is the
order of a projective plane.

The following construction due to D.R. STINSON [5] shows that this
bound is sharp whenever n is the order of a projective plane.

Let p and g be two points of a projective plane P of order n, and let
L be a line other than pq passing through p. Remove the line L and all
lines other than pg passing through g to obtain a partial plane I''. Then
the set S consisting of ¢ and the n points other than p of L meets every
linc of I in at most one point. Hence we obtain a partial plane I if we
adjoin S as a new line to IV. In I the line S is disjoint to all lines other
than pg through p. Furthermore I" has n? + 1 lines.

Using the result of S. Vanstone mentioned above, we obtain

COROLLARY. If n i3 not the order of a projective plane then every
partial plane has at most n? + 1 lines.

It should be mentioned that the examples of a partial plane with
n? + 1 lines and two disjoint lines have been constructed starting with a
projective plane of order n. This might indicate that the bound in the
corollary is far from being best possible.
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2 — Proof of the Theorem

The theorem will be proved indirectly. Suppose for the rest of the
paper that T is a partial plane of order n with at least n% + 2 lines and a
pair of disjoint lines. We may assume that I' is a counter-example to the
theorem with the maximal possible number of lines (where n is fixed).

We use the following notation. The number of lines is denoted by
b=n%+n+ 1« for some integer a, which satisfies @ < n — 1. The set
of lincs is denoted by B. The degree 7, of a point p is the number of lines
through p and d,: = n+ 1 — r, is called the deficiency of p. By pl we
denote the set consisting of p and all points ¢ which are not joined to p.
Since p is joined to r, - n points, we have |pt| =1+4d,-n. If p is a point
of degree n, then the set pt is called a projective set. Finally, a line is
called bad if it meects some projective set in at least two points.

We shall show that distinct projective sets have a unique point in
common, and that there exist more projective sets than bad lines. Then
we remove the bad lines and adjoin the projective sets as new lines to
obtain a new partial plane IV, which has more lines than I'. The maxi-
mality of I" implies then that I’ can be extended to a projective plane,
and this information will be sufficient to obtain a contradiction.

LEMMA 1. Ifp is a point outside a line L then |LNp*| > d,.

PROOF. This is clear, since p is joined to at most 7, points of L.

LEMMA 2. If two distinct points p and g are joined then |p* Ng*| <
d,-d,.

PROOF. By Lemma 1, every linc other than pq through p meets qtin

at least d, points. Hence p is joined to at least 1+(r, —1)dg of the 1+dg-n
points of ¢*, which implics that |p* Ng*| < dg-n— (1, — 1)dg = dp - dy.

LEMMA 3. If a point p of degree n is not joined to a point q then
[ptNg*| > n+2-d,.
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PROOF. Set z = |[pt Ngt|. If p* C g, thenz = |p*| =n+12
n+2—d, as d, > 1. We may therefore assume that p* is not contained
in ¢*. Choose a point s of maximum degree of p* — g*, set d = d, and
e = d,. The lines # sq through s join s to at least (r, — 1)d points
of ¢* (Lemma 1) and therefore to at least (r, — 1) - d — |¢t — pt| =
(n—e)d—|g*| +|gt Npt| = (n—e)d — (1 +dn) +z =z — 1 — de points
of p* N¢t. Since g is joined to [p* — ¢t| = n + 1 — z points of p* and
since every line L meets p* in at least one point (Lemma 1), it follows
that T (JLNpt[—-1) >z —-1—-de+n+1—z=n—de Now count
incident point line pairs (y, L) with y in p! to obtain

Z Ty = Z |Lopt| = b+Z (|ILnpt|-1) > b+n—de > n®+2+n—de.

yept LeB LeB

On the other hand (notice that every point of p — {p} has degree at
most 7, since it is not joined to p, while the n + 1 — z points of p* — qt
have degree at most n + 1 — e)

ZTvS"'q'*'I(P'anL)—{‘I}I'n'*"pl—qll'(n.+1—e)

=n+l-d)+(z-1)n+(n+l-z)(n+1—¢)
=n’4+n+l-d-(n+l-z)e-1).

Hence 1 + (n+1 —z)(e — 1) < d(e — 1), in particular e # 1 and therefore
n+l—-z<diez>n+1-d.

