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Surfaces with conformal
second fundamental form

S. CONSOLE™

RIASSUNTO — In questo lavoro si studiano le sottovarietc M di una varieté Rie-
manniana N con seconda forma quadratica conforme; il probleme ha interesse solo in
codimensione maggiore di uno ed & collegato alla armonicitd dell’applicazione sferica d;:
Gaufl. Il risultato principale & una classificazione completa delle superficie compatte di
una varietd a curvature costante semplicemente connessa con curvatura media paral-
lela e con seconda forma quadratica conforme; in particolare viene ottenuts una nuova
caralterizzazione del toro di Clifford e della superficie di Veronese.

ABSTRACT ~ The subject of the present paper is the study of the submanifolds M
of a Riemannian manifold N with conformal second fundamental form. The question is
interesting only in codimension greater than one and is related to the harmonicity of the
spherical Gaufl map. The main result is a complete classification of compact surfaces of
a space form with parallel mean curvature and with conformal second fundamental form;
in particular a new characterization for the Clifford torus and the Veronese surface is
given,
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1 — Introduction

A Riemannian immersion f : M — N induces a map of the unit

(*)Work partially supported by the GNSAGA of CNR and by the MURST of Italy
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normal bundle of M in the unit tangent bundle of N, defined by
vy:TM{ — TN,

(1.1) (z,v) — (f(z),v); T €M, ve T Mt.

In other words v; sends a unit normal vector to M to itself, considered
as a unit vector in IN; vy is called the spherical Gaui map.

JENSEN and RIGoL! [6] endowed the bundles TMi* and TN; with a
Sasaki like metric and studied the conditions under which vy is harmonic.
One of these conditions is that the second fundamental form h of the
immersion must be conformal. It can be expressed as follows: let (e;)
i=1,..,m = dim M be an orthonormal moving frame on M, then h is
conformal if, for any field v and w on TM*

(1.2) S (hlesr €5),v)(hlen €5), ) = A¥(v, ),

t,7=1

where (, ) denotes the inner product in N and A is a suitable scalar
function on M.

If M is a hypersurface of N, it is trivially true that h is conformal.

An important result on the harmonicity of the spherical Gauf8 map is
the following ([6], compare also [9]): if N is a space form, codim(M) > 1
and either

(a) M is minimal in N or

(b) M has parallel mean curvature in N
then the spherical Gaul map is harmonic or vertically harmonic respec-
tively if and only if f has conformal second fundamental form (vertically
harmonic means that the component of the tension field of v, tangent to
the fibre of the bundle T'N; vanishes).

The aim of the present paper is to characterize all surfaces M iso-
metrically immersed in a n-dimensional space form R"(c) of constant
curvature ¢ with conformal second fundamental form for which either (a)
or (b) holds and codim(M) > 1.

An easy codimension argument (see (2.14) and (2.15) in section 2)
shows that the only cases to consider are the following: (1) n=4 and M
minimal, (2) n=4 and M non minimal, (3) n=5 and M non minimal.
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The main result is

MAIN THEOREM. Let f: M — IR"(c) be an isometric immersion of
a compact connected surface in a n-dimensional space form of constant
curvature ¢ (with n=4,5). If
(a) the second fundamental form of M is conformal (and not zero) and
(b) the mean curvature vector field H is parallel or, if H = 0, the length
of h is constant,
then:
(1) f n = 4 and M is minimal, then M coincides with the Veronese
surface in S4,
(2) if n =4 and M is not minimal, then ¢ =0 and M coincides with the
Clifford torus immersed in IR®,
(3) ifn =5 then f is an immersion of RIP? in S®, which factors throught
the Veronese surface in a suitable S* in S°.
In any case M is a pseudoumbilical submanifold and it is either min-
tmal in R"(c) or minimally immersed in a small hypersphere of R"(c).

The proof of the Main Theorem will be given in section 3. In par-
ticular (1) is a consequence of theorem 3.2, (2) follows from theorem 3.4
and (3) from theorem 3.6.

In section 2 some algebraic problems concerning the condition that
h is conformal are examined and it will be shown that this condition is
equivalent to some other notions which were introduced by SIMONs [10]
and B.Y. CHEN [1].

Section 3 is devoted to the study of surfaces with codimension greater
than one; in particular this yields the proof of the main theorem, which
gives a new characterization of the Clifford torus and the Veronese sur-
face.

