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On zeros of Sobolev-type orthogonal polynomials

F. MARCELLAN - T.E. PEREZ - M.A. PINAR®™)

RIASSUNTO ~ In questo lavoro si analizzano alcune proprietd sugli zeri dei polinomi
ortogonali Q. (z) associati al prodotto interno definito da

(fr9) = / F(@)o(@)du(z) + A ()g'(c)
1

dove I é un intervallo reale (non necessariamente limitato), p & una misura positiva, ¢ €
IR e A > 0. In particolare si ottengono alcune proprietd di localizzazione e separazione
per le radici di Qn(z). Si studia il comportamento degli zeri rispetto a A quando c € I.

ABSTRACT - In this paper we analyze some properties concerning the zeros of
orthogonal polynomials Qn(x) associated to the inner product defined by

(fr9) = / H(2)9(@)dulz) + A (g’ (©)
1

where I is a (not necessarily bounded) real interval, u is a positive measureonl, c€ R
and X\ > 0. In particular, some properties of localization and separation for the roots of
Qn(z) are obtained. The behavior of the zeros with respect to A is studied when c ¢ I.
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1 - Introduction

The study of orthogonal polynomials related to inner products de-
fined on Sobolev spaces appears in a natural fashion when dealing with
least square problems of approximation for functions of class C*)(I),
where I is a (not necessarily bounded) real interval. These problems
were introduced in [11] and analyzed in detail in later papers (see 7] and
(10]).

It is a well known fact that certain properties (for instance, real
nature, interlacing) of the zeros of standard orthogonal polynomials ,
(i.e., those associated to a finite and positive Borel measure defined on
a real interval), are connected to the self-adjoint character of the shift
operator, or, equivalently, to the fact that these zeros are eigenvalues of
certain Jacobi symmetric matrices.

Most of these properties do not appear in the case of inner products
defined on Sobolev spaces. However, sometimes it is possible to find
properties similar to the above mentioned ones for standard polynomials.

In [2] and (5], orthogonal polynomials @, with respect to the inner
product in IP given by

(1.9 = [ f@g@)ds+ ) [ £(@)g/()dz

have been considered and it has been shown that the zeros of the or-
thogonal polynomials Q,, are simple and belong to [-1,1]; moreover, they
interlace with the zeros of Legendre polynomials P,_; if A > 2/n. Anal-
ogously, BRENNER (see [4]) has studied the distribution for the zeros of
the orthogonal polynomials according to the inner product in IP given by

(f.9) = /f(fb‘)g(-’t)e_’dx*‘ A/f’(z)g’(x)e"dx :

It is shown that these zeros are real, positive and simple.
In a different framework, in (9] orthogonal polynomials with respect
to

9y = [ f@g(@)edz+ A7 (0)g(0)
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have been considered. It has been proved that, all the roots of orthogonal
polynomials, with the possible exception of one, are positive, and also
simple.

For the symmetric measure du = (1—2z2)*dz in {—1, 1], BAVINCK and
MELIER (see [3]) have shown that zeros of the orthogonal polynomials
with respect to:

(f,9) = / f(@)g(z)(1 - 2?)dz + M[f(1)g(1) + f(-1)g(-1)]+

+N[f(D)g'(1) + f(~1)g(~1)]

are real and simple. If N # 0, and for n sufficiently large, Q, has exactly
two opposite real zeros lying outside of (-1, 1).

In a wider context, in [13] algebraic and differential properties for
orthogonal polynomials with respect to

(£,9) = [ F@)9@)du(a) + AF()g ()

are studied, when » € IN, A € R* and ¢ € IR. We must note that the
preceding authors impose a restriction on the location of I and c. More
recently, H. MEUJER (see [13]) analyzes the distribution of the zeros for
such polynomials in the particular case: I = IR* and ¢ = 0, as a natural
generalization of [8].

Finally, in [1] the inner product

(f,9) = [ F@)9(@)du(@) + MF(a(e) + Nf()s'(¢)

is considered, in such a way that, for ¢ = sup I or ¢ = inf I, the real and
simple nature of the roots is proved. Separation properties are obtained,
when [ is a symmetric interval, ¢ = 0 and u is a symmetric measure.

The aim of this paper is to study the properties of the zeros of the
orthogonal polynomials @,, for the inner product

(1.1) (.00 = [ F@)g(@)du(=) + Af(g'(©)
I
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where I is a (not necessarily bounded) interval, p is a positive Borel
measure on I, A € IR* and c is a real number.

