On the maximum size of a maximal partial plane

K. METSCH

RIASSUNTO – Un piano parziale di ordine n è costituito da un insieme di n^2+n+1 punti e da una famiglia di sottoinsiemi di cardinalità n+1, detti rette, tali che due rette qualsivoglia abbiano al più un punto in comune. Per $n \geq 15$ si dimostra che un piano parziale di ordine n o è immergibile in un piano proiettivo di ordine n, oppure ha al più n^2+1 rette e questa diseguaglianza è ottimale nel caso in cui n sia l'ordine di un piano proiettivo.

ABSTRACT – A partial plane of order n consists of a set of $n^2 + n + 1$ points and a family of subsets of size n + 1, called lines, such that any two lines meet in at most one point. For $n \ge 15$, it is proved that a partial plane of order n can either be extended to a projective plane of order n or has at most $n^2 + 1$ lines, and this inequality is sharp whenever n is the order of a projective plane.

KEY WORDS - Partial plane - Projective plane.

A.M.S. CLASSIFICATION: 51E20

1 - Introduction

A partial plane Γ of order n consists of a set of n^2+n+1 points and a family B of b sets of n+1 points, called *lines*, such that any two lines have at most one point in common. The partial plane Γ is called maximal if there is no partial plane containing Γ properly. The number of lines is denoted by b.

In this paper the possible number of lines in a maximal partial plane of order n is investigated. Z. FÜREDI and L. SPISSICH [3] showed that

a maximal partial plane has at least (3n+4)/2 lines if n is even and at least (3n+3)/2 lines if n is odd and this bound is sharp. On the other hand, any line of a partial plane of order n covers (n+1)n of the $(n^2+n+1)(n^2+n)$ pairs of points so that the number of lines is at most n^2+n+1 (here equality holds only if and only if any two points are joined by a line, which implies that every point lies on n+1 lines and in turn that any two lines meet so that the partial plane is a projective plane). Using a theorem of S. Vanstone [6], it follows that any partial plane with mutually intersecting lines can be extended to a projective plane provided that it has at least n^2 lines. Hence if Γ is a maximal partial plane with $n^2 \le b < n^2 + n + 1$ then Γ has a pair of disjoint lines. D.R. Stinson [5] showed that every such partial plane has $b \le n^2 + n/2$ lines, and Z. Füredi and J. Kahn [2] proved $b \le n^2 + n/3$. In this paper, we improve these bounds.

THEOREM. If Γ is a partial plane of order $n \geq 15$ with two disjoint lines then $b \leq n^2 + 1$. Furthermore, this bound is sharp whenever n is the order of a projective plane.

The following construction due to D.R. STINSON [5] shows that this bound is sharp whenever n is the order of a projective plane.

Let p and q be two points of a projective plane P of order n, and let L be a line other than pq passing through p. Remove the line L and all lines other than pq passing through q to obtain a partial plane Γ' . Then the set S consisting of q and the n points other than p of L meets every line of Γ' in at most one point. Hence we obtain a partial plane Γ if we adjoin S as a new line to Γ' . In Γ the line S is disjoint to all lines other than pq through p. Furthermore Γ has $n^2 + 1$ lines.

Using the result of S. Vanstone mentioned above, we obtain

COROLLARY. If n is not the order of a projective plane then every partial plane has at most $n^2 + 1$ lines.

It should be mentioned that the examples of a partial plane with $n^2 + 1$ lines and two disjoint lines have been constructed starting with a projective plane of order n. This might indicate that the bound in the corollary is far from being best possible.

2 - Proof of the Theorem

The theorem will be proved indirectly. Suppose for the rest of the paper that Γ is a partial plane of order n with at least $n^2 + 2$ lines and a pair of disjoint lines. We may assume that Γ is a counter-example to the theorem with the maximal possible number of lines (where n is fixed).

We use the following notation. The number of lines is denoted by $b=n^2+n+1-\alpha$ for some integer α , which satisfies $\alpha \leq n-1$. The set of lines is denoted by B. The degree r_p of a point p is the number of lines through p and $d_p := n+1-r_p$ is called the deficiency of p. By p^{\perp} we denote the set consisting of p and all points q which are not joined to p. Since p is joined to $r_p \cdot n$ points, we have $|p^{\perp}| = 1 + d_p \cdot n$. If p is a point of degree n, then the set p^{\perp} is called a projective set. Finally, a line is called p and p if it meets some projective set in at least two points.

