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Equivalence of the spaces of ultradifferentiable
functions and its applications to
Whitney extension theorem

S.Y. CHUNG - D. KIM - S.K. KIM

RIASSUNTO - Si dimostra l'equivalenza tra certi spazi di funzioni f € C*(R"),
caratterizzati dalla crescenza della successione dei massimi moduli delle successioni
delle derivate (8° [)aenn nei compatli di R™, e alcuni spazi del tipo di Beurling [1] e
Bjorck [2]. Si dimostra inoltre che in tali spazi vale il teorema di estensione di Whitney.

ABSTRACT - We show the equivalence of spaces of ultradifferentiable functions and
Whitney extension thcorem for 5(1«1,,) which refines the result of Bruna. Also, as an
application of this we show that Whitney eztension thcorem can be ertended to £.(K)
Jor compact set K whenever w satisfies () ~ ().
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— Introduction

Various classes of non-quasianalytic functions on IR" are usually de-
fined by imposing conditions on the derivatives of the functions. For
example, if (M,)pen is an appropriate sequence of positive numbers we
can define
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Emy(R™) = {f € C*(R")| for each compact set K in R"
s )

and each h > 0 sup W<°°
lal

achin
Also, E(xr,)(IR") is defined by replacing all the quantifier over h by ex-
istence quantifiers. Since the classical work of E. BOREL (4] many au-
thors (see BRUNA [6], KANTOR [7], MITYAGIN (15], PETZSCHE (16]) have
investigated conditions on sequences (Mp)pen and (@a)aene which im-
ply the existence of a function f € Eu,)(R") (resp. Eqm,}(R")) with
8°f(0) = a, for all «a € IN".
Especially KANTOR [7] and BRUNA [6] gave conditions on jets
(f*)aenn (of continuous functions on the compact set K) which imply
the existence of function f € £,y (R") (resp. Ear,}(IR™)) such that

9° f(z) = f(z) on K,

for all o« € IN".

On the other hand, MEISE and TAYLOR [12] studied the question
for the functions f in the classes £,)(IR") (resp. £(,}(IR")) which are
modifications of classes introduced by BEURLING [1] and BJGRCK (2].
But they solved this question only for the case of a singleton or a compact
convex set with nonempty interior, and the case for arbitrary compact
sets remained open.

In this paper we prove that if w is a weight function satisfying the
conditions (a) ~ (¢) then there exists a sequence (M,)p,enn of positive
numbers satisfying the conditions (M.1)~(M.3) such that

Emp) () = €y (D)

and
Em,y () = Eny ()

Also, we give a direct proof of the converse which was stated in MEISE
and TAYLOR [12]. We think that the cquivalence result in this paper

clarifies the results in MEISE and TAYLOR {12] and BONET, MEISE and
TAYLOR (3].
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Also we show that Whitney extension theorem holds true for & My}
whenever (M,) satisfies (M.1)~(M.3) which refines the result of BRUNA
(6]

As an application of these results we show that Whitney extension
theorem can be extended to &,)(K) and £(.}(K) for arbitrary compact
set K whenever w satisfies (a) ~ (¢) with a counterexample showing that
the condition (¢) is essential.

1 — Ultradifferentiable functions

In introducing the weight functions w, ultradifferentiable functions
and some necessary results on the Young conjugate ¢~ we closely follow
MEISE and TAYLOR [12].

DEFINITION 1.1. Letw : IR — [0, 00) be a continuous even function
which is increasing on [0,00) and satisfies w(0) = 0 and tllrg w(t) = oo.
We consider the following conditions on w:

(a) 0=w(0) S w(s+1t) Sw(s) +w(t) for all s,t €R;

(B) [%, 2 dt < +oo;

) r]_i.To ‘l-f_oft_; =0;

(6) ¢:t — wle') is convex on R;

(e) there exists C > 0 with [° %"ﬂdt < Cw(y)+C forally>0;
(C) there exists H > 1 with 2w(t) < w(Ht) + H for allt 2 0.

REMARK 1.2. (a) The conditions (@), (3) and (7) are basically those
which arc used in BJORCK [2] and the conditions (§) and (€) are intro-
duced by MEISE and TAYLOR [12].

(b) The above definitions involving the weight function w do not change
if w is replaced by o, where ol = 0 and o(t) = w(t) for all sufficiently
large ¢ > 0. Thus we may assume that w1 = 0.

