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Periodic solutions of some forced nonlinear
nonautonomous second order ordinary
differential equations at resonance

C.P. GUPTA - M.N. NKASHAMA®

RIASSUNTO — Si ottengono dei risultati sull’esistenza di soluzioni 2r-periodiche per
I’equazione differenziale non lineare del secondo ordine z”’ (t) + m>z(t)+ g (¢, z(t)) = e(t)
con condizioni ai bordi periodiche z(0) — z(27) = 2’(0) — 2’ (27) = 0 purché il rapporto
z 7 g(¢, :r) inconlri asintoticamente (in senso opportuno) infiniti autovalori del problema
lineare =" (t) + m2z(t) + Az(t) = 0, =(0) — z(27) = z'(0) — 2'(27) = 0.

ABSTRACT - Ezistence results for the forced nonlinear second order ordinary dif-
ferential equation z”(t) + m?z(t) + g(t,z(t)) = e(t) with periodic boundary conditions
z(0) — z(2w) = 2'(0) — z'(27) = O are obtained when the ratio z™1g(t,z) asymptoti-
cally crosses in some sense infinitely many eigenvalues of the linear eigenvalue problem
z"(t) + m?z(t) + Az(t) = 0, z(0) — z(2x) = z'(0) — &’ (2r) = 0.

KEY WORDS - Resonance and non-resonance conditions - Crossing of infinitely
many eigenvalues - Nonautonomous, asymptotic behavior.

A.M.S. CLASSIFICATION: 34B15 - 34C25

1 — Introduction

In recent years much work has been devoted to existence results for

(*)This work was supported in part by US National Science Foundation under grant
DMS-9006134.
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forced nonlinear second order ordinary differential equation

z(t) + m’z(t) + g(t, z(t)) = e(t),
z(0) = z(2x), z'(0) = z'(27)

(1.1)

where m is a nonnegative integer, e € L'(0,27), g: [0,27] x R - R is
a Carathéodory function; that is, g(-,z) is measurable on [0, 27| for each
z € IR, g(t, -) is continuous on IR for a.e. t € [0, 27], and for each constant
r > 0, there exists a real valued function «, € L(0, 27) such that

(1.2) lg(t, z)| < ¥-(2)

for a.e. t € [0,27] and all z € R with |z| <.

Initiated by Lazer and Leach [6] many authors have studied the ex-
istence of solutions to Eq.(1.1) when the ratio z~!g(t,z) stays asymp-
totically between two consecutive eigenvalues 0 and 2m + 1 of the linear
periodic eigenvalue value problem

T"(t) + m?z(t) + Az(t) =0, AeRR,

(1.3) 4

z(0) = z(2x), z'(0) = =’ (2x).
We refer to [5, 6, 7, 8, 9, 10] and references therein for more details. (We
also refer to [2] for the case when the ratio z7'g(t,z) stays asymptoti-
cally between two consecutive eigenvalue-branches related to the Fucik
spectrum.)

It is the purpose of this paper to show that by exploiting the nonau-
tonomous character of the function g one can obtain existence results for
Eq.(1.1) when the ratio z~'g(t, ) asymptotically crosses in some sense in-
finitely many eigenvalues of the linear periodic problem (1.3). Of course,
the aforementioned results, concerning the asymptotic behavior of the
ratio z71g(t,z) between two consecutive eigenvalues, can be derived as
special cases of our main result herein. Our results were motivated by
those in [3, 4, 8] where crossing of eigenvalues is considered near the
first two consecutive eigenvalues. Note that herein we are concerned with
the case dealing with crossing of eigenvalues near any two consecutives
eigenvalues. Resonance and nonresonance conditions are considered.
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The paper is organized as follows. In Section 2 we give our notations
and prove some preliminary results that we shall need. In Section 3, we
state and prove our main result on crossing of infinitely many eigenvalues,
subsequently followed by some corollaries related to the resonance and
nonresonance cases. To illustrate our results, we conclude the paper with

a very elementary example.

2 — Preliminary Results

Besides the classical function spaces C([0,2n]), C?([0,27]) of re-
spectively continuous, p-times continuously differentiable functions and
Lebesgue spaces LF(0,27), we shall make use of the Sobolev spaces
H'(0,2m), W»(0,2n) and its subspace of 2m-periodic functions defined

by
(2.1) W20,2m) E{z € W*'(0,27) : 2(0) = z(27), '(0) = ='(2)}.

