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Iteration methods for the solution of operator
equations and their application to
ordinary and partial differential equations

P.P. ZABREJKO

RIASSUNTO — Lo scopo del presente lavoro ¢é quello di dimostrare una nuova ge-
neralizzazione del teorema di punto fisso di Banach-Caccioppoli per operatori in spazi
Junzionali con K-norma. La differenza essenziale di tale generalizzazione consiste nel
fatto che al posto della costante di Lipschitz nella condizione di contrazione si mettono
certt operatori lineari o nonlineari che agiscono in uno spazio vettoriale appropriato
parzielmente ordinato. Oltre ai casi classici, il nuovo principio é applicabile anche
nel caso di spazi localmente convessi oppure di scale di spazi di Banach. [ risultati
astratti vengono illustrati tramite epplicazioni ai problemi di Cauchy o di Goursat per
equazioni differenziali con operatori nonlimitati. In tale maniera, si ottengono genera-
lizzazioni di alcuni risultati classici del tipo Cauchy-Kovalevskaja dovuti a T. Nishida,
L.V. Ovsjannikov, F. Treves, ed altri.

ABSTRACT ~ The purpose of this paper is to prove a new generalization of the
Banach-Caccioppoli fixed point theorem to operators in function spaces with K-norm.
The essential difference of this gencralization consists in the fact that the Lipschitz
constant in the contraction condition is replaced by certain linear or nonlinear operators
which act in a suitable partially ordered vector space. Apart from classical cases, the
new principle also covers the case of locally convez spaces, or scales of Banach spaces.
The abstract results are illustrated by means of applications to the Cauchy and Goursat
problems for differential cquations with unbounded operators. In this way, onc obtains
gcneralizations of some classical results of Cauchy-Kovalevskaja type due to T. Nishida,
L.V. Ovsjannikov, F. Treves, and others.

KEY WoORDS — K -normed spaces - Banach-Caccioppoli principle - Cauchy problem
- Goursat problem - Cauchy-Kovalevskaja theorem - Ovsjannikov-Nishida theorem.
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The present paper is concerned with a new general approach to the
study of fixed points of deteriorating operators, i.e. operators which de-
crcase certain qualitative properties (usually, the smoothness) of their
arguments. There is no general fixed point theory for such operators so
far, although a large number of special existence results for fixed points of
detcriorating operators are known. In this connection, one should men-
tion a large number of results on the solvability of the Cauchy problem
for differential equations with deteriorating right-hand side and, in par-
ticular, for partial differential equations (leading to the classical Cauchy-
Kovalevskaja theorem, see e.g. [2-6, 8, 9, 15-23]), as well as several papers
on the Goursat problem for partial differential equations (see e.g. [10,
12]), or some work on integral and integro-diffcrential equations.

One basic tool in the study of such problems is the method of suc-
cessive approximations; we point out, however, that the corresponding
results cannot be obtained by applying the classical Banach-Caccioppoli
contraction mapping theorem. Thus, one could hope to apply other fixed
point principles which are different from the Banach-Caccioppoli theo-
rem, but cover deteriorating operators. This idea was carried out in fact
in the papers [26-28]. More precisely, in {26] and [27] a new generalization
of the Banach-Caccioppoli theorem to K-spaces is formulated which cov-
ers, in particular, the well-known Ovsyannikov-Nishida theorem (see {2,
5, 18, 23]). In [28] a fixed point principle is given which includes solvabil-
ity theorems for the Cauchy problem in Roumieu spaces of test functions
and generalized functions (see e.g. [19]). We also mention the papers [1,
24, 25] which basically contain a new approach to studying the Cauchy
problem for differential equations involving deteriorating operators (see
also [13, 14]).

The purpose of the present paper is two-fold. First, we discuss a new
general approach to the fixed point theory for deteriorating operators;
the notions and results of (1, 24, 25] may be viewed as special aspects
of this general approach. Second, we describe several classes of problems
(for both ordinary and partial differential equations) where our approach
allows us to obtain basic new results.