(¢) The condition (€) implics that there exists an increasing concave func-
tion ~ : [0,00) — [0, 00) with x(0) = 0 and

(i) w(y) < K(y) < Cw(y) +C,

(ii) J7° 24t < Ck(y) +C.

Thus we may assume that w is concave, if necessary.
() Note that the constant H in (¢) is closely related to that of (M.2) in
Definition 1.4.
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For a weight function w with the properties (@) ~ (¢) let  denote the
function defined by 1.1(6). We define its Young conjugate ¢* : [0,00) —
(0, 00) by

¢ () = sup{at — p(t)lt 2 0}.

Let 2 be an open set in IR" and K a compact subset of 2. For
f € C=(R2) and A € IN we define

= sup 2@
£ llwsca = sup oD (2]

aEND

A jet on K is a multisequence F = (f*),en of continuous functions
on K. For the jet F = (f*) and A € IN we define

Lf* (=)l (m — k| + DY|RyF)*(z)|
Flloxs= sup ————— ’ .
1o ek explp-(D)] ‘;":?‘ |z — y|m-HTexp[hp* ()]

lkj<m
meN

Here we note that the second term is not necessary if K is a convex set,
since it can be estimated by the first one.

DEFINITION 1.3. (a) We define the space E.,)(2) (€E.)(S2) respec-
tively) of ultradifferentiable functions of Beurling type (Roumieu type) is
the set of C®-functions f in Q with the property that for each compact
set K C Q and each A € N (some A € N), ||fllw.xa (Ifllu,x.4) ts finite.
E) () (Euy(2) ) is given the topology of the projective limit over K and
X (projective limit over K of the inductive limit over A).

(b) The space £q)(K) of Whitney jets of Beurling type is defined to be
the set of jets F with the property that for each A € IN, | Fllw, ke < +00.
The space E.,)(K) of Whitney jet of Roumieu type is similarly defined to
be the set of jets F' with ||F||“,.K'* < 400 for some A € IN.

DEFINITION 1.4.  Let (M,),en be a sequence of positive numbers
which has the following properties:
(M.1) M} < M, 1M,,, forallp € N;
(M.2) there exist A, H > 1 with My, < AHP*M,M, for all p,q € IN;
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M,
or all p € IN.
PHyy; 17 P

(M.3) there ezists A > 0 with Z M <A

q=p+1 9

Then the space €ay,)(€2) of ultradifferentiable functions of class (M,)
is defined to be

{f € C*()|for each h > 0 and each compact setK C Q,

s = sp BN < oo,
a€N?

Similarly the space £(u,)(f2) is defined to be

{f € C=(Q)|for each compact set K C §,
there exists h > 0 with || f]la, x,n < +00}.

Also, the space &,y (K) of Whitney jets of class (M) is the set of
jets F = (f*)aen with the property that for each h > 0,

_ g @I (m — |kl + D! R} F)*(z)|
WElltyrcn = SR Wby + e T = gl PR My
lklim
meN

is finite. The space Ear,)(K) is similarly defined to be the set of jets F
with || F|[ag, «,n < +oo for some h > 0.

2 — Some basic results on the Young conjugates

In this section we state and prove some technical results which are

essential for our further considerations.
The following lemma is well known and easy to check.

LeEMMA 2.1. (BRAUN, MEISE and TAYLOR (5]) Let ¢ : [0,00) —

[0, oo) be continuous, increasing, conver function with p(0) = 0 and
llm (,) = 0. Then we can define the Young conjugate ¢* of ¢ by
t—x

@" :[0,00) — [0,00), ¢"(z)= §g§{xt - p(t)},
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and ¢* is convez, increasing, ¢*(0) = 0 and zli_’x& 7 = 0. Moreover,

¥
we have (p*)* = ¢, which means that

(2.1) p(t) = sup{tz — ¢° (=)}

LEMMA 2.2. (i) Let o(t) be the given one in 1.1(6) and A > 0.
Then for each p € IN it follows that

(ii) Furthermore, we have

(2.3) expPw(t)] = sup {&?[;;Tﬁ)_]} '

PROOF. (i) From Remark 1.2 (b), we may assume that ¢(t) = 0 on
(—00,0). Thus it follows that

exp [A¢‘(§)] = exp [A sup {gt - <P(t)}]
[sup et - aw(e}]

= exp [ upplogt — )«w(t)]
2|

= Sgu exp ,\w(t)]

20

(ii) It is clear by (2.1).