In section 2, we recall some algebraic properties for these polynomials.
These properties have been obtained in [12] for a weight function and
extended in a natural way to positive Borel measures. In particular, a
representation in terms of the orthogonal polynomials associated to u is
obtained. These formulas will be very useful in the next sections.

In section 3, the zeros of these Sobolev type orthogonal polynomials
are studied; we show that, for ¢ € I, Q,(z) has n real and simple zeros,
and at least n — 1 of them are on I.

Next, for a bounded interval, we show that for n sufficiently large and
¢ >supl, Q.(z) has one root at the right side of c. This root converges
to ¢ when n tends to +0o. Thus ¢ becomes an attractor for this root of
Qn(z)-

In the next section, we prove that the zeros of @,(z) separate the
zeros of P,{z), the n-th orthogonal polynomial associated to p; moreover,
they are separated by the zeros of the generalized kernel K, K% (e, c).

Finally, we consider the behavior of the zeros of Q,(z) w1th respect
to A, showing that, for ¢ > sup I, the zeros of Q,(z) are an increasing
and bounded function of A.

2 — The representation of the polynomials

Let 4 be a positive Borel measure on the interval I, let ¢ e IR and
A € RY. Consider the inner product

2.1) (f.9) = [ 1@)3(@)du(@) +Af () (0

defined on the linear space IP of the real polynomials.

Let { P.(z)} and {Qn(z)} be the sequences of monic orthogonal poly-
nomials (MOPS) associated to p and (-,-), respectively.
We will denote by K{"*)(z,y) the generalized kernel

o o
K,(-;r")(x) y) = oxr 5:’!—,Kn(m: y) ‘
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where n
s> B@PE).
=I5l
From the orthogonality conditions we are able to obtain a represen-
tation of Q,(z) in terms of the P,(z):

Kn(z,y) =

PRroPOSITION 2.1. (F. MARCELLAN and A. RONVEAUX, [12])

AP!(c
) K O(z,0).
1 + AKﬂ—l (C, )

(2.2) Qn(z) = Pu(z) -

From the Christoffel-Darboux relation
1
(2'3) (:E - y)Kn—l(xs y) “P "2 [P (z)Pn-—l(y) u—l(z)P (y)]

(see [6], page 23, th. 4.5) by derivation with respect to the variable y,
and evaluating in y = ¢, we obtain

(z — )2 KLY (z,¢) =
(2.4) 1

= 15 P @1 (Pre1,0)(@) = Pas(@)Ti(Pas ) ()]

where T;(P;,c)(z) denotes the Taylor polynomial of degree ¢ associated
to P;(x) in c.

By substitution in (2.2), we get a formula relating Q. (z), Pa(z) and
P,,_l(x)

PRoPOSITION 2.2. (F. MARCELLAN and A. RONVEAUX, (12})

(2.5) (z — ¢)*Qn(x) = g2z, n) Pa(z) + q1(z, 1) Pacr ()
with
ga(z,n) = (x —c)®* — "gn-(c|)|2 Ty (Pp-1,c)(z)

N-AC
a1(z,m) = AT ST (Pa, )(a)
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Finally, substituting n by n 4+ 1 in (2.4) and by elimination of
K9 (z,c), we obtain a determinantal relation which can be used to
compute recursively the polynomials Q,(z)

PROPOSITION 2.3. (F. MARCELLAN and A. RONVEAUX, [12])
Poi(z) Pa.(z) Qni1(z) Qn(z)
Fon(e)  Palo) Qna(9)  Qn(e)

where Ap_; =1+ )\K(l'll)(c, c).

n—-

(2.6)

= An-1

3 — The zeros of Q,

The standard properties for the zeros of orthogonal polynomials are
not longer valid for this inner product. However, we can state some
particular results.

PROPOSITION 3.1. For n > 3, the polynomial Q.(z) has at least
Q
n — 2 different zeros with odd multiplicity in I.

PROOF. Let yn.1,--.,¥nx denote the different zeros of Qn(z) of odd
multiplicity which are in 3 . Define

p(z) = (T —= Ynp)--- (T — Yni),»

then the polynomial Q,.(z)p(z)(z—c)? does not change sign in the interval
I, and hence:

(@n(2), p(2)(@ — ) = [ Qu(@)p(e)(z - O*du(a) # 0.