We shall show that distinct projective sets have a unique point in common, and that there exist more projective sets than bad lines. Then we remove the bad lines and adjoin the projective sets as new lines to obtain a new partial plane Γ' , which has more lines than Γ . The maximality of Γ implies then that Γ' can be extended to a projective plane, and this information will be sufficient to obtain a contradiction.

LEMMA 1. If p is a point outside a line L then $|L \cap p^{\perp}| \ge d_p$.

PROOF. This is clear, since p is joined to at most r_p points of L.

LEMMA 2. If two distinct points p and q are joined then $|p^{\perp} \cap q^{\perp}| \le d_p \cdot d_q$.

PROOF. By Lemma 1, every line other than pq through p meets q^{\perp} in at least d_q points. Hence p is joined to at least $1+(r_p-1)d_q$ of the $1+d_q\cdot n$ points of q^{\perp} , which implies that $|p^{\perp}\cap q^{\perp}| \leq d_q\cdot n - (r_p-1)d_q = d_p\cdot d_q$.

LEMMA 3. If a point p of degree n is not joined to a point q then $|p^{\perp} \cap q^{\perp}| \geq n + 2 - d_q$.

PROOF. Set $x=|p^{\perp}\cap q^{\perp}|$. If $p^{\perp}\subseteq q^{\perp}$, then $x=|p^{\perp}|=n+1\geq n+2-d_q$ as $d_q\geq 1$. We may therefore assume that p^{\perp} is not contained in q^{\perp} . Choose a point s of maximum degree of $p^{\perp}-q^{\perp}$, set $d=d_q$ and $e=d_s$. The lines $\neq sq$ through s join s to at least $(r_s-1)d$ points of q^{\perp} (Lemma 1) and therefore to at least $(r_s-1)\cdot d-|q^{\perp}-p^{\perp}|=(n-e)d-|q^{\perp}|+|q^{\perp}\cap p^{\perp}|=(n-e)d-(1+dn)+x=x-1-de$ points of $p^{\perp}\cap q^{\perp}$. Since q is joined to $|p^{\perp}-q^{\perp}|=n+1-x$ points of p^{\perp} and since every line L meets p^{\perp} in at least one point (Lemma 1), it follows that $\Sigma_L(|L\cap p^{\perp}|-1)\geq x-1-de+n+1-x=n-de$. Now count incident point line pairs (y,L) with y in p^{\perp} to obtain

$$\sum_{\mathbf{y}\in p^{\perp}}r_{\mathbf{y}}=\sum_{L\in B}\left|L\cap p^{\perp}\right|=b+\sum_{L\in B}\left(\left|L\cap p^{\perp}\right|-1\right)\geq b+n-de\geq n^{2}+2+n-de.$$

On the other hand (notice that every point of $p^{\perp} - \{p\}$ has degree at most n, since it is not joined to p, while the n+1-x points of $p^{\perp} - q^{\perp}$ have degree at most n+1-e)

$$\sum_{y \in p^{\perp}} r_y \le r_q + |(p^{\perp} \cap q^{\perp}) - \{q\}| \cdot n + |p^{\perp} - q^{\perp}| \cdot (n + 1 - e)$$

$$= (n + 1 - d) + (x - 1)n + (n + 1 - x)(n + 1 - e)$$

$$= n^2 + n + 1 - d - (n + 1 - x)(e - 1).$$

Hence $1 + (n+1-x)(e-1) \le d(e-1)$, in particular $e \ne 1$ and therefore n+1-x < d, i. e. x > n+1-d.

LEMMA 4. If points p and q of degree n are not joined then $p^{\perp} = q^{\perp}$.

PROOF. This is immediate from the preceding lemma.

LEMMA 5. Distinct projective sets have a unique point in common.

