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The spectra and numerical ranges

of nonlinear operators in reflexive spaces

RAM U. VERMA

RIASSUNTO — Lo scopo di questo lavoro & quello di dimostrare che lo spettro di
ogni applicazione semicontinua da uno spazio di Banach reale e riflessivo al suo duale
& contenuto nella chiusura del suo range numerico. Si ottiene inoltre un teorema di
esistenza ed unicité per una classe di equazioni funzionali non lineari.

ABSTRACT — The aim of this paper is to prove that the spectrum of a demicontin-
uous function from a reflerive real Banach space to its dual is contained in the closure
of its numerical range. As e by-product of this, we obtain an existence theorem for the
solvability of nonlinear functional equations in Banach spaces.
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1 — Introduction

BROWDER (1-2] and MINTY (5] have established a number of results
in a series of papers for the nonlinear equations involving monotone op-
erators in Banach spaces. Browder has applied these results to find the
general existence and uniqueness theorems for the solutions of nonlin-
ear boundary value problems for different settings of nonlinear partial
differential equations. Later ZARANTONELLO [9] has proved a related
theorem for continuous Hilbert space operators. He has also shown that
the closure of the numerical range contains the spectrum.
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The main aim of this paper is to prove that the spectrum of a demi-
continuous function from a reflexive real Banach space to its dual is con-
tained in the closure of its numerical range. As a by-product of this,
we obtain an existence theorem for the solvability of nonlinear functional
equations in Banach spaces.

— Definitions and notations

Let X denote a reflexive real Banach space and X* its dual. A
function A: D(A) C X — X* is said to be demicontinuous at a point
z € D(A) if for {zx,} C D(A), z, — z implies Az, — Az. The symbol
" (“—=5") denotes strong (weak) convergence.

1.1 - Duality mapping
We recall that a continuous fucntion u: R* = {t: t > 0} - R* is
called a gauge function if 4(0) = 0, and u is strictly increasing. Let X
be a reflexive real Banach space and X* its dual. We denote by [-, -] the
duality pairing between X* and X. A mapping J: X — X* is said to be
a duality mapping between X and X* with respect to gauge function u
if
(C1)  V=zz]=pu(l=l)l=l, and
(C2)  |Jzll = p(lzll) for ze€X.

We note that if u(t) = ¢, J is said to be a normalized duality mapping.
If X* is strictly convex, then J is uniquely determined by z, and if X is
also reflexive, then J is a single-valued demicontinuous mapping X onto
X*, which is bounded and positively homogeneous. Furthermore, J, is
monotone and satisfies the property

(C3) [Jz-Jyz-y)=[Jz,z—y]- [Jy,z—y] >

2 |p(lill) = p(llylliz — ¥

for all z,y € X.
When J is normalized duality we have

(€Y [z-Jy,z—y]2]l=] -yl llz -yl
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1.2 Spectrum

For A: X — X*, we define the spectrum of A, denoted by o(A), as
the set
o(A)={A€ C: A— AJ is not invertible},

where J is normalized duality. That means, A— \J is invertible if A~ \J
is bijective and (A — AJ)~!: X* — X is continuous.

1.3 - Numerical range

The numerical range of A: X — X*, denoted by V{A] — a general-
ization of the Zarantonello numerical range to the case of the reflexive
Banach space opcrator - is the set

[Az — Ay,z —y]

ViA={{ 5 B e Xa £},

where J is the strictly monotone normalized duality. If X is a Hilbert

space and J = I, V[4] coincides with the Zarantonello numerical range
[9], defined by

- (Ax—Ayvz-y) N
N[A]_{ "z_yuz 'mryex)x#y}v

where (-,) is the standard inner product on X.

2 — Spectra and numerical ranges

In this section, the first theorem deals with elementary properties,
similar to the Zarantonello numerical range, of the numerical range V[A],
and the second one connects the spectrum and numerical range.

THEOREM 2.1. Suppose A,B: X — X* are mapping from a re-
flezive real Banach space X to its dual X*, and A € IK(field). Then
(i) VIAA] = AVIA]; '
(ii) V{A+ B] C V[A} + V(B); and
(i) V[A = AJ] =VI{A] - {A},
where J: X — X" is strictly monotone normalized duality.
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PROOF. Assertions (i) and (ii) follow directly from the definition. To
prove (iii), if z,y € D(A+ J) = D(A) N D(J) # ® with z # y, we have

[(A-A)z—(A-My,z-y] _
[Jz_‘]y1x_y]

[A:z: Ay, z -y - ANJz - Jy,z—y] _ _
o TJ9.2 7] =V[4] - {A}.

THEOREM 2.2. Let X be a reflerive and locally uniformly convex
real Banach space and its dual X* strictly convez. If A: X — X* is
demicontinuous, then

o(4) C (V]A]).