In the case of m-dimensional submanifolds (m > 2) it seems unlikely
that a complete classification could be done. In a forthcoming paper some
problems concerning the submanifolds with dimension greater than two
with conformal second fundamental form will be analized.
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2 — Preliminaries and conditions equivalent to A conformal
Let M be a m-dimensional manifold isometrically immersed in a n-
dimensional manifold N.

In this section I will use the following sets of indices with the following
ranges:

AB,.=1.,n
3,4, =1,.,m

a,fB,..=m+1,.,n.

Furthermore repeated indices are summed over the respective ranges.
Let (es) = (ei,ea) be an orthonormal moving frame of N adapted to
M (which is called a Darboux frame). This is equivalent to say that,
restriced to M, e; are tangent vector fields to M (in fact they are a local
frame on M) and the e, are normal vector fields to M.

If (w?) denotes the dual frame of (e4) and w§ are the Levi-Civita
connection forms on N, then the structure equations of N are given by
(compare {3])

(2.1) dw? = —wh AW (w8 +wjh=0)
1
2

where R¥ is the curvature tensor of N. If N is a space of constant
curvature c then

(2-2) dwh = —wi Aw§ + ZRYpopw© AWP

RN pep = c(6acbpp — 6anbBC) .

If the forms w” are restricted to M, then (w') is the orthonormal
coframe of M, the Levi Civita connection of M is defined by (w}), and

(2.3) wf = hGuw’, R = hS; = (Viej, ea) = (h(ei €;), €a) .

Hence the hg; are the components of the second fundamental form,
which is a TM* valued bilinear symmetric form on M. In addition, one
has the following formulas

(2.4) RM. = Rl + h3hS — hh, (Gauss equations),

(2.5)  Rip; = RN + kS, — kil (Riccei equations),
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where R* is the curvature tensor of the Riemannian connection V< in
the normal bundle TM+* determined by the forms (w§). The covariant
derivative of the second fundamental form is Vh and it has components
ha

Sk Where A, = (V. h)(e;, €5), €0) and
(6ckh)(ei, ej) = V:; (h(ei, ej)) h(V e,, e,)h(e,, Vq‘e,)
In terms of the forms wf

(26)  A%,w* =dhS — hZw

k] 1 - kw; + hgwg (huk h;.lk) .
Exterior differentiation of (2.3) yields
(2.7 hgy = h%; + RNy, (Codazzi equations).

The mean curvature vector field H of the immersion of M in N is
defined by

(2.8) | g=Lhae,.
m

M is minimal in N if H = 0; M has parallel mean curvature if H is
parallel with respect to the normal connection i.e. VXH =0 or

(2.9) b, =0.

The (n — m) symmetric matrices of order m which are determined
by h, are

(2.10) H, = (h%).
The norm (or length) of k is given by
(2.11) IRI® = 3 (k) = 3 I Hal*,

ija

where the scalar product and the norm of matrices are defined in the
usual way: if A = (a;;) and B = (b;;) then

(A, B) = trace(*AB) = Za.-jb.-,- .
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DEFINITION 2.1. The second fundamental form of the immersion
of M in N is conformal if there ezists a function A\ on M such that

(2-12) (Ha, Hp) = Az&aﬂ'

In other words the matrices (H,) are orthogonal and they have the same
length.

(2.12) implies, in particular, that, if A is conformal, then
(2.13) IRl = (n — m)A%.

I will suppose n — m > 2, as it is trivially true that a hypersurface has
conformal second fundamental form. It also will be assumed that A is
not identically zero, or , in other terms, that M is not totally geodesic
in N. As the dimension of the vector space of the symmetric matrices of
order m is ﬂ%ﬂ, one can notice that the second fundamental form is
conformal (and not zero) only if the H, are linear independent, hence

(2.14) n-m< "‘(L;l—) .
Furthermore, if M is minimal in N, the matrices (H,) belong to the

hyperplane of the traceless symmetric matrices. Hence h is conformal
only if

m(m+1)

(2.15) n—m< 3

1.

In the last part of this chapter it will be shown that ‘k conformal’ is
equivalent to some other conditions.

Let S(M) be the fibre bundle of symmetric endomorphisms on T'M
and let A € hom(T M+, S(M)) be the operator associated to A, i.e.

(R(X,Y),w) = (Au(X),Y).

For the Darboux frame (e;, e,)
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J. SiMONSs, [10], introduced the operator A € hom(TM<*,TMYL),
defined by

A="t44,

where *A is the adjoint operator of A (i.e. (*A(s),w) = (A(w), s)).
It can be easily verified that

(/i(ea)a eﬁ) = (Aea’Aep) = h?jhgi .
Hence h is conformal if and only if
(2.16) A=\,

where I is the identity.