1 — Fixed point principles for deteriorating operators

Let X be a locally convex Hausdorff space, B some Banach space
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which is ordered by some cone K, and X(w) C X (w € ) a family of
spaces, equipped with a K-valued K-norm ] - [x(ﬂ) and the usual norm

6))] "z"X(u) = [lzlx@wlls -

A typical example of such a family of spaces in the theory of differential
equations is the following: let X(w)(w € Q) be a family of Banach spaces
which is continuously imbedded in a locally convex Hausdorff space X,
and let X (w) = C(M, X (w))(w € ) be the space of all continuous func-
tions on some set M with values in X(w). In this example, it is natural
to take B as the space C(M,R) of all continuous real functions on M,
and to define the K-norm on X{w) by

(2) 12(t) [y = 12| x oy -

The notions developed in this paper carry over as well to the family
X (w) = Lp(M, X(w))(w € 2,1 < p < 0) of spaces of Bochner-integrable
functions on M with values in X(w), or even to the family X(w) =
L(M, X (w)), with £ being some space of measurable functions which
may even depend on w.

We remark that in many applications (see e.g. [1, 5, 15, 16, 18,
23, 25]) one takes Q = [0,1] and X(s') C X(s") for 0 < s" < s’ < 1.
On the other hand, in the papers [19, 26-28] it is assumed that @ =
{1,2,3,...,00} and either X; 2 X2 2 ... 2 Xpo0or X; C X2 C ... C
XnC...C Xoo-

Suppose we are given an operator A which is defined on the union Ay
of some of the spaces X' (w)(w € Q) and satisfies a Lipschitz condition

|Azy — A:L’Z[X(w")s Q(w”w”)]xl — I3 [X(W')

3
(1,22 € X(); W) € W);

here W is some set of pairs (w',w") € Qp x O, and Q(w',w")((w',w") €
W) is a family of positive monotone (and usually also positively homo-
geneous and semi-additive, or even linear) operators in the space B.

By W,(w',w") ((',w") € Win = 1,2,...) we denote the family
of all chains w = (wp,wr,...,w,) such that wo = W', wn = w", and
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(Wj-1,w;) € W; moreover, we put
(4) W‘(w',w”) = U Wn(w',w") .
n=1

At this point, we have to introduce a new notion. Let M be some subset of
the cone K. By s-inf M (called the “semi-infimum” of M) we denote the
set of all elements z € K with the property that the relations 0 < ¢ < §
for x € K and some £ € M imply that z < z. Obviously, s-inf M # @ if
M # 0. If B is a K-space in Kantorovich’s sense, or if the set M admits
an infimum in the usual sense, then s-inf M = inf M + K. In general,

s-inf M is the set of all least upper bounds of the set of all greatest lower
bounds of M.

Let
(5) v(M) =inf {||z]|: z € s-inf M},
(6) E(W' ") = {z € B: i v(Ha(v',w";2)) < oo} ,
(7) UW' w") = {z € B: lim v(Hn(w' w";2)) = 0} ,
and
(8) T(W\ W)= {z € B: ,11—1_'1210 Yv(Ha(w',w";z)) < 1} ,
where
(9) Ho(' " 2) = { fI Qwj_1,w;)z: w € W,.(w’,w”)} .

=1

Since the superposition of operators is non-commutative, we have
n
to define the order of superposition: we do this by putting [[ Q; =
i=1
@n...Ch.
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Obviously,
(10) T(w',w") C E(W,w") CUW' w").

Finally, let

o0

(11) Yalw'\W"52) = Y v(He(w',w"2)  (n=1,2,..).

k=n

THEOREM 1. Let (w',w") € W. Suppose that A, considered as an
operator in X(w"), is closed (this holds, for instance, if A is continuous
from X (w") into X ). Assume, moreover, that

(12) 120 — AZo[ ) € E(W',0").

