Approximation of continuous linear functionals in real normed spaces

S.S. DRAGOMIR

RIASSUNTO - Vengono dati alcuni teoremi di approssimazione per i funzionali lineari continui su spazi reali normati in termini di derivate della norma.

ABSTRACT - Some approximation theorems for the continuous linear functionals on real normed spaces in terms of norm derivatives are given

KEY WORDS - Continuous linear functionals - Norm derivatives - Reflexivity - James' theorem - Bishop-Phelps' theorem.

A.M.S. CLASSIFICATION: 46B20

1 - Introduction

Let $(X, \|\cdot\|)$ be a real normed space and consider the norm derivatives (see [2] or [5]):

$$(x,y)_{i(s)} := \lim_{t \to 0-(+)} (\|y+tx\|^2 - \|y\|^2)/2t \qquad \text{for all} \quad x,y \quad \text{in} \quad X\,.$$

For the sake of completeness we list some usual properties of these mappings that will be used in the sequel [2]:

(i)
$$(x, x)_p = ||x||^2$$
 for all x in X ;

(ii)
$$(-x, y)_s = (x, -y)_s = -(x, y)_i$$
 if x, y are in X ;

- (iii) $(\alpha x, \beta y)_p = \alpha \beta(x, y)_p$ for all x, y in X and $\alpha \beta \ge 0$;
- (iv) $(\alpha x + y, x)_p = \alpha(x, x)_p + (y, x)_p$ if x, y belong to X and α is in \mathbb{R} ;
- (v) the element x in X is Birkhoff orthogonal over y in X, i.e., $||x+ty|| \ge ||x||$ for all t in \mathbb{R} iff $(y,x)_i \le 0 \le (y,x)_s$;
- (vi) $(x+y,z)_p \le ||x|| ||z|| + (y,z)_p$ for all x,y,z in X;
- (vii) the space $(X, \|\cdot\|)$ is smooth iff $(y, x)_i = (y, x)_s$ for all x, y in X or iff $(,)_p$ is linear in the first variable;

where p = s or p = i.

For other properties of $(,)_p$ in connection to best approximation element or continuous linear functionals see [2] where further references are given.

2 - A characterization of reflexivity

To recall some well-known theorems of reflexivity due to R.C. James we need the following concept: the nonzero element $u \in X$ is a maximal element for the functional $f \in X^*$ if f(u) = ||f|| ||u|| [6, p. 35].

THEOREM 1. [3]. Let X be a Banach space. Then X is reflexive iff every nonzero continuous linear functional on E has at least one maximal element in X.

Another famous result of R.C. James is the following.

THEOREM 2. [4]. Let X be a Banach space. X is reflexive iff for every closed and homogeneous hyperplane H in X (i.e., H contains the null element) there exists a point $u \in X \setminus \{0\}$ such that $u \perp_B H$.

The following characterization of reflexivity in terms of norm derivatives also holds.

THEOREM 3. Let X be a Banach space. X is reflexive if and only if for every continuous linear functional f on X there exists an element u in X such that the next evaluation holds:

(1)
$$(x,u)_i \leq f(x) \leq (x,u)_x$$
 for all x in X

and ||f|| = ||u||.

PROOF. Let H be a closed and homogeneous hyperplane in X and $f: X \to \mathbb{R}$ be a continuous linear functional on X such that H = Ker(f). Then from (1) follows that $u \perp_B H$ and by Theorem 2 we conclude that X is reflexive.

Now, assume that X is reflexive and let f be a nonzero continuous linear functional on it. Since Ker(f) is a closed and homogeneous hyperplane in X then there exists, by Theorem 2, a nonzero element w_0 in X so that:

(2)
$$(x, w_0)_i \leq 0 \leq (x, w_0)_s \quad \text{for all} \quad x \in \text{Ker}(f).$$

Because $f(x)w_0 - f(w_0)x \in \text{Ker}(f)$ for all x in X, from (2) we derive that:

(3)
$$(f(x)w_0 - f(w_0)x, w_0)_i \le 0 \le (f(x)w_0 - f(w_0)x, w_0)_i$$

for all x in X.

On the other hand, by the use of norm derivatives properties, we have

$$(f(x)w_0 - f(w_0)x, w_0)_p = f(x)||w_0||^2 - (x, f(w_0)w_0)_q, \quad x \in X$$

where $p \neq q$, $p, q \in \{i, s\}$.

We conclude, by (3), that

$$(x, f(w_0)w_0/\|w_0\|^2)_i \le f(x) \le (x, f(w_0)w_0/\|w_0\|^2)_i, \quad x \in X$$

from where results

$$(x,u)_i \le f(x) \le (x,u)_s$$
 for all $x \in X$,

where $u := f(w_0)w_0/\|w_0\|^2$.

To prove the fact that ||f|| = ||u||, we observe that:

$$-\|x\| \|u\| \le -(x, -u)_s = (x, u)_i \le f(x) \le (x, u)_s \le \|x\| \|u\|, \qquad x \in X$$
 and

$$||f|| \ge f(u)/||u|| \ge (u,u)_i/||u|| = ||u||.$$

The theorem is thus proven.