On the other hand, B.Y. CHEN, [1], introduced, for any normal
vector field £, the allied vector field a(€) defined as follows: if (es) is
an orthonormal moving frame such that e,4; = Wgﬁ then one defines, if

§#£0

n

(2.17) a(£)=ﬂ§ i trace(Hm+1Hg)eg="Til-| Y (Hmsr, Hp)es,

B=m+2 B=m+2

otherwise, if £ =0, a(§) = 0.
From (2.17) follows that h is conformal if and only if, for any £ €
TM*, a(£) = 0. Hence

THEOREM 2.1. If M is a submanifold of a Riemannian manifold
N then the following are equivalent:
(1) the second fundamental form is conformal,
(2) the Simons operator A € hom(TM*,TM™*) is proportional to the
identity,
(3) for any normal vector field, the allied vector field vanishes.
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REMARK. Any submanifold for which a(H) = 0 is called a A-
submanifold or Chen-submanifold ([1], [4]). The class of Chen subman-
ifolds includes the hypersurfaces, the minimal submanifolds and, more
generally, the pseudoumbilical submanifolds -that is the submanifolds
such that for any X, Y ¢ TM

(h(X’ Y),H)= (X»Y)||H||2,

or, in other words, such that Ay is proportional to the identity (i.e.
the section H is umbilical). In fact, if M is pseudoumbilical, Hp4; is a

multiple of the identity matrix and all Hg for 8 > m + 2 are traceless,
hence a(H) vanishes.

3 — Surfaces with conformal second fundamental form

If codim(M) > 1, from all what was remarked in section 2 it follows
that the study of the condition that the second fundamental form of
a surface is conformal can be done considering separately the following
situations:

(1) M is a minimal surface in a 4-dimensional manifold
(2) M is a non-minimal surface in a 4-dimensional manifold
(3) M is a non-minimal surface in a 5-dimensional manifold.

In this section, examples of any of these three cases will be examined.
It will be given particular attention to the case in which N is a space of
constant curvature and M has parallel mean curvature.

3.1 — Minimal surfaces in a 4-dimensional manifold

Whatever is the Darboux frame (e4), the matrices H and H, (de-
fined by (2.10) have zero trace. With a suitable choice of the frame (e,, e3)
of M, it can be assumed that one of these matrices, say Ha, is diagonal.
The condition that h is conformal implies that, if the orientation of e is
appropriately chosen, the matrices Hs and Hy are

ov  me(5 3) me(C )
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where p is a function on M, not identically zero, unless M is totally

geodesic.
For any X = X,e, + Xze; tangent to M

h(X, X) = (uX? — uX2)es + 2uX1 X264
hence
(3.2) IA(X, X)) = |ulliX)?

which means that M is a isotropic minimal submanifold of N as intro-
duced by O’ Neill [8]. It can be verified easily that the converse is also
true, hence

THEOREM 3.1. A surface minimally immersed in a 4-dimensional
manifold has conformal second fundamental form if and only if it is
isotropic.

If N is a space of constant curvature ¢, then, from (2.4), (2.5) and
(3.1) follows that the Gaussian curvature KX and the normal curvature
K+ of N are given by

(03  K=RlMgmc-2 K= Rl =2,
and
(3.4 dw} = Kw* AW?, dwl = K*w! Aw?.

2 4

A significative example of minimal surface in a space of constant cur-
vaturc with conformal sccond fundamental form is the Veronese surface
in S4. If S2(R) is the sphere in IR® with centre in the origin and radius
R, then the mapping
(3.5)

SRS R®: (z,9,2) — —;—(zy,:rz,yz, %( v?), 2\/_(:2: +y? — 22%))

induces an isometric immersion of S?(R) in S‘(V’%). As antipodal points
arc mapped by f to the same point of S’"‘(%), onc obtains an isometric
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immersion of the real projective plane RIP? in S4(%), which is called
the Veronese surface.

