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Uniform majorization of ultradistributions

and decomposition theorem

S-Y. CHUNG - D. KIM

RIASSUNTO - Si dimostra che ogni w-ultradistribuzione con supporto compatio
K puo essere maggiorata uniformemente da funzioni di prova solo sul supporto K.
Applicando questo risultato si ottiene una condizione necessaria e sufficiente affinché
ogni w-ultradistribuzione con supporto nell’'unione X UY di due insiemi compatti, si
possa decomporre nella somme di due w-ultradistribuzioni con supporti appartenenti a
X eY rispettivamente.

ABSTRACT — We prove that every w-ultradistribution with compact support K
can be uniformly majorized by the behavior of test functions only on the support K.
Also applying this result we give a necessary and sufficient condition that every w-
ultradistribution with support in the union XUY of two compact sets can be decomposed
as the sum of two w-ultradistributions whose supports belong to X and Y respectively.
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~ Introduction

The space of £)(IR") of nonquasianalytic ultradifferentiable func-
tions has been introduced by Beurling (1] and Bjorck {2]. But, their
definition is, more or less, inconvenient because the growth condition is
not given on its derivatives, but on the Fourier transform. Recently,
MEISE and TAYLOR [3], [11] gave the clear characterization of the class
as follows; let 2 be an open set in R" and ¢* the Young conjugate of
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©(t) = w(e') where w is the weight function satisfying the appropriate
conditions. Then

Ew)(Q) ={f € C=(QN)|for each A € IN and each compact set K C §2,

|6 f(z)]
'fIwKA sup - [/\lp (u)] <+°°}

€K
:EN " exp

and

Ew)(Q) = {f € C=(Q)|for each compact set K C 2,
|flu,4 < +00 for some A € N}.

The space of ultradistributions of Beurling type (resp. of Roumieu
type) is defined to be the strong dual of £,,)(2) (resp. E(.)(2)).

In the present paper we study the decomposition theorem: Any ul-
tradistribution « with support in K; U K3, say, u € E,(K, U K3), * = (w)
or {w}, be decomosed as u = u; + u, where u; is an ultradistribution
with support in Kj, for j = 1,2. This is always possible for the Sato
hyperfunctions and for the quasianalytic ultradistributions as shown in
HORMANDER (7). But, in general this is not true even for the Schwartz
distributions. LOJASIEWICZ [9] showed that, so called, the regularly-
situated condition on K and K, is necessary and sufficient for the de-
composition of the Schwartz distributions. For the space £, of ultra-
distributions given by the defining sequence (Mp)sen, (see KOMATSU
[8] or RouMIEU [12], [13]), Hérmander gave an example showing that
the decomposition is in general not possible. However, CHUNG-KIM (4]
could give the necessary and sufficient condition for the decoposability
in &, (K, U K,). Now, the main result of this paper states that the
followmg assertions are equivalent:

(1) Either XNY =¢ or X and Y are *-regularly situated.

(2) Any u € E(X UY) can be decomposed as u; + uz where u, €

E'(X) and u, € EL(Y),
where X and Y are compact subsets of R" and * denotes (w) or {w}.
In the above statement the “(w)-regularly situated” means that for any
) € IN there exists A’ € IN and C > 0 such that for any m € IN,

Ao XOVY expiet(2)) < 022X exping ()
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for some p € IN and for all z € X.

Before proving the above results we characterize the ultradistribu-
tions with compact support. We show that every ultradistribution with
compact support can be uniformly majorized by the behavior of test func-
tions only on the its support with a counterexample showing that it can-
not be completely majorized by the usual seminorms on &,)(2). These
are essential for the proof of the decomposition theorem. In proving the
decomposition theorem we approach along the context of MALGRANGE
(10] and MEISE and TAYLOR [11]. In this paper we only consider the case
of Beurling type, but the case of Roumieu type can be obtained with the
slight variations.

For standard notations not explained in the text we refer to CHUNG-
KiM-Kmvm [5].

1 — w-ultradistributions with compact support

We introduce the weight functions and give technical results relating
to the Young conjugates which are needed later as in [5], and refer the
proofs to (5].

DEFINITION 1.1. Letw : IR — [0,00) be a continuous even function
which is increasing on [0,00) and satisfies w(0) = 0 and tl_i‘r‘x}o w(t) = oo.
It is called a weight function, if it has the following properties:

(@) 0 =w(0) < w(s+t) < w(s)+w(t) for all s,t € IR;

(B) [, w(t)/1+t?3dt < +oo;

(v) Jim logt/w(t) =0;

(6) o:t — w(et) is convex on R; .