LEMMA 4. If points p and g of degree n are not joined then p* = qt.

PRrOOF. This is immediate from the preceding lemma.

LEMMA 5. Distinct projective sets have a unique point in common.

PROOF. Let pt and g' be distinct projective sets. Then p and ¢
are joined (Lemma 4) and pt and g* have at most one point in common
(Lemma 2). Assume by way of contradiction that p* and g* are disjoint,
and denote by z resp. y the number of n-points in p* resp. ¢t. We may
assume that = > y.
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Suppose that s is a point of degree n of pt. Since s* = p* (Lemma
4), the point s is joined to every point of g1. Hence s lies on a line which
has at least two points in g*. If s and s’ are distinct points of degree n
of pt then st = pt = s* implies that s and s’ are not on a common line.
It follows that there are at least = different lines which have two points
in ¢*. Counting incident point line pairs (2, Z) with z in ¢* and using
Lemma 1, we obtain

Yo=Y lZng* |22+ (b-2z) 2n*+2+z.
z€qt zZeB

On the other hand

D rSyn+(n+l-y)n-1)=n"-1+y.

zeql
Hence z < y, a contradiction.
LEMMA 6. Every point of degree < n lies in a projective set.

PROOF. Let p be a point of degree n+1—d < n+1. Then every point
of p* — {p} has degree at most n, since a point of degree n +1 is joined to
every other point. Furthermore, every line not passing through p meets
p' — {p} in at least d points (Lemma 1). Counting incident point-line

pairs (g, L) with ¢ € p* — {p}, we obtain

S rg2(b-r)d>(b-n)d>(n*~n+2)d>dn(n—1).

q€pL -{p}
Since |pt — {p}| = dn, it follows that some point of p* — {p} has degree
at least n.

LEMMA 7. The sum }_d, of the deficiencies d, of all points p equals
a(n+1).

PROOF. Since there are n? + n + 1 points, this follows from 2T, =
b(n+1)andb=n’+n+1-a.
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LEMMA 8. There are at least /2 different projective sets.

PRrOOF. In view of a < n — 1, the preceding lemma shows that it
exists a point p of degree n + 1. Let L be a line through p, let py,...,p,
be the points of L which have not degree n+ 1, and denote the deficiency
of p; by d;. Since p has degree n + 1, it is joined to every other point,
which implies that the lines through p meet every other line. Hence, the
line L meets every other line, which implies that }_d; = a. The set pj
has 1+ d;n points and distinct sets p; and p; have at most d;dy points
in common (Lemma 2). Since every point contained in one of the sets pjl
has degree at most 7, it follows that the number of points of degree < n
is at least

1 2 1 1
> (1+dn) - didy = s+an—§(a2—§ df) > 1+an—§a2 > 1l+-an.

=1 i<k 2

Suppose there are fewer than éa distinct projective sets, say qi',...,q%
with m < %a. By Lemma 6, the union of the projective sets is the set of
points of degree at most n. Now (see Lemma 5)

m
|Ua| < lat] + g — gt + ... + gk - g
j=1

1
=n+1+(m—1)n=1+mn<1+§an,

But every point of degree < n lies in one of the projective sets qj*, a
contradiction.

LEMMA 9. It ezists a bad line.

PROOF. Since T is a counterexample to our theorem with the max-
imum number of lines, every projective set S contains two points which
are joined (if not we could adjoin S as a new line), i.e. every projective
set meets some bad line in two points. Hence if a > 0 then there is a bad
line (Lemma 8). But we have already noticed in the introduction that
every partial plane has at most n? +n + 1 lines with equality if and only
if it is a projective plane. Since I' has disjoint lines, it is certainly not a
projective plane, soa=n?+n+1-5> 0.
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LEMMA 10. Ewvery point of a bad line has degree at most n — 1.

PROOF. Suppose L is a bad line which intersects the projective set
pt in two points. By Lemma 4, the points of L Np* have degree at most
n — 1. Now let q be a point of L — p*. Then g has not degree n + 1,
because every line through a point of degree n + 1 intersects p* (Lemma
1) in a (necessarily) unique point.