Since Q, is an orthogonal polynomial with respect to (-, ), it follows that
deg(p) =k>n-2 0

0
PRrOPOSITION 3.2. Ifc ¢ I, the zeros of Qn(x) are real, simple and
at least n — 1 of them are on I.
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PROOF. Suppose ¢ > supt. Let yn1,...,¥n s denote the different
1]
zeros of @Q,(z) of odd multiplicity which are in I and

P(z) = (T = Yn1)-.- (T~ Unk)-

Let o be a constant such that the polynomial w(z) = p(z)(z — &)
satisfies w'(c) = 0; i.e., @ = ¢+ p(c)/p'(c).

If ¢ > sup I, then p(c)/p'(¢) > 0 and @ > ¢. Hence, a ¢ I and the
polynomial Q,(z)w(z) does not change sign in I, and

(Qn(z),w(z)) = / O (z)w(z)du(z) # 0.
I

Therefore deg(w) = n, and at least n — 1 of the zeros are real, simple and
are on I; obviously, the remaining root is real and simple too. a

REMARK. Thus, all of the roots are real and simple; n — 1 of them
are contained in I and, although we cannot state the position of the
remaining root, it is possible, however, to give his situation with respect
to the interval I.

For simplicity, from now on, we will suppose that ¢ > sup I, but we
can obtain analogous results for ¢ < inf I.

PROPOSITION 3.3. Ifc 2 supl and Q.(z) has a root which is not
on I, then this root is greater than sup I.

PROOF. Let yn1,...,¥n,n be the zeros of Q,(z), and denote by
Yn,s- -+ Yn,n—1 those contained in I.
Define w(z) = (£ — ¥nn) - - - (T = Yn,n-1), then

(Qu(@) (@) = [ Qui@u(e)du(z) +XQi(e)(e) =0
1

and from
Py (c)

>0
K(1 l)(c, c)

Qunle) =
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we get

/ Qn(z)w(z)du(z) = —AQ,(c)w'(c) < 0.
I

Since Qn(z)w(z) does not change sign in I, we have Q.(z)w(z) < 0 for
z in I, that is: £ — yp, < O for z € I and then y,, >supl. 0

4 — The greatest root of Q,

The study of the position of the greatest zero of Q,(x) needs the
knowledge of the character of the sequence

a(c
CACIA

PROPOSITION 3.4. If ¢ > supl, then {%’;—%}n is a decreasing
sequence.

PROOF. From the relation (2.7) we get

Pa(€)Prs1(0) = Prsr(©Po() =2no1 [@n(0) Qi1 (6) ~ Quir()Q4(0)] -

From the confluent form for the Christoffel-Darboux relation we deduce
the positivity of the previous expression and from the positivity of A,_s,
Qn.(c) and Q. ,(c) the result follows. 0

An interesting consequence of this proposition is that if there exists
a N such that Qn(c) < 0, then Q,(c) < 0 for n > N; that is, if some
polynomial has a root at the right side of ¢, the same will occur for the
rest of the polynomials.

We will show that for a finite interval and n sufficiently large, Qn(z)

satisfies Q. (c) < 0; and hence, Q,.(z) has a root greater than c.
From (2.2) we deduce

Qn(e) = Pale) = = j§(1‘§3( K =

T 1t ,\}};((IC) )(c,c) {1 A[;; E"; K2 ere) - Kni (e, c)]}
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We denote by

(4.1) Ao = POKED,0) - K (60
therefore
(4.2) Qulc) = —n 4]

1+ MKV (e 0)

and the sign of Q,(c) depends only on the value 1—\A,,. Now we consider
the sequence {4,}.