PROOF. Let p^{\perp} and q^{\perp} be distinct projective sets. Then p and q are joined (Lemma 4) and p^{\perp} and q^{\perp} have at most one point in common (Lemma 2). Assume by way of contradiction that p^{\perp} and q^{\perp} are disjoint, and denote by x resp. y the number of n-points in p^{\perp} resp. q^{\perp} . We may assume that $x \geq y$.

Suppose that s is a point of degree n of p^{\perp} . Since $s^{\perp} = p^{\perp}$ (Lemma 4), the point s is joined to every point of q^{\perp} . Hence s lies on a line which has at least two points in q^{\perp} . If s and s' are distinct points of degree n of p^{\perp} then $s^{\perp} = p^{\perp} = s'^{\perp}$ implies that s and s' are not on a common line. It follows that there are at least x different lines which have two points in q^{\perp} . Counting incident point line pairs (z, Z) with z in q^{\perp} and using Lemma 1, we obtain

$$\sum_{z \in q^{\perp}} r_z = \sum_{Z \in B} |Z \cap q^{\perp}| \ge 2x + (b - x) \ge n^2 + 2 + x.$$

On the other hand

$$\sum_{z \in q^{\perp}} r_z \leq yn + (n+1-y)(n-1) = n^2 - 1 + y.$$

Hence x < y, a contradiction.

LEMMA 6. Every point of degree $\leq n$ lies in a projective set.

PROOF. Let p be a point of degree n+1-d < n+1. Then every point of $p^{\perp} - \{p\}$ has degree at most n, since a point of degree n+1 is joined to every other point. Furthermore, every line not passing through p meets $p^{\perp} - \{p\}$ in at least d points (Lemma 1). Counting incident point-line pairs (q, L) with $q \in p^{\perp} - \{p\}$, we obtain

$$\sum_{q \in p^{\perp} - \{p\}} r_q \ge (b - r_p)d \ge (b - n)d \ge (n^2 - n + 2)d > dn(n - 1).$$

Since $|p^{\perp} - \{p\}| = dn$, it follows that some point of $p^{\perp} - \{p\}$ has degree at least n.

LEMMA 7. The sum $\sum d_p$ of the deficiencies d_p of all points p equals $\alpha(n+1)$.

PROOF. Since there are n^2+n+1 points, this follows from $\sum r_p = b(n+1)$ and $b=n^2+n+1-\alpha$.

LEMMA 8. There are at least $\alpha/2$ different projective sets.

PROOF. In view of $\alpha \leq n-1$, the preceding lemma shows that it exists a point p of degree n+1. Let L be a line through p, let p_1, \ldots, p_s be the points of L which have not degree n+1, and denote the deficiency of p_j by d_j . Since p has degree n+1, it is joined to every other point, which implies that the lines through p meet every other line. Hence, the line L meets every other line, which implies that $\sum d_j = \alpha$. The set p_j^{\perp} has $1+d_jn$ points and distinct sets p_j^{\perp} and p_k^{\perp} have at most d_jd_k points in common (Lemma 2). Since every point contained in one of the sets p_j^{\perp} has degree at most n, it follows that the number of points of degree $\leq n$ is at least

$$\sum_{j=1}^{\kappa} (1+d_j n) - \sum_{j < k} d_j d_k = s + \alpha n - \frac{1}{2} \left(\alpha^2 - \sum_{j=1}^{s} d_j^2 \right) > 1 + \alpha n - \frac{1}{2} \alpha^2 > 1 + \frac{1}{2} \alpha n.$$

Suppose there are fewer than $\frac{1}{2}\alpha$ distinct projective sets, say $q_1^{\perp}, \ldots, q_m^{\perp}$ with $m < \frac{1}{2}\alpha$. By Lemma 6, the union of the projective sets is the set of points of degree at most n. Now (see Lemma 5)

$$\begin{split} \Big| \bigcup_{j=1}^{m} q_{j}^{\perp} \Big| &\leq |q_{1}^{\perp}| + |q_{2}^{\perp} - q_{1}^{\perp}| + \ldots + |q_{m}^{\perp} - q_{1}^{\perp}| \\ &= n + 1 + (m - 1)n = 1 + mn < 1 + \frac{1}{2}\alpha n \,, \end{split}$$

But every point of degree $\leq n$ lies in one of the projective sets q_j^{\perp} , a contradiction.