We refer to Brézis [1] for definitions and properties of these function

spaces.
Let z € W2!(0,2r). If the Fourier expansion of z is

o0
T=ap+ Z(ak cos kt + by sin kt),
k=1
we shall write

m-—1
ZT=ao+ ) (axcoskt+besinkt), T=0if m=0,
k=1

z° = a,, cosmt + by sinmt, z° = ap if m =1,

oo
Z= Z (ax cos kt + by sinkt), and

k=m+1

z+ =z —2°

In order to prove our main result, we shall need some a priort esti-
mates obtained from some bilinear forms on appropriate function spaces.
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The following result was proved in [5].

LEMMA 1. Let Ty € L*(0,2r) be such that for a.e. t € [0,27]
(2.2) 0 < Tot) < 2m+1

with Ty(t) < (2m + 1) on a subset of [0,27] of positive measure.

Then, there exzists a constant 6 = 6(I'g) > O such that for all z €
W2(0,27), one has

2
o L g4 +m()+To(De(t)][E(0)+2"(0)-E(0))dt > lz* i

2
0

Br, (z)

The following result will allow crossing of infinitely many eigenvalues
of the linear periodic boundary value problem.

LEMMA 2. LetT = Iy + Ty + T where Ty, € L®(0,27), T, €
L(0,2) with Too(t) + T1(t) 2 0 for a.e. t € [0,2n], and T'o € L>(0, 27)
is such that 0 < To(t) < (2m+1) for a.e. t € [0,27] with o(t) < (2m+1)
on a subset of [0,27) of positive measure. Let & = §(T'o) > 0 be given by
Lemma 1.

Then, for all z € W2 (0,27), one has

(2.3) Br(z) > [6 - oll1|z1 — [Teol ]Iz 1,

n?

where a = 3

PROOF. By using the definition of I' and Lemma 1, we get
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Br(z) = 5= [[8"+ (m® + To(@)a(0)liate) + 2°() - H(0)ds
2n
+ 5= [I0300) + Tu@)(olla0) + 2°) - 20t
’ 1 2x
> 8ot + 5- [(01(8) + )@ +2°(8) et

- % / (T1(8) + Too(8)) ()t

> 8|zt [} — [Tal21 1270 ~ [Toolroo (72

> 8|zt [ — ITa|p1alZ' |72 = |Toolroo|Z'[22

> 8|zt |4 — Tulmaf(z*)[Z2 = Poolzeol(z*) 22
> (6 — a|Ty]pr — [Toolroe) 2 |7

where, we also have used the inequalities (see e.g [11, p. 208])

|3,

|Z|z2 < |#|z2 and |Z|zeo < V|2 where a=
The proof is complete.

LEMMA 3. LetD =g+l +T . be as in Lemma 2 and § = §(To) > 0
be as given by Lemma 1. Let € > 0 be given.
Then, for all p € L*(0,2m) satisfying

(2.4) 0<p(t)ST(t)+e
a.e. on [0,2n] and all z € WZ'(0,27), one has
By(a) = 5 [["(0) + (m + p(O)(OIE) +37(8) — HO)

2 [6 - a|I‘1|Lx - Irooll."" - e”"l:l ?11
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PRrOOF. For x € W2!(0,2r), by using integration by parts, inequal-
ities (2.4) and Lemma 2, we get

By(e) = 5- Z{(ﬁ'(t»? ~ (m® + p(0) 3(2) )
+or Z[m%f(t»’ - @Oldt+ 5 Z"pa)(z(t) (e de
>0 Z{(i’(t»? = (m® +T(0) + ) (E(0) et
+or j[m2<f(£))2 - @@)at.
> Z{(i’(t))? - (m® + To(t)(&(6))dt
* o ?{m%(t»z - @)

~ 5o [ 1030+ Tue(®) + cl@(e) et
> [6 ~ alTils ~ [Palioe — ella*

The proof is complete.

3 — Main Result and Consequences

Throughout this section we shall assume that g is a Carathéodory
function (see Section 1 for definition). We have the following main resuit.