Assume that g has degree n. Since every line through ¢ meets pt
and since L meets p* in two points, it follows that g is joined to each of
the n + 1 points of pt. But this implies that the projective sets p- and
g' are disjoint, which contradicts Lemma 5. 1

LEMMA 11. It two points x and y of a projective set pl are joined
then (d; + 1)(d, + 1) 2 n +4.

PROOF. By Lemma 3 we have [p* Nz*| > n+2—d; and [p* Ny*| >
n + 2 — d, and Lemma 2 shows that |z Ny*| < d.d,. It follows that

2n+4—d.—d, < [prnzt|+|ptnyt| < |pt|+ptnztnyt| < ntl+ded,.

Consequently (d. + 1)(dy +1) 2 n+4.

LEMMA 12. Ifn > 3, then there are at most n — 2 bad lines.

PROOF. Let M be any set of n+ 1 — 0 bad lines with some integer
B > 0. Since distinct lines meet in at most one point, the lines of M
cover at least 1(n +2)(n + 1) — (8 + 1)B points. Since every point of
a bad line has deficiency at least 2 (Lemma 10), Lemma 7 implies that
(n+2)(n+1)— (B+1)8 < a(n+1). In view of @ < n—1, it follows that

B(B + 1) > 3(n +1) so that 8 > 3. a

LEMMA 13. Ifn > 13 then there are more projective sets than bad
lines.
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PROOF. Let n + 1 — 3 be the number of bad lines and assume that
there are at most n + 1 — 3 projective sets. Let S be the set of points
which have degree at most n — 3, and set s = |5|.

It L is a bad line then every point of L lies in a projective set (Lemma
6 and Lemma 10). In view of n > 13, Lemma 11 shows that a projective
set contains at most one point of L — S. Since there are at most n+1— 03
projective sets, it follows that every bad line contains at least § points
of S. Let w be the number of points covered by all bad lines. As in the
proof of Lemma 12 we have 2w > (n +2)(n + 1) — (8 +1)3. Since points
of bad lines have deficiency at least 2 (Lemma 10) and since the points of
S have deficiency at least 4, we have 2w+2s = (w—s)-2+s5-4 < a(n+1)
by Lemma 7. Hence 2s < B(f+ 1) — (n+ 2 — a)(n + 1).

Consider first the case that n+1— 8 > 3 so that there are at least 8
bad lines. Then s > 1(8+1)B, since a bad line contains at least 8 points
of S. But we have just shown that 2s < 8(8 + 1), a contradiction.

Now suppose that 8 > n+1—8. Since each of the n+1 — 3 bad lines
contains at least 3 points of S, if follows that s 2 8+ (6 —1)+...+ (B—
(n— B)] so that 2s > (B+1)3 — (28 — n)(28 —n —1). Together with the
upper bound for 2s we obtain (n+2—a)(n+1) < (26—n)(26 —n — 1)
or 2{n+1)+28(2n+1-28) < a(n+1). Inviewof 28 =2 n + 1, it
follows that 2(n+1) + (n+1)(2n+1~28) < a(n+ 1) which implies that
1+2(n+1-p8) <aorn+1l-0 < ja. Since there are at most n + 1-3
projective sets, this contradicts Lemma 8. a

Let I be the partial plane obtained from I' by removing the bad
lines. Then each line of I meets each projective set in at most one point.
Lemma 5 shows that we obtain again a partial plane I'” if we add the
projective sets as new lines to I'. By the preceding lemma, ' has more
lines than I. The choice of I' implies now that I can be extended to
a projective plane P of order n. Since I has at least n? + 2 lines, it
follows that I'" can be extended to the same projective plane by adjoining
at most n — 1 + & lines where § is the number of bad lines of I'. By
Lemma 12, we have 6 < n— 2. Since the points of degree n + 1 of I
have still degree n+ 1 in [V (Lemma 10), the partial planc I'” has at least
n?+n+1-an+1) > n+ 2 points of degree n + 1 (Lemma 7). Let
S,....,Ss be the bad lines of T' and denote by D the set of lines of P
which are not lines of I'V. Since D contains the projective sets of I, each
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line S; meets some line of D in at least two points. Therefore each bad
line S; of T is a set of n+ 1 non-collinear points of the projective plane P.
The following proposition shows that we have derived a situation which
is not possible and this completes the proof of the theorem.