LEMMA 9. It exists a bad line.

PROOF. Since Γ is a counterexample to our theorem with the maximum number of lines, every projective set S contains two points which are joined (if not we could adjoin S as a new line), i.e. every projective set meets some bad line in two points. Hence if $\alpha > 0$ then there is a bad line (Lemma 8). But we have already noticed in the introduction that every partial plane has at most $n^2 + n + 1$ lines with equality if and only if it is a projective plane. Since Γ has disjoint lines, it is certainly not a projective plane, so $\alpha = n^2 + n + 1 - b > 0$.

LEMMA 10. Every point of a bad line has degree at most n-1.

PROOF. Suppose L is a bad line which intersects the projective set p^{\perp} in two points. By Lemma 4, the points of $L \cap p^{\perp}$ have degree at most n-1. Now let q be a point of $L-p^{\perp}$. Then q has not degree n+1, because every line through a point of degree n+1 intersects p^{\perp} (Lemma 1) in a (necessarily) unique point.

Assume that q has degree n. Since every line through q meets p^{\perp} and since L meets p^{\perp} in two points, it follows that q is joined to each of the n+1 points of p^{\perp} . But this implies that the projective sets p^{\perp} and q^{\perp} are disjoint, which contradicts Lemma 5.

LEMMA 11. It two points x and y of a projective set p^{\perp} are joined then $(d_x + 1)(d_y + 1) \ge n + 4$.

PROOF. By Lemma 3 we have $|p^{\perp} \cap x^{\perp}| \ge n + 2 - d_x$ and $|p^{\perp} \cap y^{\perp}| \ge n + 2 - d_y$ and Lemma 2 shows that $|x^{\perp} \cap y^{\perp}| \le d_x d_y$. It follows that

$$2n+4-d_x-d_y\leq |p^\perp\cap x^\perp|+|p^\perp\cap y^\perp|\leq |p^\perp|+|p^\perp\cap x^\perp\cap y^\perp|\leq n+1+d_xd_y\,.$$

Consequently $(d_x + 1)(d_y + 1) \ge n + 4$.

LEMMA 12. If $n \ge 3$, then there are at most n-2 bad lines.

PROOF. Let M be any set of $n+1-\beta$ bad lines with some integer $\beta \geq 0$. Since distinct lines meet in at most one point, the lines of M cover at least $\frac{1}{2}(n+2)(n+1)-\frac{1}{2}(\beta+1)\beta$ points. Since every point of a bad line has deficiency at least 2 (Lemma 10), Lemma 7 implies that $(n+2)(n+1)-(\beta+1)\beta \leq \alpha(n+1)$. In view of $\alpha \leq n-1$, it follows that $\beta(\beta+1) \geq 3(n+1)$ so that $\beta \geq 3$.

LEMMA 13. If $n \ge 13$ then there are more projective sets than bad lines.

PROOF. Let $n+1-\beta$ be the number of bad lines and assume that there are at most $n+1-\beta$ projective sets. Let S be the set of points which have degree at most n-3, and set s=|S|.

It L is a bad line then every point of L lies in a projective set (Lemma 6 and Lemma 10). In view of $n \ge 13$, Lemma 11 shows that a projective set contains at most one point of L-S. Since there are at most $n+1-\beta$ projective sets, it follows that every bad line contains at least β points of S. Let w be the number of points covered by all bad lines. As in the proof of Lemma 12 we have $2w \ge (n+2)(n+1) - (\beta+1)\beta$. Since points of bad lines have deficiency at least 2 (Lemma 10) and since the points of S have deficiency at least 4, we have $2w+2s=(w-s)\cdot 2+s\cdot 4\le \alpha(n+1)$ by Lemma 7. Hence $2s\le \beta(\beta+1)-(n+2-\alpha)(n+1)$.

Consider first the case that $n+1-\beta \geq \beta$ so that there are at least β bad lines. Then $s \geq \frac{1}{2}(\beta+1)\beta$, since a bad line contains at least β points of S. But we have just shown that $2s < \beta(\beta+1)$, a contradiction.