Then A has at least one fized point z° € X(w"); this fired point may
be obtained as limit of the successive approzimations Tpy1 = Az, in
X(w")(n=0,1,...). Moreover, the estimate

(13) ]zn - .’L'. [X(w") S 1/)1!(“),’“”; ]1'0 - AzO[x(wl))
holds. Finally, the fized point is unique in the set
(14) E(w',w";z0) = {nlg{.lo Atz |z - :z:o[x(u,) € U(w’,w")} ;

in particular, A cannot have two fized points * and z** for which |z* —
T [y € UW,w").

PROOF. The proof of this theorem is very simple. In fact, putting
T, = A"zo(n =0,1,...) we get from (3) for w=(wp, ...,wn) € Wy(w',w")
that

J&n = Tns1 [ygum = |A"20 — AM(A20)[4,,,) <
< QWn-1,wn)] A" Z0 — A™ N (AT0) [y, 1y S -+

. < Q(w,._l,w,,) Ve Q(wo,w;)]:co - Azo[X(wo) f
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This implies that

]zﬂ — T4l [X(w”) € Hﬂ(w’, w";]xo —_ Azo [x((d’)) .

Consequently,

"xn - $n+1"x oy SV Hn(w”“’”;]z“ — Azo [X ! ) !
") (')

which shows that, by (12), the series Y noo(Zn — Zn41) is absolutely con-
vergent in the norm of X(Q”). Thus, the sequence z, converges in the
norm of X(w"”) to some limit z*; obviously, the inequality (13) holds.
Since A is closed in X(w”), z* is a fixed point for A in X(w").

It is clear that z* € E(w',w";zq). If z*° € E(w',w";z0) is another
fixed point of A, we have z** = hm Amtzo for some zoo € U(W',w").

Again, by (3), we get for w = (wo, . wn) € Wy(w',w") that
|A™zo — A" zoo[x(wry =]A"T0 — A" Zoo ¥ (wn) <

< Q(wn—l; wn)] An—lzo - Aﬂ-lzoo [«Y(wn—

oo L Qwn_1,wn)... Q(wo,wl)]$0 — ZToo [X(wo) ’

hence
1A"zo — A™Zo0 [y € Hn (‘*"""";]“co — Too [xm)
and
|A"zo — A™Zoo| (ry < ”(Hﬂ(“"v“’”; 120 —~ o [X(w'))) '

This shows that

flz* —z** = lim ||A"Zo — A"Zoo| ym =0,

n—o0

and thus z* = z**
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We remark that, if the family X(w)(w € Q) is not “large” enough,
Theorem 1 may “degenerate” and turn into a well-known classical result.
For example, in case 2 = {1,2,...,00} one may arrive at results which are
similar to those obtained in [28]. However, the statement of Theorem 1
applies in its full strength already in the case when X(w) (w € Q) is a
“fan” of spaces; this means that Q = {(m,n): m=0,...,n;n=1,2,...},
Xon = U, and X, 5 = V, where (U, V) is a fixed pair of K-normed
spaces. A similar situation was discussed in [14].

In spite of the rather cumbersome formulation of Theorem 1, the ver-
ification of its hypotheses is in general not difficult. We restrict ourselves
to just some general remarks which cover the most important cases.

Suppose, first of all, that
(15) Quw',w") = c(w',")J,

where J is some positive linear operator in the space B, and c(w’,w") is
a function on W with values in [0, 00]. If we define

(16) cn(w',w") = inf { ﬁ c(wj—1,ws): w € W,,(w’,w”)} ,

j=1
it is easy to see that
17) V(H (W', w";2)) = ca(w', )| T"2]] (n=1,2,...).

Consequently, studying the sets (6) - (8) reduces to studying the
sequence of functions (17). In particular, the following holds.