LEMMA 2.3. Let ¢ : [0,00) — [O oo) be continuous, increasing,
convez function with ¢(0) = 0 and lim 5?3 == 0. Then there exists C > 0
such that

(2.4) sup{zp - e} <¥’(x)<C igg{xp — ()} +C.



7 Equivalence of the spaces of ultradifferentiable etc. 37

PROOF. The first inequality is trivial from the definition of the Young
conjugate ¢°. Now to prove the second we put h(t) = tz — ¢(t). Then
h is concave and has a maximum value at some point ¢, > 0, on [0, 0).
If z is sufficiently large then so is ¢;. Thus we may choose an integer
Po such that 1 < pg -1 < pg < 85, 0 < tg —po < 1, h(po) > O since
zllor?o ©*(z) = 0o. Then since A is concave,

(2.5) h(to) < 2h(po) — h(po —1) < 3 328{””’ - ¢(p)}.

Since this inequality holds for large z and ¢* is continuous, it follows that
(2.6) p'(z) <C ?‘QE{’” -p(@)}+C

for some C > 0, which is required.

LEMMA 2.4. Let H>21,A>0and0 < e < 1. Then it follows that
for eachp € IN,

(2.7 H* exp[f\w‘(-f\:)] <exp [;’}-w‘(%m]
and
(2.8) e expi (D)) 2 exp [ 247 (5p) -

PROOF. Note that we may assume that w(?) is concave (see Remark
1.2 (c)). Then it follows from the result of Lemma 2.2 (i) that

P . 2 - P [ tP ] = tP
HF expldp (A)] H ﬁ;g oxp Aw(t) 3‘3‘5’ exp[Aw ()]
su -—tp——ex [i -(ﬁ )]
= epZe@)] | P |EY XM

The proof of (2.8) is similar to (2.7).
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LEMMA 2.5. Let A >0 and p,q € IN. Then
- L +
(2.9) expAg" () explhe” ()] < explret(B5)]
and

(2.10) Cxp[z\‘P'(-p—;—q)] < M grte exp[A¢p'(§)] exp[,\<p‘(§)]

where H is the constant in 1.1(().

PROOF. The first inequality is easily obtained from the convexity of
¢*. To prove the second one, we consider the condition (¢): 2w(t) <
w(Ht) + H for all t > 0. Then it follows from Lemma 2.2 that

trte
H~P+2e=2H oynirg® (p + q)] H(pHa)g=rH o

¢>g exp Aw(t)
trte
B sclglg exp[Mw(Ht) + AH)
<s t? t?

:>o exp )\w(t) ¢>o exp Aw(t)
= exp[A¢” (;)] exp{Ap” ;)]

which is required.

The incquality (2.9) is related to the logarithmic convexity of the

sequence (exp @™ (p))pen and the mequallty (2.10) is related to (M.2) of
Definition 1.4.

3 — Equivalence of the spaces of ultradifferentiable functions

In this section we will show that there is a one to one correspon-
dence between the family of ultradifferentiable functions defined by the
sequences M, and the family of ultradifferentiable functions defined by

the weight functions w. First we give a direct proof of the following
theorem which is stated in MEISE and TAYLOR (12].
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THEOREM 3.1. Let (M,),en be a sequence satisfying (M.1)~(M.3)
in Definition 1.4. Then there ecists a weight function x(t) satisfying all
the conditions (a) ~ (¢) in Definition 1.1 with

(3.1) Enr,) () = Ex) (D)
and
(3.2) E) () = €y (Q)

topologically where Q is an open subset in R"™.
PROOF. Let M(t) : R — [0,00) be defined by

sup m;,‘:’“ for |t| >0
M(t) =

(3.3) PEN
fort=0

Then M(t) is a continuous even function with M(0) = 0 and flinalc M(t)=
o0, which satisfies 1.1(y) and 1.1(6). By Proposition 4.4 in KOMATSU (9]
(M.3) implies that M(t) satisfies 1.1(¢). Morcover, by Proposition 3.6 in
KOMATSU [9] (M.2) implies that M(t) also satisfies 1.1(¢). The Remark
1.2(c) implies the existence of a weight function x(t) which satisfies (a) ~
(¢), which is concave on [0, 00) and which satisfies

(3.4) M(t) € x(t) <CM(t) + C

for some C > 0 and for all t > 0.
On the other hand, since M (t) satisfics the condition (¢), (3.4) implies
that