Now suppose that $\beta \geq n+1-\beta$. Since each of the $n+1-\beta$ bad lines contains at least β points of S, if follows that $s \geq \beta + (\beta-1) + \ldots + [\beta-(n-\beta)]$ so that $2s \geq (\beta+1)\beta - (2\beta-n)(2\beta-n-1)$. Together with the upper bound for 2s we obtain $(n+2-\alpha)(n+1) \leq (2\beta-n)(2\beta-n-1)$ or $2(n+1)+2\beta(2n+1-2\beta) \leq \alpha(n+1)$. In view of $2\beta \geq n+1$, it follows that $2(n+1)+(n+1)(2n+1-2\beta) \leq \alpha(n+1)$ which implies that $1+2(n+1-\beta) \leq \alpha$ or $n+1-\beta < \frac{1}{2}\alpha$. Since there are at most $n+1-\beta$ projective sets, this contradicts Lemma 8.

Let Γ' be the partial plane obtained from Γ by removing the bad lines. Then each line of Γ' meets each projective set in at most one point. Lemma 5 shows that we obtain again a partial plane Γ'' if we add the projective sets as new lines to Γ' . By the preceding lemma, Γ'' has more lines than Γ . The choice of Γ implies now that Γ'' can be extended to a projective plane P of order n. Since Γ has at least $n^2 + 2$ lines, it follows that Γ' can be extended to the same projective plane by adjoining at most $n-1+\delta$ lines where δ is the number of bad lines of Γ . By Lemma 12, we have $\delta \leq n-2$. Since the points of degree n+1 of Γ have still degree n+1 in Γ' (Lemma 10), the partial plane Γ' has at least $n^2+n+1-\alpha(n+1)\geq n+2$ points of degree n+1 (Lemma 7). Let S_1,\ldots,S_δ be the bad lines of Γ and denote by D the set of lines of Γ which are not lines of Γ' . Since D contains the projective sets of Γ , each

line S_j meets some line of D in at least two points. Therefore each bad line S_j of Γ is a set of n+1 non-collinear points of the projective plane \mathbf{P} . The following proposition shows that we have derived a situation which is not possible and this completes the proof of the theorem.

PROPOSITION 14. Suppose P is a projective plane of order $n \geq 15$ and let δ be a positive integer. Suppose furthermore that there exists a set D consisting of (at most) $n-1+\delta$ lines and sets S_1,\ldots,S_{δ} of points satisfying the following properties.

- (1) Each set S_j consists of n+1 non-collinear points.
- (2) Any two points of S_i are joined by a line of D.
- (3) Distinct sets S_i share at most one point.
- (4) At least n+2 points do not lie on any line of D. Then $\delta \geq n-1$.

PROOF. Assume by way of contradiction that $\delta \leq n-2$. For every point p, we denote by d_p the number of lines of D passing through p, and we call d_p the deficiency of p.

Since the points of S_1 are non-collinear, the lines (of D) which have at least two points in S_1 induce a linear space L on the points of S_1 . Since every linear space has at least as many lines as points (see [1]), it follows that D has at least n+1 lines. Hence $\delta \geq 2$.

We define a function $f(x):=(x+1)^2(n-x)$ for real values of x. Since f has two extrema one of which for x=-1, it follows that $f(x_1) \le f(x) \le f(x_2)$ for all real x, x_1, x_2 with $0 \le x_1 \le x \le x_2$. Denote by k+1 the maximum line degree of \mathbf{L} . Then $k \le n-1$ and \mathbf{L} has at least 1+(f(k)/n) lines (see [4]). Since the lines of \mathbf{L} are induced by the lines of D, it follows that $f(k) \le (|D|-1) \cdot n = (n-2+\delta)n$. Since $\delta \le n-2$, $f(\sqrt{(2n)}) \ge 2n^2$ and $f(n-2) \ge 2n^2$, it follows from the above properties of f that k=n-1 or $k < \sqrt{(2n)}$. However k=n-1 is not possible. (Assume to the contrary that there is a line L in D which meets S_1 in n points. Then the point of $S_1 - L$ is joined to the n points of $L \cap S_1$ by lines of D, which implies that the lines of D cover at least n^2+1 points. This contradicts condition (4)). Hence $k < \sqrt{(2n)}$. If $\delta \le 3$ then $f(k) \le (n+1)n$, and the same argument shows in this case that $k < \sqrt{n}$.