THEOREM 2. Let Q(w',w") ((w',w") € W) be the family of operators
defined by (15). Then

(18) {z € B: "@o Vea(w, w)||J2|| < 1} C T(w,w").
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We shall say that a family of operators Q(w',w") ((w',w") € W) has
the property (S) if, given any («',w"”) € W, for n = 1,2,... one may find
a chain w = (wg,wy,. .. ,wn) € Wy(w',w”) such that

Q(wo,uh) = Q(wnwz) =...= Q(wn—nwn)-

Denote by S,(w',w”) (n = 1,2,...) the set of these chains; in most ex-
amples, S,(w',w"”) consists of just one chain. If a family of operators
Q(w',w") ((w',w") € W) has the property (S) and w = (wo, wy,...,ws) €
Sn(w',w"), we put

(19) Qﬂ(W’,w";W) = Q(wj—lij) (J = 11 e $n) .

Obviously,
Qn(w',w";w)"z € Ho(w',w"; 2),

hence
v(H, (v, w";2)) < gn(2) = inf {lIQn(w’,w";w)"zu: w € S,,(w’,w”)},
Thus, the following holds.

THEOREM 3. Suppose that Q(w',w") ((',w") € W) is a family of
operators with the property (S). Then

(20) {z € B: E_@o Yaa(z) < 1} C T(w,w").

The most important special case of the previous discussion is when
(21) Q(w’,w") — Z ck(w',w”)Jk
k=1

with Jy,...J being positive linear (and usually commuting) operators
in the space B, and ci(w',w") (k=1,... ,m) are functions on W with
values in [0, c0]. The property (S) holds in this case, for instance, if these
functions have the form

ex(w', w") = hi(c(w',w")) (k=1,...,m),
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where c(w’,w") is a fixed function on W with values in [0, 00}, and h,(£)
(k =1,...,m) are monotone functions mapping [0, 00) into itself.

If the family (21) has the property (S), we may define the functions
(w = (wo, w1, .+ -, wp) € Sp(w',w"))

Cen (W', " W) = ch(wj1,w;5)
(22)
G=1,...,mk=1,....mn=12,...).

The operators (19) are then given by

(23) Qn(v,w'iw) = Z Crn(W W' w)Jk .
k=1

THEOREM 4. Suppose that the family of operators Q(w',w”)((w’, w")
€ W) is defined by (21) and has the property (S). Then

{z € B: ,LE;, Ya(z) < 1} CTW,w")

(24) m .
('yn(z) = inf{”(gck,,.(w’,w”;w)Jk) z”: w G S,.(w',w")}) .

Let us make some remarks on Theorems 1 - 4. First of all, in case
X(w') C X(w"”) (strict inclusion) there is a “gap” between the existence
and uniqueness of a fixed point: existence holds in the large space X' (w"),
and uniqueness in the narrow space X(w’). This flaw, however, may
be removed rather easily, since one may establish both existence and
uniqueness in one and the same space X(w), just by considering the pair
(w',w) € W in the existence proof, and the pair (w,w") € W in the
uniquencss proof.

Further, Theorem 1 establishes the convergence of any successive
approximation to the fixed point of A in the norm of the space X(w”).
Sinilarly, completely analogous results to Theorem 1 (and Theorems 2—4)
may be formulated, where the convergence of successive approximations is
understood in the sense of weak convergence or o-convergence. Passing to
these types of convergence would allow us to weaken the hypotheses on the
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family of operators Q(w’,w") ((w',w") € W); observe, however, that one
has to suppose then completeness of the spaces X(2) (w € 2). We point
out that Theorem 1 is a particular case of a rather simple generalization of
the Banach-Caccioppoli principle for contraction mappings to K-metric
spaces; the scalar case has been studied in [28]. Similar results may be
found in (7, 11, 26].

Let U and V be two K-metric spaces whose K-metrics take values in
a Banach space B ordered by some cone K. We suppose that V, equipped
with the metric p(v1,v2) = ||dv(v1,v2)| g, is & complete metric space. Let
A be some operator between U/ and V, which is closed in the metric of
V, and satisfies

dy(A"zy, A"T,) < Qdu(z1,22)
(25)
(Q € Qn(r); du(®1,0), du(22,0) < 757 € B),

where Q,.(r)(n = 1,2,...) is a family of positive monotone (and usually
also positively homogeneous and semi-additive, or even linear) operators
in the space B. Let

H,(r;z) = {Qz: Q € Qu(r)} (n=1,2,...),

and

f:M,‘:{im,.:m,.EMn,i[lmn” <oo}.

n=0 n=0 n=0

We shall write M C r if there exists an element m € M such that m <r.