2x(t) < 2CM(t) +2C < 2°M(t) + 2% for some k € IN
< 2*Y[AI(Ht) + H] +2*
< M(H't) + H' for somec H' > 0
< x(H't)+ H',

which mecans that x(t) also satisfies (¢).
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Now to prove (3.1) and (3.2), let ¢* be the Young conjugate of p(t) =
x(e'). Then it follows from Lemma 2.2 and (3.4) that for A € N,

exP[)\‘P )] [—t——] sup [—-tp—] =
¢>o exp Ax(t) >0 Lexp x(At)
1\? t? 1\? t? 1\*

3.6 == — <= —_— == .
(36) (/\) stgg exp x(t) = (A) ?‘QE’ exp M(t) ()\) M,
The last inequality is given by (M.1). This inequality implies that
(3.7) Sl 2 18llar, k4> &€ CT(RQ)-

Let C be the constant in (3.4) and k € IN with AC < 2*. Then since
M (t) satisfies the condition (¢) it follows that, as in (3.5),

ACM(t) < 28M(t) < 25" [M(Ht) +.H]

3.8
38) < M(H*t) +2*H.

Hence it follows from (3.4) that

t tP
€xp [/\tp Sy )] ¢>o [exp Ax(t)] = ¢>€ exp{A\CM(t) + A\C}
= e *“sup v >
>0 exp{ACM(t)}
$P
(3.9) >e™¢ :

D exp(M(H*t) + 2*H}
o (h) et = ()
=0 () s s = © (7)) M
for some C’ depending on A. This implies that
(3.10) C'liglxscar < lPllagp i ter € c=(Q),

Therefore, the inequality (3.7) and (3.10) give the topological equivalences
of (3.1) and (3.2).
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The following theorem is an important result in the following section,
which can be considered as the converse of Theorem 3.1.

THEOREM 3.2. Letw(t) be a weight function satisfying the condition
(a) ~ (¢). Then there erists a sequence (M,),en satisfying (M.1)~(M.3)
with

(3.11) Ew) () = Em,,) (D),
and
(3.12) Ew) () = Euyy (D),

topologically where § is an open subset of R"™ and K is a compact subset.
Furthermore, (M) satisfies the strong logarithmic convezity condition:

(]“{P)2 < Mp-l an+1

7)) So panpr PEbE

PROOF. Let * be the Young conjugate of the convex function (t) =
w(e*). For the candidate for the defining sequence, put M, = exp ¢"(p)
for p € IN. Then taking A =1 in Lemma 2.5 we obtain that M, satisfies
the first two conditions (M.1) and (M.2).

Now to prove (M.3), let was(t) be an associated function defined as
in (3.3) for the sequence (M,) and ¢ (t) = war(e'). Then as we know,
war(t) is a continuous even function with w(0) = 0 and tl_i‘r& war(t) = oo,
which satisfies 1.1(-y), () and (¢). Because of BRUNA (6], 2.1, it remains
to show that wy,(t) satisfies the condition (e).

We note that

(3.13) war(t) = sup{pt — log M, } = sup{pt — ¢"(p)}
pEN PEN
and

(3.14) p(t) = igg{zt - ¢*(2)}.
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Then it follows from Lemma 2.3 that

(3.15) wm(t) S p(t) < Coum(t)+C

for t > 0 and for some constant C > (. This implies that
(3.16) wp(t) Sw(t) L Cwp(t)+C

for allt > 0. Here we may assume that w(t)}jo,1) = 0. Thus the equivalence
of wy and w in the sensc of (3.16) means that wy also satisfies the
condition (e). Thus (M,) satisfics the condition (M.3). Furthermore,
from PETZSCHE [16], 1.1, we may assume that (M,) satisfies the strong
logarithmic convexity.

Then it follows from Theorem 3.1 that there exists a weight function
v(t) which satisfies (a) ~ (¢),

(317) wu(t) < x(t) < Cw,.,(t) +C

and (3.1), (3.2) are true. Then from the equivalence of (3.16) and (3.17)
we obtain the required cquality (3.11) and (3.12).

For the Whitney fields £y (K) or £ar,)(K), we can get similar results
related to Theorem 3.1 and 3.2. We will state them here whose proofs
are slightly diffcrent.