PROPOSITION 4.2. {A,}, is an increasing and positive sequence.
PROOF. Let P¢_,(z) denote the (n — 1)-th monic orthogonal polyno-

mial with respect to the modification of the measure (z — ¢)?du(z); it is
a well know fact that P¢_,(z) can be expressed as

Py(0)Kn-1(z,¢) = Pu(QK2D (2, 0)

P:—l(z) - Kn—l(c) C)
Then
An = 5 [PUOKEN (e, - PRI (e, 0)] =
(4.3)
= m(P:_l)’(c)Kn—l(c’ c) >0

and the sequence is positive.
To show the increasing character of the sequence, it is enough to
recall the confluent form of the Christoffel-Darboux relation; from this

we deduce that the sequence
{ P(c) }
Pn (C) n
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is increasing. Thus

Pl (c) .. (c)
" I‘,(lu.n ¢ ) < =l u+l (0 1)
Bt @I<p @t (@)
P, (c) [ (,1) P,(c)P;(c) ()
I{" ¢, + ] n+l K(O 1)
. (=1 = | < B @9
therefore,
P(‘) ~(0.1) 1,1) ( )
ALY < e () _ Kn— c,c) < n+l K(() ,1) - K(l.l) S
})"( ) -1 ( ) ( ) "+1( ) ( ) n (C c)
that is, A, < A,41. 8]
y Pi(c)
Lensa 4.3, Let B, = . Then {B,}, is a de-

n— (C)I\" l((" )

creasing and positive sequence.

Proor. Obviously B, >0, Vn € IN.
On the other hand, as in the previous proof, we have

n+1EC;K(01)( )<}I:r/-E°; KOY(c,c)

n+l

n+1(C) (0,1) Pu(e) [ o P.(c) P, (c)
e < g [KEVe 0+ ST

u+1(“) I((O 1)( ,C) - Kn(c’ c) < }I;:':'Ecg '(:J_l)( C) n—l(c’ C)

n+l( )

Thus, the sequence {K"_,(c, c) — %I (e, ¢ )} is increasing. And
from this

P(c) 1
Py () K- (e c) K, 1(c,c) — %ZK(O Y (e, C)

1
> Pas1(e) 70,1
K"(C, C) - P,,’.{,:EC;K'& )(C, C)

Bn =

= Bn+1 . 0

LemMA 4.4. {A.B,}, is an increasing and positive sequence.
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PROOF. By using (4.3), we have
Pi(c) (P_) (¢)

ApBp = ————"

Pa(c) Pi_y(c)

And it suffices to remember that the sequences
{Pn' (c)} { (P5)'(e) }
Pa(e) )’ Pi(c) Ja

THEOREM 4.5. If the orthogonality interval of the MOPS {P,(z)},
is bounded, then:

arc both increasing. 1)

dng € IN: Qu(c) <0 Vn>ng.

That is, there exists a non-negative integer ng, such that for n > ng
the polynomials Q,.(x) have their greatest zero at the right side of c.

PRrROOF. If we denote by

ZTn) <KTpn2<...<ZTpn

the roots of P,(z) in increasing order, we have

Pl) . & 1 n

n S >

Po(c) ,; c—Zni c¢—&
where £&; denotes the lower bound of the true interval of orthogonality for
the polynomials P, (z). Thus, the sequence

{ Pi(c) }

P(c)

diverges positively, and the sequence {4, B,l}" diverges positively, too.
By the previous results, {4,}, is increasing and {B,},, is decreasing,

therefore {A,}, diverges. Finally, from the expression (4.2):

P, (c)
1+ MK (e 0)

Qulc) = [1 - ’\A"]

we get the result.
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REMARK. The conclusions of the above theorem also can be obtained
from the divergence of the sequence

{ P (c) }
Pu(e) ),
From the previous proof, we deduce that this occurs when the true inter-

val of orthogonality for the polynomials P,(z) is bounded or if z,, is an
infinite of order smaller than n.

In these conditions, it is possible to prove that c is an attractor for
the greatest root of Q,(x)

PROPOSITION 4.6. If Qn(c) <0, the following inequality holds:

€ < Ynm < C+ — 61‘
and thus {ynn} converges to c.
PROOF. From the inequality
Qule) & 1 1
0> = -
Q) HC—Yni Yam—C
we deduce .
1 ps 1 - -
> Z n—-1 S n—1
Ynn—C €= Ynj C—UYna C—&
and thus

—£1

Ynn < c+

a

Analogous results for I = [0, +oo] and ¢ = 0 have been obtained in
{13]. In the case under consideration, ¢ has not to be the end of the
interval.

It is still an open question if, for an unbounded interval, it can be
found a N such that Qn(¢) < 0. For this problem, we have a partial
answer: for an arbitrary non-negative integer N, there is a A, € R™,
such that for A > )g the polynomial @y(z), orthogonal with respect
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to the corresponding inner product, satisfies @n(c) < 0. Thus, we can
always find inner products such that the last root of @,(z) is greater than
¢, even when I is not bounded.