THEOREM 5. Suppose that the condition

(26) i s — inf H,(r; dy(zo, Azo)) E T

n=0

holds. Then A has at least one fized point =* in the space V; this fized
point may be obtained as limit of the successive approzimations Tny, =
Az,(n=1,2,...). Moreover, the estimate

(27) p(zn,z*) < i V(Hn(r; du(-'to,Al‘o)))

k=n
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holds. Finally, the fized point is unique in the set
(28) E(zo,7) = {nanolo Az: Jim V(Hn(r; dy(z, zo))) = 0};
in particular, A cannot have two fized points z* and z*° for which

(29) nlir{.lou(H,,(r;du(z‘,z“ )) =0.

The proof of Theorem 5 is literally the same as that of Theorem 1,
and therefore we shall not present it. Theorem 1, in turn, is a special
case of Theorem 5, as may be seen by taking Y = X(w’) and V = X ("),
here the family of operators @,(r)(n = 1,2,...) is even independent of r.

2 — Applications to differential equations

In what follows, X(w) (w € ) is a family of Banach spaces which
are continuously imbedded in some locally convex Hausdorff space X.

The simplest and most important applications of Theorem 1 in the
theory of differential equations refer to the Cauchy problem

(30) ";_:: = f(t, ), :B(O) =T

with some deteriorating (singular) right-hand side. The latter means that
f satisfies a Lipschitz condition

B1) (£t u) ~ £, o)l gum < @' wNu — g (veEXW)),

where c(w’,w") is some functions with values in [0,00]. It is well-known
that the Cauchy problem (30) is equivalent to a fixed point problem for

the operator

¢

(32) Az(t) =z + f f(r,z(r))dr

0
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which satisfies a Lipschitz condition (3) in the family of spaces X(w) =
C([0,T), X(w))(w € Q). Here the family of operators Q(w’,w") ((w',w"”) €
W) is given by (15), where

(33) Jz(t) = /z(’r)d'r

is simply the operator of indefinite integration. Let the functions ¢, W’ ,w”)

(n = 1,2,...) be defined by (16). As a consequence of Theorems 1 and
2, we get the following.

THEOREM 6. Suppose that the inequality

(34) T /() enlw, ) <1

holds. Then the Cauchy problem (30) has, for any zo € X(w'), at least
one solution z*(t) in X(w")(0 £t < T), and cannot have a second solu-

tion z**(t) such that the difference z*(t) — z**(t) belongs to X (w') and is
bounded.

Theorem 6 contains the classical Ovsyannikov-Nishida theorem [15-
18], as may be seen by choosing Q = [0, 1] and ¢(w’,w") = ¢(w' —w")"* +
ocoH (w" — w'), with H being the Heaviside jump function; here the esti-
mate (34) is equivalent to the inequality ecT’ < w' — w”. We point out
that in the case c(w’,w") = c(w’ ~ w") ™% + coH(w" — w')(0 < § < 1), the
estimate (34) holds for any 7.

Similarly, one may consider the Cauchy problem

d™x dz d™ 1z _
(35) T = F (63 g gamy ) 20) = B0y, 0) = ey

where the right-hand side satisfies an estimate
(36)
”f(ta Ugy - - - ’um—l) - f(ti Vo, .-« ’vm-l)"x(un) S

m—1
< S W WMy - villxy (v € X(W)i=0,...,m— 1).
=0
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The solutions of this problem are the fixed points of the operator

m-=1

(37) Au(t) = f( , E L, 1 / (t=r)™(r)dr, . .\ T+ / v(r)dr)
=0

(v = z'™), which satisfies a Lipschitz condition (3) in the family of spaces

X(w) = C([0, T}, X (w))(w € Q) with coefficients (21) and J, = J™*, J

given by (33). Suppose that the operators (21) have the property (S),

and ci,(w',w") (k = 1,...,m;n = 1,2,...) are given by (22). As a

consequence of Theorems 1 and 4, we get the following.