An easy computation in local coordinates shows that one can choose
a Darboux frame (e,, ez, €3, €4) so that

1 0 o 1
(3.6) m=(3 %), m=(] &)
R

and setting 4 = & one can see that (3.6) coincides with (3.1). Conversely,
if one supposes that in (3.1) u is constant (i.e that the second fundamental

form has constant length) and if one takes exterior differentiation of the
formulas (which are just (3.1) restated)

3. w? = Wla wg = —/Wzs wy = /-“’)2: wy = Wls
1 2

then it follows that
(3.7) Wl = 2},
whence, using (3.3) and (3.4), one obtains
Kt =24 = 2K = 2¢ — 442,
hence
(3.8) c = 3u?, K = u2

In particular (3.8) implies that M is a space of constant curvature.
Hence the same argument as in the proof of theorem 3, page 72 of [3] shows
that M coincides locally (globally if M is compact) with the Veronese
surface. (Formulas (4.12) and (4.13) of [3] are the same as (3.7) and

(3.8)).
This proves the following

THEOREM 3.2. Let N be a space form of dimension 4 and let M be a
connected minimal surface of N with second fundamental form conformal
and of constant length; then
(1) the curvature of N is positive
(2) M coincides locally with the Veronese surface in S4; if M is compact

it coincides with the Veronese surface.
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One can achieve the same result starting from different assumptions.
As a matter of fact it will be proved the following :

THEOREM 3.3. Let N be a space form of dimension 4 and let M
be a compact and connected minimal surface of M with conformal second
fundamental form. If K is the Gaussian curvature of M, K+ is the
normal curvature of M and if

(3.9) 2K > K+ or 2K<K*

everywhere on M, then 2K = K+, N has positive sectional curvature and
M coincides with the Veronese surface.

ProoF. It will be proved that (compare also [5])
(3.10) Alogp = 2K — K+,

where A is the Laplace-Beltrami operator on M, that acts on scalars
according to the following formula

(3.11) Af=V? f=eef—Vef

Taking exterior differentiation of (3.1) and using the equations of
Codazzi it follows

eru = —u(w) — 2wj)(e2), ezp = p(wi — 2w3)(e1) -
An easy computation shows that
Alog p = 2dwl(e, e2) — dwl(ey, e2) = 2K — K*.
As M is compact

0= / AlogudM = / (2K — K*)dM
M M

applying (3.9), Alogu = 0: hence p is constant.
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REMARK. Theorems 3.2 and 3.3 show a remarkable feature of the
Veronese surface. On the other hand, it is possible to find examples of
surfaces that are minimally immersed in a space form of dimension 4 with
second fundamental form conformal but not of constant length.

For instance, if one sets z = z + iy, the surface immersed in R4,
which is the image of C — {0} by the map

(Re(2%), Im(2%), Re(2%), Im(2%))
or  (z°—3zy? 3z% —°, 2% — ¢, 22y),
has conformal second fundamental form.
To see this, set

= (3z? — 332, 6zv, 2z, 2y), P, = (—6zy, 3z% — 3y%, —2y, 2z),
v

P, .
so that e; = I P B and e; = Il—f’ﬁ is an orthonormal frame. If

€3 = (2:1:,2y, —3(15 +y2) O))

IIP I

2
=E ||( 2y, 2z,0, —3(z* + ¥°)),

one can readily compute the second fundamental form, finding

kY = —h}, =hi, = |IP ” ——(z? +y2) (24 + 54(2* + v%)),
h?z = h‘:l = hgz =

This example can be found in (7], page 41.

3.2 — Non minimal surfaces in a 4-dimensional manifold

It can be casily verified that one can choose the Darboux frame so
that e, is parallel to the mean curvature vector H of M in N and the
matrix Hy is diagonal: that is

a 0
H4=(0 ﬂ 7 a+ﬁ7é0.
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The trace of Hj; is zero, so Hj is of the kind

]
H3= (g — -

The orthogonality of H; and H, implies
(a=B)y=0, o + B% = 297 + 26°.

It follows that two case are possible
(1) if a # B, i.e. M is not pseudoumbilical, then v = 0, so

(3.12) #=(34) m=(§ 3)

(2) if M is pseudoumbilical, @ = ( and one can choose (e;,e2) so that
Hj3 and H, are

a 0 {0 «
H3=(0 —a) or H;;—(a 0/’
a 0
m=(20).
It can be remarked that the two different expressions of of Hj in
(3.13) are reducible one to the other by means of a reflection with respect

to bisector of the angle (e;, e;). Hence no geometric distinction between
this last two cases holds. In both cases (1) and (2) H3 and Hy can be

cxpressed as follows:
(3.14)
0 6 a 0 2 2 2
= = 0, = 26°.
H=(3 o), #=(5 5) e+t o+s
cases (1) or (2) occurring according to a # B or a = 3 respectively.
An example of a non pscudoumbilical surface satisfing (3.12) is the

following surface of IR*:

(3.13)

(3.15) (f (1) cos v, f(u)sin v, cos(V2v), sin(V2v)),

where f is any function with f' # 0.
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Such a surface is a particular case of a type of Chen-submanifolds,
which can be found in [4].