PROPOSITION 4.7. For a fired N € N, there ezist a A such that
Qn(c) <0 forn> N.

PROOF. From the expression (4.2) we have:

Py(c)
h(c) = ——————[1 - XA,
= T K G [ ]
and the result becomes evident since A, > 0. 0

5 — Separation properties for the roots of @,

LEMMA 5.1. The polynomial K,(,(ill) (z,¢) has n — 1 real and simple
zeros which separate those of P,(z) (and thus they are on I).

PROOF. From the Christoffel-Darboux relation we get

(.’L'—C)zK,(,(_).'ll)(z, C) = WPTIIW [P"(Z)Tl (Pn—l) C) (x)_P _1($)T1 (Pru C) (:L')] .

It will be sufficient to prove that the right term changes sign between
any two consecutive zeros of P,(x) and since P,(z) has n real and simple

roots, the result will be obvious.
Lot £, < ... < Tn, be the zeros of Pp(z). For > Tn,n, P.(z)isa

convex function and therefore:

Ty (P, c)(z) < Po(x) for z>znn

in particular Ty (P,,c)(zn.n) < 0 and the single root of T\ (Pn,c)(z) is at
the right side of z, ». Thus

Ty (Payc)(Tn:) <0 for i=1,2,...,n.



468 F. MARCELLAN - T.E. PEREZ - M.A. PINAR (14]

Consequently
(@ni — )2 KO (g5, ¢) = ~TE ! Pacs (8 T3 (Prs ) (@)
and
(Tri1 — C)sz(:o—'ll) (Tnis1,€) = TP 1_1 E Pt (Zn,i41) T1 (Pr, €) (Tnit1)

have opposite sign. In fact P,_;(Zn:)Pa-1(Zni+1) < 0, because of the
scparation properties for the zeros of the standard orthogonal polynomials
P,(z) and P,_,(z). 0

PROPOSITION 5.2. The zeros of Qn(z) separate those of Pn(z) in
the following way

zn.l < yn.l < xn,2 < yn,2 <...< xn,n < yn,n .
Moreover, the zeros of Q,(x) are separated by the zeros of K, © l)(:zr:, c)

PRrOOF. Denote:

Tp) <Tp2<..-<Zpa the zeros of P,(z)
Yni1 <Yn2<-.+ <VYnn the zeros of Qn(z)
Zno11 < Zn-1,2 < -0 < Zn-1n-1 the zeros of K,(,o_‘ll)(a:, c)

From (2.2) and Lemma 5.1 we deduce that
Qn(Zas) = —AQu(QK2 (@nis )
and

Qn(@nir1) = —AQLQ KLY (Zni41,€)

have opposite sign, because between Z,; and Tn i1 there exists a unique
zero of K%Y (z,¢).
Then, each interval |2, ;, Zn,i+1[ contains one zero of Qn{z).
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Finally
Qn(Znn) = _’\Q:;(C)Kr(uo—'ll)(zn,m c)<0

since K,(,o_'ll) (z,¢) >0,V > 2,1 1.
Hence, we have proved

Tl <Yn1 <Zpn2<Yn2<...<Zpn<¥Ynn-
This relation implies that
Pn(yn,i)Pn(yn,i+1) <0

and therefore,

Kr(no—,-ll) (yn,l') C)Kr(l(hll) (yn.i-i»l ’ C) < 0 .

We conclude that between any two consecutive zeros of Q,(z) there exists
a zero of K%Y (z, c). a

n—

REMARK. The ordering of the zeros is
Tn,1 < Yn,1 < Zn-1,1 < Tn,2 < Yn,2 < Zn-1,2 <...< Zp—1,n-1 < Tnn < Ynn
PROPOSITION 5.3. The zeros {Tn-1,;} of Pa_1(x) separate those of
Q.(z), in the following way

Zn,t < Yna < Tp-1,1 < Ipn,2 < Yn2 < Tp-1,2 <...

oo K Ynn-1 < Tn-in-1 < Tnn < Ynn -

PROOF. Consider equation (2.5) relating Q,.(z), Pn(z) and P,_,(z)

Qu (@)= Pa(z)— Q.. (c) ||p:_1”2 Pn(m)Tl(Pn—hC)((i):ﬁ;uz—-l(z)Tl(Pn’ c)(:r:).