THEOREM 7. Suppose that the inequality

— nlTar+...4+mam
(38) nllro{olod Z a!l...apl{a;+...+ ma )l H Ck, k(W W) <1

ay+...+axm=n

holds. Then the Cauchy problem (35) has, for any zg,...,Tm-1 € X(w'),
at least one solution z*(t) in X(w"”) (0 < t £ T), and cannot have a
second solution z**(t) such that the difference z*(t) — z**(t) belongs to
X(w') and is bounded.

The most important special case of Theorem 7 is again @ = [0, 1]
and ¢ (w',w"”) = cx (W —w")*"™ + coH (w” - w') (k =1,...,m); here the
estimate (38) is satisfied if

eY ci{(w —w")IT)T < 1.

In case m = 1 we get again the classical Ovsyannikov-Nishida theorem.
Finally, let us consider the Goursat problem

@) 22 =i(bon 2, 22),5(0,5) = m(s)a(t0) = 2a(),

where z,(s) and z,(t) are given functions with z,(0) = z2(0) = zo. We
suppose that the function f satisfies the condition

”f(t’ 8, Up, Uy, ug) - f(t) $, Yo, V1, xz)"X(w") <

(40) 2 ,
<Y oW W)l ~villxy (v € X(W)i5=0,1,2).

3=0
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It is not hard to see that the Goursat problem (39) is equivalent to a
fixed point problem for the operator

t a

A‘U(t, 3) =f(t) S, ‘U(t, 3)) zl(s) + zZ(t) —Zo+ //’U(T, O')d’rdd )
(a1) 00

[ ] t

zo(t) +/v(t, o)do,z,(s) +/v('r, s)d'r)
0 0

(v = 8%z/8tds), which satisfies a Lipschitz condition (3) in the family of
spaces X(w) = C([0,T] x [0, S], X (w)) (w € Q) with coefficients (21) and
operators

t
(42) J1z(t, 8} = /z(t,a)da, Ja2z(t,8) = /z('r, s)dr,Jo= N1 J2.
)

0

As a consequence of Theorems 1 and 4, we get the following.

THEOREM 8. Suppose that the inegquality

- ITag+az2 Sag+a 2 o
(43) lféo\J 2 - ] | CACREORS

ag+a;+az=n ao!al !azl(ao+01)!(ao +ag)! k=0

holds, and assume that the functions z,(s) and z(t) in (39) are differ-
entiable functions in X (w') with bounded derivatives. Then the Goursat
problem (39) has at least one solution z*(t,s) in X(w") (0<t <T,0<
s < 8), and cannot have a second solution z**(t,s) such that the differ-
ence z°(t, 8) — z**(t, s) belongs to X(w’) and is bounded.

In the most important special case = [0,1], co(w',w") = co(w' —
wn)—2 + OOH(U)” - w/) and cj(w’,w”) = cj(w’ - wu)—l + ooH(w” — wl)
(j =1,2), the estimate (43) is satisfied if

4coTS 2T  2c,S 1
(w/ _ wu)z W —w W —w! <l.
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The most important applications of the abstract Theorems 6 - 8 refer
to partial differential equations and integro-differential equations. By
means of a standard reasoning (see e.g. [15]), one may obtain the clas-
sical Cauchy-Kovalevskaya theorem and its generalizations in this way;
to this end, as spaces X(w) (w € Q) one has to choose scales of certain
spaces of analytic functions. Essentially more interesting results, how-
ever, may be obtained by choosing as X(w) (w € ) certain spaces of test
functions and generalized functions of finite or infinite order (in particu-
lar, Roumieu and Gevrey classes). The results obtained in this way are
essential generalizations and extensions of theorems proved in (3, 4, 19,
24, 25).
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