COROLLARY 3.3. If (M,)pen is a sequence satisfying (M.1)~(M.3)
then there exists a weight function x(t) satisfying (a) ~ (¢) with

(3.18) Eniy(K) = E(K) and Eqa,) (K) = €y (K)-

Conversely, if w(t) is a weight function satisfying (@) ~ (¢) then
there exist a sequence (M, )pen Which satisfies (M.1) ~ (M.3), strong
logarithmic convexity, and

(3.19) g(u)(K) = E(M,,) and g(,_,) (I() = E(M,,)(K).

Here we note that the weight function x(t) in (3.18) and the sequence
(M) in (3.19) arc the same onc as in Theorem 3.1 and 3.2.
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4 — Applications to Whitney extension theorems
Now we are ready to extend the results of BRUNA [6].

LEMMA 4.1.  Let (M,),en be a sequence satisfying the conditions
(M.1)~(M.3). Then the restriction map

ok : Ep,) (R") — Ear,) (K),

defined by px(f) = (0°f)aenn, 8 surjective.

PROOF. In BRUNA [6], he proved the theorem under the conditions
(M.1)~ (M.3) and the following conditions

(i) Mpy, < APMI*!, pe IN for some A >0

(ii) (M,) is strongly logarithmic convex.

But it is casy to show that (i) and (ii) are redundant, since (i) is
cquivalent to (M.2) (see MATsuMoTO [11], 2.5) and (M.3) guarantees
the condition (ii) without disturbing (M.2) (see PETZSCHE [16]).

LEMMA 4.2. (KANTOR [7]). Let (M,)pen be a sequence satisfying
the condition (M.1)~(M.3). Then the restriction map

px : Eny)(R™) — Ear) (K)

is surjective.

In fact, the proof of Lemma 4.2. can also be obtained from the slight

variation of that of Lemma 4.1.
Combining Lemma 4.1 and 4.2 and the cquivalence results in §3, we

obtain the following Whitney extension theorem for arbitrary compact
sets K under the condition (a) ~ (¢).

THEOREM 4.3. Let w(t) be a weight function satisfying the condi-
tions (a) ~ (€). Then the restriction maps

(i) pk ¢ Eguy (R") — €y (K) is surjective,
and
(i) px : Ewy(R"™) — Euy(K) is surjective.
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PRrROOF. It follows from the result of Theorem 3.2 and Corollary 3.3

that there exists a sequence (M,)yen satisfying the conditions (M.1) ~
(M.3) and

Ewy(RY) = Ep,)(R™),  Ewp(K) = Epny) (K).

Then Lemma 4.1. and its remark give the surjectivity of px : ) (IR")
— E(w)(K). A similar argument gives also the surjectivity of

Px : Ewy(IR") — €, (K).

We think that it is an interesting question whether the restriction
map px admits a continuous right inverse, i.e. whether one can do the
extension with a continuous linear operator. In general, this question
is negatively answered. But MEISE and TAYLOR [12] proved that the

condition (¢) is sufficient for the case that K is a singleton or K = II G;

in IR" where G,’s are open in IR™ with real analytic boundary. But for
an arbitrary compact set, it is unsolved yet.

Finally we give an example showing that the condition (¢) is essential
for Whitney extension theorem for arbitrary compact set K.

EXAMPLE 4.4. Let w(t) = (log |t])? for sufficiently large ¢ > 0. then
it is easy to check that w satisfies (a) ~ (€) but not (¢) after a suit-
able change on [ A A] for some A > 0 if necessary and that its Young
conjugate ¢* = Z-. Consider a sequence (zx) of real numbers such that
&) > dg > L3z > "—'08.1'1(1

Tyo1 — T < exp(—k?).

Let K = {21, Z2,-+-} U {0} and define

1 y T=T1,T2, "1 Tk
fk= _ 0
0 y T=Zp41yTk42y°**y OF

thén f is continuous on K and for each A >0

sup | u()| < explAv" ()
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Now we claim that this jet in the sense of MEISE and TAYLOR [12] cannot
be extended to £,)(IR). We suppose that there exists a function f €
Ewy(IR) with 8¥f = fi on K. Then it follows that for some constant

C>0
@1) sup [6* ()] < Cexplrg”(5)] = Coxpl )
0<z<z) - A 4\

for each k € IN. Applying the mean value theorem there is ti in (zx, Zx—;)
such that 8% f(tx) = (zxk—1 — zx)~!. we obtain from this and (4.1) that
for cach k € IN

exp(k®) < 8% f(tx) < ,sup |6*f(z)| < C exp[%],

which leads to a contradiction. Thus the jet (fi) cannot be extended to
Ew)(IR).
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