By evaluation in z,,_;; we get

, 1 T Pn—lv n-1,i
Qn(zn—l.i) = Pn(xn—l.i) [1 - Qn(c) ”P _1"2 ((z"_l'iC)—(xC)z )]
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therefore Qn(zn-1:) and P,(zn-1,;) have the same sign. And from the
scparation properties of the roots of P,_,(z) with respect to the roots of
P,(zx), we conclude that the zeros of P,_;(z) separate those of Qn(z).

0

6 — Behavior of the zeros of @, with respect to A

PROPOSITION 6.1. The zeros of Q.(z) are an increasing function
of A.

PROOF. Let 0 < A < pu be two positive real numbers. We will denote

Q.(z,)) and Qn(z,u) the corresponding orthogonal polynomials with
respect to (2.1). Then

AP, (c) (0,1)
n(z,A) = P, - 'n__Kn_' z,c
Q (.'l: ) (:B) 1+AK,(‘1_'_11)(C,C) 1( )
pPq(c)

Qn(xa Il’) = Pn(x) - 1 Kr(to—'ll)(z)c) .

+ pKi) (e 0)
Since P.(c) # 0, by eliminating K, (°_‘11)(:z:, c) in both expressions we get

pt + K& (e, )
A1+ KD (e )

Qn(z,A) — Palz) = [@n(=,1) - Pu(a)] -

On the other hand, if 0 < A < g, then 0 < p~! < A~1, and:

pt + K (e, )
A1+ K (e 0)

0<

Thus, if Qn(z,A) — Pn(z) 2 0, we have
Qn(z, A) - P,,(ZE) < Qn(z1 p’) - P,,(ZB)

hence Q.(z,A) < Qn(z, 1)-
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But, if Q,(z,A) — P.(z) < 0, we have

Qn(z, A) — Pr(z) 2 Qn(z, p) — Pa(x)

hence Q,(z,\) > Qn(zx, p).
From proposition 5.3, if we denote by y, :(A), ¥n:i(1) 1 < i < 7 the

roots of Q,(z,A) and Q,(x, 1) respectively, we have

Yn,i(A): Yn,i (1) e]xn,i’zn—l'i[’ 1<i<n-1
and from the preceding inequalities, the roots are ordered in the increas-
ing order of the parameter

ZTni < Uni(A) <yni(p) < 214, 1<i<n-—1.
Finally, for £ > z, n, Qu(z, A) > Qn(z, 1) and

Zpn < yn.n(’\) < yn,n(”) . 0

In spite of the increasing character of the last zero of @.(z), this zero
does not grow indefinitely, in fact it lies between the last zero of P,(z)
and the last zero of a polynomial which depends on c.

We denote by R,(x) the polynomial of degree n given

DEFINITION.
by
P, (c) Lo
Ra(z) = Pa(z) — —7 55— Kal1 (%,0)
Kv(ﬁ-'ll)(cv c)

PROPOSITION 6.2.  The polynomial R,(z) has n real and simple
roots, which separate those of P,(z) and K (o_‘})(:z:, c) in the following way

Tny <én1 <2Zp-11 <Zn2<6n2 < Zn-12<.--

“e < z"._l‘“_l < zn’n < [ < 61;'"

where §,1 < &n2 <... < &n,n denote the roots of R.(z).
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PROOF. Analogous to proposition 5.2, but, in this case, the last root
of R,(x) is at the right side of ¢, since R}(c) = 0. 0

PROPOSITION 6.3.  The zeros {yn:} of the polynomial Q.(z) are
distributed each one in the corresponding interval |Tn i, énil, 1 =1,...,n.

PROOF. Eliminating K (z, ¢) from the expressions

AP, (c)

a(z) = Pa(z) - — =l — KO )(z, ¢
(@) = Pal@) = T gy Kt (8€)
and
Pi(c) (0,1)
=P,(z) - ————K, ) (z,c

Rn(x) ( ) K,(tl_'ll)(c, C) 1 ( )

since P} (c) # 0, we get
MKV (e, 0)

Qn(z) = Pale) = )[m(x) — P,(z)]

1+ MKV (e c
and taking in account that

MK (e, )

O0< ——=F——
1+ MK (e, 0)

an analogous reasoning to that of proposition 6.1 proves the result. 0O
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