THEOREM 1. Assume that for all € > 0 there exist a constant
B = B, >0 and a function b, € L*(0,2x) such that

3.1) lg(t, )] < (T(2) + €)lz] + be(2)
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for a.e. t € [0,27] and all x € R with |z| > B, where I’ is as in Lemma
2, and

(3.2) a[L1]z1 + |Coo| Lo < (L)

Furthermore, suppose there erist functions a, A € L*(0, 2r) and con-
stants r, R € R with r <0 < R such that

(3.3) g(t,z) > A(t)
for a.e. t € [0,27] and all z > R,
(3.4) g(t,z) < a(t)

for a.e. t €[0,2n] and allz <.
Then the periodic boundary value problem

(3 5) :L‘”(t) + mzz(t) +g(t,z(t)) = e(t)’
' z(0) = z(27), z'(0) = z'(2)
has at least one solution for each e € L'(0,2r) that is such that

(3.6) / e(t)u(t) < / 9. (B)u(t)dt + / _(Bu(t)dt

0 v>0 v<0
for all v € Span{cosmt,sinmt} \ {0}, where
(3.7 9+(t) = liminfg(t,z) and g¢-(t)=lm supg(t, ).
PROOF. Let = 6 —a|Ty|z1 — [Teo|ze > 0, where § = 6(I's) > 0 and

o > 0 are given in Lemma 2. Then, by assumption (3.1), there exist a
constant B = B, > 0 and a function b = b, € L*(0,2n) such that

9] < (T + 7)ol + bo(8)
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for a.e. t € [0,27] and all z € R with |z| > B.
By using Lemma 3 in [5], we can write

9(t,z) = q1(t, z) + gu(t, 7)

with
qat,z)x >0

for a.e. t € [0,27] and all z € R.
Furthermore, there exists a function o, € L'(0, 27) such that

lg1(t, z)| < 01(2)

for a.e. t € [0,2n] and all-z € R.
Moreover, by Lemma 4 in (5], we have

06,2 < (P + 7 ) o+ bo(t) + 1

for a.e. t € [0,27] and all z € R with |z| > max(1, B).
Choose B > max(1, B) such that

1
(ba(2) + 1)/12] < 47
for a.e. t € [0,2n] and all z € R with |z| 2 B. 1t follows that
1
0 < qut,z)/z <T(t) + 7

for a.e. t € [0,2n] and all z € R with || 2 B.
Now, define 4 : [0,27] x R — IR by

a(t,z) for |z| > B,
T
1, — —
3(t,2) = { Zalt B)% + (1 - %) I(t) for0<z<B,

%m(t, —E)% + (1 + %) I'(t) for —-B<z <0.
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4 is a Carathéodory function since ¢; is. Moreover,

(3.8) 0 <¥(t,z) <T(®)+ 7

for a.e. t € [0,27] and all z € R.
Define h: [0,27] x R — R by

h(t,z) = gi(t, z) + qi(t, z) — 7(t, z)=.
Then, it follows that there exists a function o € L*(0, 27) such that
|h(t, z)| < o(t)

for a.e. t € [0,2n] and all z € IR, where o depends only on I
The periodic boundary value problem (3.5) is equivalent to
z"(t) + m*z(t) + (¢, 2(t))z(t) + h(t, 2(t)) = e(t)

(39) :L‘(O) - z(21r) = :l:’(O) - 2’(27") =0.

In order to apply Mawhin’s coincidence degree (more precisely The-
orem 1.2 in {7]), we have to prove the existence of an a priori bound for
the possible solutions in W2'(0, 2x) to the family of equations

2"(t) +m*z(t) + [(1 - A)(n/2) + X7 (¢, z(2))]=(?)

(3.10) + Ah(t, z(t) — de(t) =0, A€[0,1).