An important example of pseudoumbilical surface with conformal
second fundamental form is the Clifford torus immersed in IR*:

P: S} (R) x S*(R) »R*
(3.16)

(u,v) —P(u,v) = (Rcosu, Rsinu, Rcosv, Rsinv).

which is, as well known, a flat minimal surface in S3(v/2R).
Set

ey = P,/||P.| = (—sinu,cos,0,0),

e2 = P,/|P.|| = (0,0, —sin v, cosv).

Then H = —%(cosu,sinu,cosv,sinv).
Hence H is orthogonal to S3(v/2R), which means that the torus is
minimal in the sphere. If eq = "—5“, es = 71-2-(— cos u, — sin u, Cos v, sin v)

it can be easily seen that

1 1 0 1 1 0
= — 3 H=‘_ .
Ha ﬁR(O —1) ‘ ﬁR(o 1

The importance of the immersion of the Clifford torus in IR* is clarified
by the following

THEOREM 3.4. Let N be a space form of dimension 4 with curvature
¢ and let M be a compact and connected surface with conformal second
fundamental form and with parallel and non vanishing mean curvature
vector field. Then:

(1) N is flat (i.e. N =1R*)
(2) M coincides with the Clifford torus.

PROOF. By (3.14), (2.4) and (2.5) yield

(3.17) K =RM,=c+af - &,
(3.18) K* =Ry, = (B ~ a)8,
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from which follows that the normal curvature of M vanishes if and only
if M is pseudoumbilical.

(2.6) implies, using the parallelism of the mean curvature vector and
(3.16),

(x+ B3 =0, d(a+ B8) =0.

Hence (o + B) is constant, w3 = 0 and therefore K1 =0, i.e. a = 4.

Thus, M is a pseudoumbilical submanifold of N and (by (3.17) and
the conformity of h) its Gaussian curvature K is given by:

K=c.

On the other hand the section ej is parallel, isoperimetric and um-
bilical hence ([1] prop. 5.1 page 124)

K=0,

whence, as N is simply connected, N = R*. Let X be the position vector
field of IR?, and let Y be any tangent vector to M; as H = ae4 and a is
constant 1

VEY(R + §e4) =Y A (V)=Y-Y =0

hence (X + 2e4) is a constant vector a: therefore M is cointained in the
3-sphere centered at a and with radius ; = iy, H is orthogonal to the
sphere, which implies that M is minimal in the sphere. Thus, if M is
compact, it follows by the same argument as in the proof of Theorem 2,
page 70 of [3] (in the case of a surface) that M coincides with the Clifford
torus in IR*.

REMARK. One can notice that by (3.18) (if IV has constant curvature
and M is a non minimal surface with conformal second fundamental
form) the vanishing of the normal curvature of M is equivalent to the
pseudoumbilicity of M. On the other hand ([1] prop. 2.4 page 179), for
a pseudoumbilical submanifolds of codimension 2 in a space form ||H|| is
constant if and only H is parallel. The following example shows that there
exist. pseudoumbilical surfaces of codimension 2 with conformal second
fundamental form and H non parallel. An easy computation shows that
the surface in IR*

(3.19) (u, v) — e*(cosu cos v, cos usin v, sinucos v, sinusinv)
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has mean curvature vector parallel to

1
ey = —-75( cos v(sinu + cos u), sinv(sinu + cosu),

cos v(sinu — cosu), sinv(sinu — cosu)),

and |H| =e*/V2.
Hence, if 3 = (sin usinv, — sinu cos v, — cos u sin v, cos u cos v),

_eE(01) et
H“*\/i(l ) H“ﬁ(o 1)

3.3 — Surfaces of a 5-dimensional manifold

We choose the Darboux frame (e, ez, €3,€4,€5), so that es is par-
alle! to H (which cannot be zero, as noticed previously), (e;,ez) is an
orthonormal frame diagonalizing Hs. Thus

me(y5) m-(hB) m=(55):

The orthogonality of this matrices yields
(@=B)y=0, (ax—-pBAr=0.