PROPOSITION 14. Suppose P is a projective plane of order n > 15
and let 6 be a positive integer. Suppose furthermore that there erists a
set D consisting of (at most) n — 1+ 6 lines and sets S,...,Ss of points
satisfying the following properties.

(1) Each set S; consists of n+ 1 non-collinear points.
(2) Any two points of S; are joined by a line of D.
(3) Distinct sets S; share at most one point.

(4) At least n+ 2 points do not lie on any line of D.
Then 6 2 n — 1.

PRrROOF. Assume by way of contradiction that § < n — 2. For every
point p, we denote by d, the number of lines of D passing through p, and
we call d, the deficiency of p.

Since the points of S, are non-collinear, the lines (of D) which have
at least two points in S} induce a linear space L on the points of S;. Since
every lincar space has at least as many lines as points (see [1]), it follows
that D has at least n + 1 lines. Hence 6§ > 2.

We define a function f(z) := (z + 1)?(n — z) for real values of z.
Since f has two extrema one of which for £ = —1, it follows that f(zx,) <
f(z) € f(z;) for all real z,z,,z,; with 0 < =, € £ < z,. Denote by
k + 1 the maximum line degree of L. Then £ < n — 1 and LL has at least
14 (f(k)/n) lincs (sec [4]). Since the lines of L are induced by the lines
of D, it follows that f(k) < (|D]—1)-n=(n—2+6)n. Since 6§ < n—2,
F(V(2n)) > 2n? and f(n —2) > 2n?, it follows from the above properties
of f that k =n —1or k < /(2n). However k = n — 1 is not possible.
(Assume to the contrary that there is a line L in D which meets S, in
n points. Then the point of §) — L is joined to the n points of LN S,
by lines of D, which implies that the lines of D cover at least n? + 1
points. This contradicts condition (4)). Hence k < \/(2n). If § < 3 then
S(k) € (n+1)n, and the same argument shows in this case that & < /n.

Let p be a point of L. Since p is joined to every other point of L by
a line of degree at most k + 1, it follows that p has degree at least n/k
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in L. Hence every point of L lies on at least n/k lines of D, i.e. every
point of S, has deficiency d, > n/k. The same argument shows that
every point contained in one of the sets S; has deficiency at least n/k.
Let S be the union of the sets Sy, ...,Ss. Since any two distinct sets S;
sharc at most one point, we have (S| 2 (n+1)+n+...+(n+2-6) =
ln+2)(n+1) - 2{n+2-8)(n+1-46) = 36(2n+3-6). Counting
in two ways triples (p, L,, L;) consisting of a point p and distinct lines
L,.L, of D which intersect in p, we obtain £d,(d, —1) = [D|(|D]|-1) <
(n — 1+ 68)(n — 2+ &). Since the points of S have deficiency at least n/k
it follows that

(1) 6(2n+3 —8)n(n—k) < 2(n—1+8)(n—2+8)k>.
First suppose that § € {2,3}. Then k < /n and (1) yields
(2) 5(2n+3—-8)(n—vn)<2(n—1+68)(n—-2+4).

In view of n > 15 and & € {2, 3}, this is a contradiction.
Hence 4 <6 < n—2. Now k < +/(2n) and (1) yields

. §(2n + 3 —6) 2k
(3) 9(8) = (n_1+5)(n—2+6)<n(n-k)'

Restrict g to values § > 0. Then the function ¢’(6)(n—1+6)*(n—2+8)?
is a polynomial of degree 2 in § {where g’ is the derivation of g). Hence
¢ has at most two extrema. Since g(0) = g(2n — 3) = 0 and since g(6)
is positive for 0 < § < 2n — 3, it follows that ¢ has a unique extremum
for 0 < § < 2n — 3. Hence min{g(é,),9(82)} < g(8) for all real §,6,,6,
with 0 < 8, €6 < é,. Since 4 < 6§ < n—2, it follows that (3) is satisfied
for 6 = 4 or § = n— 2. In view of k < \/(2n}, the right hand side of
(3) is smaller than 4/(n — /(2n)). It follows easily in the case § = 4 as
well as in the case § = n — 2 that n < 18. Now k < /(2n) implies that
k < 5. But then (3) is also not satisfied for n € {15,16,17,18}. This
contradiction completes the proof of the proposition. 0
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