PROOF. Let us assume A ¢ To(V[A]). Then, for some z,y € X with
z # y, and strictly monotone normalized duality J: X — X*, we have

(C1)  |(A-A)z—-(A=A)y,z-yl|l=
=|[Az - Ay,z —y| - A[Jz — Jy,z — 9] =

I [Az — Ay, z — 4]
[J.’l: - Jy) T - y]

/\'[J:z: ~-Jy,z—y] >
2d[Jz - Jy,z — y] 2 d|llz]| - llyll| Iz - yI.
This implies that
(A~ ANz — (A= ANyl > d| ||zl - llyll |

for all z,y € X. It follows that A — \J is one-to-one.
For z € X, and ¢(r) = dr — [|(A — AJ)(0)||, a continuous real-valued
function on IR with ¢(r) — 00 as r — 0o, we have

(4 — Azl llzl] 2][(A - AJ)z — (A~ AJ)(0),z]|-
—|l(A = A7)(0), 2]| > dl|z]|* — [[(A - ANl llzl| =
=c([lzli=ll,
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and so ||[(A - AJ)z|| 2> c(||lz||) for  # 0. For each M > 0, therefore, there
exists k(M) such that if |[(A—AJ)z|| < M, then ||z|| < k(M). As aresult,
(A — AJ)™! caries bounded subsets of R(A — A\J) into bounded subsets of
X, and is continuous from R(A—AJ) to X, for if v, = (A= AJ)zm — v,
then ||z,,]] < N for constant N, and for some z, € X, as m — 00,

(A= A)zxpm — (A= N)zog— v — (A - AJ)Zo.

Since X is reflexive, there exists some subsequence, again denoted by
(m), such that ., — zo as m — 0o. Thus, by Condition (C1) and the
above arguments, as m — 0o, we have

d|l|zml| - zoll|Zm — Zoll < |[(A = AT)Em — (A = A)T0, Tm — To]| —O.
This implies that
|Zmll — llzoll as m-— o0

Since X is locally uniformly convex, Z,, — To and ||zm|| — ||zol|, this
implies that z,, — zo. It follows that (A — AJ) vy — xo, and by the
demicontinuity of A and J (and hence A—AJ), we find that (A—AJ)zo =
v.

Now we only need to show that the null element 0 of X* is in R(A —
AJ). Indeed, ifv is an arbitrary element of X*, then Sz = (A—AJ)z —v
will satisfy the hypotheses of Theorem 2.2 whenever A — AJ does, and
Sz=0iff (A- M)z =v.

Let A be a directed set of all finite dimensional subspaces of X or-
dered by inclusion, and {z¢: G € A} be a function from A to X or X*.
For GeA, let pg: G — X be the injective mapping from G into X, and
Pce: X* — G* be the dual map projecting X* onto G*. We define a
continuous map(4 — AJ)g: G— G* by (A — AJ)¢ = pa-A(A — A\J)pe,
represented by a diagram

A-AJ

X — X

y e} y el
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For z € G, we have
(A — Mgz, z)| =|[pg-(A — M)z, z]| =
=|{[(A = M)z, ]| = c(ll=Dl|=ll,

and for z,y € G, we find
(A= AD)ez — (A~ A)ey,z — 3l =
=|[(A - A)z — (A— M)y, z— 3] 2
2d|lz — ylifli=I - Iyl

This implies that Condition (C1) holds for (A — AJ)g and, hence, (4 —
M\J)c is injective. By the Brouwer theorem [11, Theorem 16C] on the
invariance of domain, (4 — AJ)¢ is an open mapping. Thus, there exists
a unique element zg of G such that (4 — A\J)eze = 0. For this element,

we find
0 =|[(A - M)eze, zc]| 2 c(llze])lizalls

so that there exists a constant L independent of G such that |lzg|| < L
for all G in A. Since X is a reflexive space, each closed ball in X is weakly
compact. Therefore, {zg: G € A} has at least one limit point zo in the

weak topology of X.
Note that (A — AJ)zg —— 0, for if z is any given element of X and if

we take Gy to be the one-dimensional subspace of X spanned by z, then
for G in A with Go C G, we find that z € G and

(A - M)zg,z] = [(A— A)ezs, 2] = 0.
Next, let G; € A and consider G C A with G; C G. Then
dlizc — ze;lllizell — Iza, Il < [[(A = AM)ze—(A-A)z6,, 26 —Z6, )| <
< |l(4 = A)ze,, zall-

Since X, lies in the weak closure of the set {zg: G1 C G,G € A}, this
implies that

0 — 26, Ifllzoll — Iz, | < {@~*]((4 — A)zs,, 20}, Gr € A
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Since |[(A — AJ)zg,,Zo]| — 0 as a function of G; on the directed
set A,zg, — Zo. Then the demicontinuity of A and J (and hence A —
AJ) implies that (4 — AJ)zg, ——(A — AJ)zo. Since we also have (4 —
A)zg, — 0, it follows that (A — AJ)z, = 0.

Thus, A —\J is bijective and (A—AJ)~! is continuous. This, in turn,
implies that A ¢ 0(A). This proves the theorem.

Note that as a byproduct of Theorem 2.2, we obtain an existence
theorem for the solvability of nonlinear functional equations in reflexive
Banach spaces. This is an analog of ZARANTONELLO's result [9] for the
case of the Hilbert spaces.

THEOREM 2.3. Suppose A: X — X* is demicontinuous from a
reflerive and locally uniformly convez real Banach space X to its strictly
convez dual X*, and A ¢ V[A]. Ifd = inf{|]A — p|: p € V[A]} > 0, and
J: X — X* is normalized duality, then the eguation

Az - dNJz=u

has a unique solution for every u € X".
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