~ = A = 0 being impossible (unless H3, H4 and Hy are not independent),
o = f3, i.c. the section H is umbilical. Hence

THEOREM 3.5. A surface of a 5-dimensional manifold with confor-
mal second fundamental form is pseudoumbilical.

As this property does not depend on the choice of (e, ez2), one can
supposc the orhonormal frame (e1, ez) such that Hj is diagonal. Because
of the orthogonality of Hs and H; and the equality of the norms of Hj, Hy
and Hj, one can assume that the second fundamental form is represented
by

(3.20) Hy = (‘; _?a), H= (2 ‘6‘), Hs = (g 2)
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Let now N be a space of constant curvature. (3.20) and (2.5) yield
Ry, = 202

Hence the normal curvature is not zero. If the mean curvature vector
field is parallel, then M is minimal in a small sphere S*(r) of N (see
Proposition 4.2 of [2]), and the section es, parallel to H, is normal to
S4(r) on M, whereas e3 and e, are tangent to the 4-sphere. As M has
conformal second fundamental form in S%(r), Theorem 3.2 implies that
M is locally immersed in S*(r) as Veronese surface. By (3.20) and (2.4)
the Gaussian curvature K of M as submanifold of N is

K=c—-a?.
On the other hand, as H; and H, represent the second fundamental
form of the immersion of M in S4(r), if M is considered as submanifold
of S(r), by (3.8):

K=i2—2012, K =a?, = =3a’.
r

Hence, set a = 1/R, it follows that r = R/v/3, ¢ = 2/R?. This proves
the following

THEOREM 3.6. Let N be a space form of dimension 5 and let M
be a compact surface with conformal second fundamental form and with
parallel mean curvature vector field. Then:

(1) N is 5-sphere
(2) M is a sphere S*(R) immersed in S“(%) as Veronese surface and

S4( %) is immersed in S%(%) as a totally umbilical submanifold, i.e.

S4(%) is a section of S%(%) by a hyperplane at a distance 7’% from

the centre of S°(%).

REMARK 1. It is trivial that the parallelism of H implies that
a = ||H|| is constant and therefore that the length of h is constant.
Conversely, if N has constant sectional curvature and if A has conformal
second fundamental form, then ||H|| = constant implies that H is paral-
lel. This result can be proven by means of a straightforward computation,



442 S. CONSOLE [18]

differentiating the forms w@ (i = 1,2;a = 3,4,5) whose coefficients are
expressed by (3.20) with a = ||H|| = constant (hence the result is a
consequence of the Codazzi conditions). Therefore the Veronese surface
immersed in a 5-sphere as in Theorem 5 is the only example of surface
immersed in 5-dimensional space of constant curvature with second fun-
damental form conformal and of constant length.

REMARK 2. A more general version of Theorem 5 can be stated:
Let ¢: M — IR%(c) be an isometric immersion of a surface with confor-
mal second fundamental form. If N is any Riemannian 4-dimensional
manifold and g factors throught a minimal immersion f: M — N and an
immersion g: N — IR®(c) then the length of the second fundamental form
of g, hy, is constant and g is locally the immersion of the 2-sphere in the
5-sphere of Theorem 5.

To prove this, one notices that the mean curvature vector H of g is
orthogonal to V. Hence, using the well known identity hy = hy+ f*hy, it
can be recognized that one can choose a Darboux frame (e,, ez, €3, €4, €5)
adapted to the two immersions f and g such that the matrices H; and
H, (which represent hy) and Hs (which is the matrix of f*h,) are in the
form (3.20). In particular, for any X and Y tangent to M, h(X,Y) =
(X,Y)H, and the equations of Codazzi for the immersion g yield ||H|| =
a = constant.

REMARK 3. If one considers the immersion of S?(R) in IR® defined
by (3.5), it can be easily verified that, chosen es parallel to H, which is
orthogonal to S“(%) one obtains that Hj is given by

v3/1 0
Hs-f(o 1)’

and that H,; and H, are given by (3.6). Hence the H; are orthogonal but
with different norms. By modifing the canonical metric of IR® properly,
one can obtain an immersion with conformal second fundamental form.
If p denotes the radial coordinate and (6) (i = 1, ..,4) is an orthonormal
coframe of S4(1), then the canonical metric of IR® is given by

ds® = dg® + *(3_(6?).
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If one considers the metric of IR®
ds? = 3dp* + (3 (6%)2),

then (3.5) define an immersion in (IR®, ds?) with conformal second fun-
damental form. It must be remarked, however, that (IR?, ds?) is not a
space of constant curvature.
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