REMARK 1. If u is an "interpolation" element satisfying the relation (1), then u is a maximal element for the functional f.

Indeed, we have $f(u) = ||u||^2$ and since ||u|| = ||f|| we obtain f(u) = ||f|| ||u||.

REMARK 2. The above theorem is a natural generalization of Riesz's representation theorem which works in Hilbert spaces via a result of R.A. TAPIA [7] for smooth spaces which is embodied in the following corollary.

COROLLARY. Let X be a real Banach space. Then the following statements are equivalent:

- (i) X is reflexive and smooth;
- (ii) for every continuous linear functional $f: X \to \mathbb{R}$ there exists an element u in X such that:

$$f(x) = (x, u)_s$$
 for all $x \in X$

and ||f|| = ||u||.

Further on, we shall point out other approximations of continuous linear functionals on real normed spaces in terms of norm derivatives.

3 - Approximation of continuous linear functionals

Let $f \in X^{\bullet}$ with ||f|| = 1 and let $k \ge 0$. Define [1, p. 1]:

$$K(f,k) := \{x \in X | ||x|| \le kf(x)\};$$

K(f,k) is a closed convex cone. If k > 1 then the interior of K(f,k) is nonempty.

THEOREM 4. Let X be a real normed space, $\varepsilon \in (0,1)$, $f \in X^{\bullet}$ with ||f|| = 1 and $u \in X$, ||u|| = 1 such that the norm derivative $(\cdot, u)_p$ (p = s or p = i) is linear on X. If $k > 1 + 2/\varepsilon$ and $(x, u)_p \ge 0$ on K(f, k) then we have the estimation:

$$|f(x)-(x,u)_p| \le \varepsilon ||x||$$
 for all x in X .

PROOF. The proof follows from Lemma 3, [1, p. 3] for the continuous linear functional $g: X \to \mathbb{R}$, $g(x) := (x, u)_p$ and we shall omit the details.

The following approximation theorem for the continuous linear functionals on a general normed linear space also holds.

THEOREM 5. Let $f: X \to \mathbb{R}$ be a continuous linear functional such that for all $\delta \in (0,1)$ there exists a nonzero element $x_{f,\delta}$ in X with the property:

(A)
$$(x, x_{f,\delta})_i \leq \delta ||x|| ||x_{f,\delta}||$$
 for all x in $Ker(f)$.

Then for all $\varepsilon > 0$ there exists a nonzero element $u_{f,\varepsilon}$ in X so that the following estimation holds:

$$(4) -\varepsilon ||x|| + (x, u_{f,\varepsilon})_i \le f(x) \le (x, u_{f,\varepsilon})_s + \varepsilon ||x||$$

for all x in X.

PROOF. Since f is nonzero, it follows that Ker(f) is closed in X and $Ker(f) \neq X$.

Let $\varepsilon > 0$ and put $\delta(\varepsilon) := \varepsilon/(2||f||)$. If $\delta(\varepsilon) \ge 1$, then there exists an element $x_{f,\delta(\varepsilon)}$ in $X \setminus \text{Ker}(f)$ such that

(5)
$$(y, x_{f,\delta(\varepsilon)}) \le \delta(\varepsilon) ||y|| ||x_{f,\delta(\varepsilon)}||$$
 for all x in $\operatorname{Ker}(f)$.

If $0 < \delta(\varepsilon) < 1$ and since the functional f has the (A)-property, then there exists an element $x_{f,\delta(\varepsilon)}$ in $X \setminus \text{Ker}(f)$ (the fact that $x_{f,\delta(\varepsilon)}$ is not in Ker(f) follows from (A)) such that (5) is valid too.

Put in all cases, $z_{f,\epsilon} := x_{f,\delta(\epsilon)}/\|x_{f,\delta(\epsilon)}\|$. Then for all x in X we have $y := f(x)z_{f,\epsilon} - f(z_{f,\epsilon})x$ belongs to Ker(f) which implies, by (5), that:

$$\left(f(x)z_{f,\epsilon} - f(z_{f,\epsilon})x, z_{f,\epsilon}\right)_{i} \leq \delta(\varepsilon) \|f(x)z_{f,\epsilon} - f(z_{f,\epsilon})x\| \leq 2\delta(\varepsilon) \|f\| \|x\| \leq \varepsilon \|x\|$$

for all x in X.

On the other hand, as above, we have:

$$\left(f(x)z_{f,\epsilon}-f(z_{f,\epsilon})x,z_{f,\epsilon}\right)_i=f(x)-\left(x,f(z_{f,\epsilon})z_{f,\epsilon}\right)_s$$

for all x in X and denoting $u_{f,\epsilon} := f(z_{f,\epsilon}) \neq 0$, we obtain:

$$f(x) \le (x, u_{f,\epsilon})_s + \varepsilon ||x||$$
 for all x in X .

Now, if we replace x by -x in the above estimation, we derive

$$f(x) \ge (x, u_{f,\epsilon})_i - \varepsilon ||x||$$
 for all x in X

and the proof is finished.