It is clear that for A = 0, Eq. (3.10) has only the trivial solution in
W20, 27). Now, if z € W2(0,27) is a solution of Eq.(3.10) for some
A € (0,1), then using inequalities (3.8) and Lemma 3, we obtain

0= (2m)" / (Z(t) + 2°(t) — £(2))
x {z"(t) + m2z(t) + [(1 — A)(n/2) + X3(t, =(t))]=(t) }dt
+(2m)! / (3(2) + 2°(2) — F(2))(Mh(t, 2(t)) — Ae(t))dt

> (n/2)lz* 13 — @r) " ([Zle + |2°%c + [Ele) (Rl + le]er).
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Therefore, by the continuous imbedding of H!(0,2r) into C([0, 27]), one
gets

(3.11) 02 (n/2)|z* [ = Bllz* s + |2°]11),

where 8 depends only on ¢ and e (but not on z or A).
So, taking 6 = B(n)~!, one has

(3.12) |4 |z < 0+ (6% + 26|20 1) 2.
Now, we claim that there exists a constant p > 0 such that

|zl < p

for any solution z € W21(0, 2) to Eq.(3.10) (p independent of z and X).
Assume the claim does not hold. Then, there will be a sequence (A;)
in (0,1) and a sequence (z,) in Wa, (0, 2m) with |zn|gn — 0o such that

(3.13)  z"(t) + m2za(t) + (1 — An)(1/2)Tn(t) + Aag(t, Ta(t)) = Ane(t).
From inequality (3.12) it follows that
(3.14) |20 = 00 and |zp|m(|z2m) Tt = 0 asn— oo

Thus, the sequence T, (|z%]y1) " is bounded in H*(0, 27).

By using the compact imbedding of H 1(0,2r) into C([0,27]), one
can assume, by taking a subsequence if necessary, that there exists v €
Span{cosmt,sinmt} such that

za(jz| ) = v in C([0,27]),
(|28 m) " = v in HY0,2m),
22(|28|m)* = v in C([0,2n]).

Let us set

va = Zp(lz3lm) 7
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Multiplying Eq.(3.13) by v,A;? and using integration by parts, we
obtain
0 < (1= )27 (m? + 1) 7} (n/2) ]2} [

= @0 [le®) - glt,2a(t)lonlt)at.

So that by taking the liminf as n — oo, we have

/ e(t)v(t)dt > liminf / 9(t, 2a(8))va(¢)dt + Iiminf / 9tz () va(2)dt.

Let I* = {t € [0,2n] : v(t) > 0} and I~ = {t € [0,27] : v(t) < 0}.
Then, for each t € It there exists an integer v(t) € IN such that for all
n > v(t), one has

_ 1
[zlo(jaln) ™ < 7000

and ]
lza @) (ealm) ™ = v(B)] < 7o(t)-
Therefore, for all n > v(t), one has

za(®)(1ablin) ™ 2 (23(6) = letlo)lablan) ™ 2 30(0)

1t follows that for each t € I'*, there exists an integer v(t) € IN such
that for all n > v(t),

va(t) >0 and z,(t) > ~v(t)|z]y = R (since|zd|m — +00).

N e

On the other hand, for each t € I~, there exists an integer u(t) € IN
such that for all n > u(t), one has

2 (B)(22m)™ < (00) +letlo) lablan) ™ < F0(E):

So, for n > u(t), za(t) < v(t)]ad|m — —oo.
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. Now, in order to apply Fatou’s Lemma, we need to show that there
exists ng € IN such that for n > ng

9(t, za(t))n(t) 2 f(2)
for some f € L'(0,2x). Indeed, from inequality (3.11), one gets
|2z |3 (2o i) ™! < 262y g (J23] 1) ™" + 26

So, by the second relation in (3.14), one has that for n > ny,
|z 1 (lza )" < 46.

Since ¥(t, z(t)) = 0 (see (3.8)), one has that for n > ny,

A(t, 2a(£))Za(E)2a(t) = H(t, Ta(D))Za(B)za(E)(I20] )™

(12%1) ™ (@a(8))? + @30
— (za(t) — 25(8)*] - 3t 2a(2))
> ~5(6 2a(t)) @ (1) (Jam) ™
> —20B:14(t, za(t))

[T ]

—

for some 5, > 0.
So, for n 2 ng,

3t Za(t))Tn(t)on(t) 2 ~208:(0(t) + (n/2))  (see (3.8)).