Let p be a point of L. Since p is joined to every other point of L by a line of degree at most k+1, it follows that p has degree at least n/k

in **L**. Hence every point of **L** lies on at least n/k lines of D, i.e. every point of S_1 has deficiency $d_p \geq n/k$. The same argument shows that every point contained in one of the sets S_j has deficiency at least n/k. Let S be the union of the sets S_1, \ldots, S_δ . Since any two distinct sets S_j share at most one point, we have $|S| \geq (n+1) + n + \ldots + (n+2-\delta) = \frac{1}{2}(n+2)(n+1) - \frac{1}{2}(n+2-\delta)(n+1-\delta) = \frac{1}{2}\delta(2n+3-\delta)$. Counting in two ways triples (p, L_1, L_2) consisting of a point p and distinct lines L_1, L_2 of D which intersect in p, we obtain $\sum d_p(d_p-1) = |D|(|D|-1) \leq (n-1+\delta)(n-2+\delta)$. Since the points of S have deficiency at least n/k it follows that

(1)
$$\delta(2n+3-\delta)n(n-k) \leq 2(n-1+\delta)(n-2+\delta)k^2.$$

First suppose that $\delta \in \{2,3\}$. Then $k < \sqrt{n}$ and (1) yields

(2)
$$\delta(2n+3-\delta)(n-\sqrt{n}) < 2(n-1+\delta)(n-2+\delta).$$

In view of $n \ge 15$ and $\delta \in \{2, 3\}$, this is a contradiction. Hence $4 \le \delta \le n - 2$. Now $k < \sqrt{(2n)}$ and (1) yields

(3)
$$g(\delta) := \frac{\delta(2n+3-\delta)}{(n-1+\delta)(n-2+\delta)} < \frac{2k^2}{n(n-k)}.$$

Restrict g to values $\delta \geq 0$. Then the function $g'(\delta)(n-1+\delta)^2(n-2+\delta)^2$ is a polynomial of degree 2 in δ (where g' is the derivation of g). Hence g has at most two extrema. Since g(0) = g(2n-3) = 0 and since $g(\delta)$ is positive for $0 < \delta < 2n-3$, it follows that g has a unique extremum for $0 < \delta < 2n-3$. Hence $\min\{g(\delta_1),g(\delta_2)\} \leq g(\delta)$ for all real δ,δ_1,δ_2 with $0 \leq \delta_1 \leq \delta \leq \delta_2$. Since $4 \leq \delta \leq n-2$, it follows that (3) is satisfied for $\delta = 4$ or $\delta = n-2$. In view of $k < \sqrt{(2n)}$, the right hand side of (3) is smaller than $4/(n-\sqrt{(2n)})$. It follows easily in the case $\delta = 4$ as well as in the case $\delta = n-2$ that $n \leq 18$. Now $k < \sqrt{(2n)}$ implies that $k \leq 5$. But then (3) is also not satisfied for $n \in \{15, 16, 17, 18\}$. This contradiction completes the proof of the proposition.

REFERENCES

- N.G. DE BRUIJN P. ERDÖS: On a combinatorial problem, Nederl. Akad. Wetensch. Indag Math. 10, (1948), 1277-1279.
- [2] Z. FÜREDI J. KAHN: private communication.
- [3] Z. FÜREDI L. SPISSICH: The minimum size of a maximal partial plane, preprint 1989.
- [4] R.G. STANTON J.G. KLABFLEISCH: The $\lambda \mu$ problem: $\lambda = 1$ and $\mu = 3$, Proc. Second Chapel Hill Conf. on Combinatorics, Chapell Hill (1972), 451-462.
- [5] D.R. STINSON: Pair-packings and projective planes, J. Austr. Math. Soc., Ser. A 37, (1984), 27-38.
- [6] S. VANSTONE: The extendability of (r, 1)-designs, proc. Third Manitoba Conf. on Numerical Math., Winnipeg 1973, 409-418.

Lavoro pervenuto alla redazione il 22 gennaio 1991 ed accettato per la pubblicazione il 25 maggio 1991 su parere favorevole di A. Beutelspacher e di F. Eugeni