COROLLARY. Let X be a smooth normed space over the real number field and denote $[x,y]=(x,y)_i=(x,y)_s$, $x,y\in X$. If $f\in X^*$ is a nonzero functional such that for all $\delta\in(0,1)$ there exists an element $x_{1,\delta}\in X\setminus\{0\}$ with the property

$$\left|\left[x,x_{f,\delta}\right]\right| \leq \delta \|x\| \ \|x_{f,\delta}\| \quad \text{for all} \quad x \in \mathrm{Ker}(f),$$

then for any $\varepsilon > 0$ there is an element $u_{f,\varepsilon} \in X \setminus \{0\}$ so that

The proof is obvious from the above theorem and to the fact that [,] is linear in the first variable.

To give the main result of our paper, we need the famous theorem of Bishop-Phelps which says [1, p. 3]:

THEOREM 6. Let C be a closed bounded convex set in the Banach space X, then the collection of functionals that achieve their maximum on C is dense in X^* .

Now, we can state and prove our main result.

THEOREM 7. Let X be a real Banach space. Then for every continuous linear functional $f: X \to \mathbb{R}$ and for any $\varepsilon > 0$ there exists an element $u_{f,\varepsilon}$ in X such that the estimation (4) holds.

PROOF. By the use of Bishop-Phelps' theorem for $C=\overline{B}(0,1)$ it follows that the collection of functionals which achieve their norm on unit closed ball is dense in X^* , i.e., for every $f\in X^*$ and $\varepsilon>0$ there exists a continuous linear functional f_ε on X which achieve their norm on $\overline{B}(0,1)$ and such that

(6)
$$|f(x) - f_{\varepsilon}(x)| \le \varepsilon ||x|| \quad \text{for all } x \text{ in } X.$$

Suppose $f_{\epsilon} \neq 0$ and $f_{\epsilon}(v_{f,\epsilon}) = ||f_{\epsilon}||$ with $v_{f,\epsilon} \in \overline{B}(0,1)$. Then

$$0 < \|v_{f,\epsilon}\| \le 1 = f_{\epsilon}(v_{f,\epsilon})/\|f_{\epsilon}\| = f_{\epsilon}(v_{f,\epsilon} + \lambda y)/\|f_{\epsilon}\| \le \|v_{f,\epsilon} + \lambda y\|$$

for all $\lambda \in \mathbb{R}$ and $y \in \text{Ker}(f_{\varepsilon})$, i.e., $v_{f,\varepsilon} \perp_B \text{Ker}(f_{\varepsilon})$.

By a similar argument as in Theorem 3 we get:

$$\left(x, f_{\varepsilon}(v_{f,\varepsilon})v_{f,\varepsilon}/\|v_{f,\varepsilon}\|^{2}\right)_{i} \leq f_{\varepsilon}(x) \leq \left(x, f_{\varepsilon}(v_{f,\varepsilon})v_{f,\varepsilon}/\|v_{f,\varepsilon}\|^{2}\right)_{s}$$

for all $x \in X$. Denoting $u_{f,\epsilon} := f_{\epsilon}(v_{f,\epsilon})v_{f,\epsilon}/\|v_{f,\epsilon}\|^2$ we obtain

(7)
$$(x, u_{f,\varepsilon})_i \leq f_{\varepsilon}(x) \leq (x, u_{f,\varepsilon})_s$$
 for all $x \in X$.

If $f_{\epsilon} = 0$ then (4) holds with $u_{f,\epsilon} = 0$.

Now, we observe that the relations (6) and (7) give the desired evaluation and the proof is finished.

COROLLARY. Let X be a smooth Banach space. Then for every $f \in X^*$ and for any $\varepsilon > 0$ there exists an element $u_{f,\varepsilon}$ in X such that:

$$\left|f(x)-[x,u_{f,\epsilon}]\right|\leq \varepsilon \|x\| \quad \text{for all} \quad x \quad \text{in} \quad X\,,$$

where [,] is as above.

REFERENCES

- J. DIESTEL: Geometry of Banach Spaces Selected Topics, Springer Verlag, Berlin, Heidelberg, New York, 485, 1975.
- [2] S.S. DRAGOMIR: A characterization of best approximation element in real normed linear spaces, Studia Univ. Babes-Bolyai, Mathematica, 33 (3) (1988), 74-80.
- [3] R.C. JAMES: Characterizations of reflexivity, Studia Math., 23 (1964), 205-216.
- [4] R.C. JAMES: Reflexivity and the supremum of linear functionals, Israel J. Math., 13 (1972), 298-300.
- [5] P. PAVEL: Differential Equations Associated of Some Nonlinear Operators on Banach Spaces, (Romanian), Ed. Acad., Bucureşti, 1977.
- [6] I. SINGER: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, (Romanian), Bucureşti, Ed. Acad., 1967.
- [7] R.A. TAPIA: A characterization of inner product spaces, Proc. Amer. Math. Soc., 41 (1973), 569-574.

Lavoro pervenuto alla redazione il 20 febbraio 1991 ed accettato per la pubblicazione il 24 gennaio 1992 su parere favorevole di A. Avantaggiati e di G. Da Prato