Thus, using the decomposition of g in (3.9), one has that for n > n,,

9(t, Tn(8))Va(t) = F(E Ta(t))Za(t)un(t) + h(E, 2a(8))un(t)
> —206,(T'(t) + (n/2)) — o () K1 = f(2)
since sup lun(t)| < K for some constant Ky > 0.
10,27}
So, by Fatou’s Lemma and the properties of liminf, one has

imin [ gzt > [ on(eoit)at

v>0 v>0

lim inf / (. () vat)dt > / 9_(tu(t)dt

v<0 v<0
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Therefore, we have

2n

/ e(t)v(t)dt > / g ()t + / g9 (t()dt.

0 v>0 v<0

This is a contradiction with assumption (3.6). Thus, the claim holds.

Furthermore, by the compact imbedding of H!(0,27) into C([0, 27]),
one has that there exists K, > 0 such that |z|¢ < K| for any solution to
Eq.(3.10). The proof is complete.

REMARK 1. Assumptions (3.3) and (3.4) are, in particular, satisfied
if there exist functions ¢,d € L'(0, 2w) such that

(3.15) zg(t, z) > —c(t)|z| — d(t)

for a.e. t € [0,27] and all z € R.

Indeed, it follows from (3.15) that d(t) > O for a.e. t € [0,2n].
Therefore, taking R = —r = 1 and a(t) = —A(t) = c(t) + d(t), we are
done.

COROLLARY 1. Assume inequalities

(3.16) 0< lllzrfl_}gf z71g(t, z) < limsupz~tg(t,z) < T'(t)

|x|—r00

hold uniformly a.e. on [0,2n], where I’ € L*(0,2r) satisfies conditions in
Theorem 1.

Moreover, suppose there ezist functions a, A € L'(0,2m) and con-
stants r, R € R satisfying assumptions (3.3) and (3.4).

Then, Eq. (3.5) has at least one solution for each e € L'(0,2mw)
provided condition (3.6) is fulfilled.

PROOF. It suffices to show that assumption (3.16) implies (3.1). In-
deed, it follows from (3.16) that for all £ > 0 there exists B(¢) = B > 0
such that

—e<z7'g(t,z) ST(t) +¢

for a.e. t € [0,27] and all z € R with |z| > B. Choosing b = 0. The
proof is complete.
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COROLLARY 2. Assume the inequality

(3.17) limsup z~*g(t,z) < I'(t)

|zj—o0
holds uniformly a.e. on [0,2n], where I' € L'(0, 27) satisfies conditions

in Theorem 1.
Furthermore, suppose there exists a constant R > 0 such that

(3:18) ~(t) < z77g(t, )
for a.e. t € [0,27] and all z € R with |x| > R, where
(3.19) 0 < 7(t)

for a.e. t € [0,2r] with strict inequality on a subset of positive measure.
Then, Eq. (3.5) has at least one solution for every e € L*(0,2r).

PROOF. Assumptions (3.18), (3.19) imply that (3.1)—(3.4) are fulfilled
withb, =0, A=a=0,and R= —r.
Now, let I* = {t € [0,2n] : 7(t) > 0}. Then, one has

g+(t) = lim iorolfg(t, r)=oc0 and limsupg(t,z)=—o0

— — 00

a.e on [t
Since I'* has a positive measure, it follows that

/ . (Bu(t)dt + / - (@)(t)dt = co.

>0 v<0

The existence of a solution to Eq.(3.5), for every e € L*(0, 27), follows
from Theorem 1. The proof is complete.
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To illustrate our results, we conclude this paper with a very elemen-
tary example in the linear nonautonomous case.

EXAMPLE 1. Let us consider the (linear in z) function g : [0,2n] x
IR — IR defined by

(3.20) g(t,z) =T(t)z
with

0 fort=0
(3.21) I'(t) =

ct™? for0<t<2n

where c is a constant such that

ca 1

(3.22) 0< on <3
(Recall that a = 72/3.)

Then, Eq.(1.1) has a (unique) solution for every e € L(0,2r).

Indeed, it is easy to check that all conditions in Corollary 2 are sat-
isfied with g = 'y =0, and v = I'; = I’ where T is given in (3.21),
(3.22).

Obviously, the function T' given in (3.21) provides for crossing of
infinitely many eigenvalues of Eq.(1.3) on subsets of [0,27] of positive
measure.
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