(e) there ezists C > 0 with [[° w(yt)/t?/,dt < Cw(y) + C for ally > 0;
(C) there exists H > 1 with 2w(t) < w(Ht)+ H for allt 2 0.

From the property (6) we can define the Young conjugate ¢* : {0, 00)

— [0,00) by
¢"(z) = sup{zt — ¢(t)}

LEMMA 1.2. Let ¢(t) be the given one in Definition 1.1(5). Then
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for each A > 0 and p € IN it follows that

(1.1) exp’ (2 3 = sup [exp_T\L_u;(t)}

THEOREM 1.3. Let H>1, A >0 and 0 < e < 1. Then we obtain
that for eachpe IN

(1.2) HP exp[Mg*(p/))] < exp [\ Hy" (pH/ )]
and
(1.3) €” exp[Ap*(p/7)] 2 exp [Aep™ (pe/A)] .

THEOREM 1.4. Let A >0 and p,q € N. Then

(14) expPo" (B e (4)] < exphrp’ (B3]

and

15 expby (BT < MErenyr (B e (L))
where H is the constant in 1.1().

Now we will give another characterization of w-ultradistributions.

The following lemma is the Whitney extension theorem for w-ultradiffer-
entiable functions:

LEMMA 1.5 (Chung-Kim-Kim [5]). Let w(t) be a weight function
satisfying the conditions (a) ~ (¢). Then the.restriction map

(1.6) Px : Ew)(IR™) — £ (K)

is surjective, where px(f) = (8% )aenn.
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Lemma 1.5 allows us to identify the space £,)(K) with the set of
functions in €, (IR") if necessary. Under this point of view we have the
following.

LEMMA 1.6. Let K be a compact conver set in R". Then the
topologies on £,y (K) given by the norm || - [lu,kx and the norm | - {u,ka
are equivalent.

PROOF. The definition of the norms gives
(1.7) IFluga < | Fllosea

On the other hand, Taylor’s formula implies that there exists z € K such
that for F' = (f*)aenn

R ek

{l|=m—|k|+1

[(RyF)*(z)] =

. oM+ 17 (nfz —y))m
S |F|u,K,AexP [/\(P ( Y )] (m__ Ikl +1)!

n T — m—|k|+1
< Pluscaexp [ 20 (Gom+ )] b

Here n denotes the dimension of space and the last inequality follows
from Theorem 1.3. Thus we have

(1.8) | F Nl ex < 2| F o xnr0

which completes the proof.
Now we define an ideal of £,)(Q2) as follows:

Jr(K Q) = {f € £)(Q)]8°flxc = 0 for all a}

where K is a compact subset of 2. Then we can easily obtain the following
Lemma:

LEMMA 1.7. J,)(K : Q) is the closure of the set of all functions in
Ew)(R) vanishing in a neighborhood of K.
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We note that the restriction map px : £w)(R") = Ew)(K) in (1.6)
is continuous, since

o (F)llwr < 21f & ,ma

where K is the convex hull of K. Combining this fact and Lemma 1.7 we
have the following theorem.

THEOREM 1.8. The sequence
0 — Je(K : R™)ics Ey(R")ex— £y (K) — 0
is topologically ezact where t is the inclusion map.

REMARK 1.9. It is clear by Theorem 1.8 that the space &, (K) is
topologically isomorphic to £y (IR")/Jw)(K : R"). Thusu € £,,)(K) i.e.
a continuous linear functional u on £, (K) is a w-ultradistribution which
is orthogonal to J,)(K : ©2), so that it defines an w-ultradistribution with
support in K. Hence it follows from Lemma 1.7 that the space &, (X)
can be considered as the set of all ultradistributions with support in K.
Thus the following is another characterization of £, (K).

COROLLARY 1.10. The following two properties are equivalent :
(i) u € £y (K).
(ii) there ezist A > 1 and C > 0 such that

(1.9

(o) sc[sup @l

268 Do (Jal/X

(m — k| + 1)! ‘3"f(z) - T Hf(y)(z-y)/ i
+ sup I <m— k]

=uex lo = 4™+ exp g™ (m + 1/3)]
Iki<m
meN

for ¢ € E,(R™).

CoroLLARY 1.11.  Ifu € &,,(K) and 8°¢(z) = 0 for all a and
z € K then u(¢) =0.
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PROOF. The proof can be easily obtained from (1.9).
The following example shows that the nght-hand side of (1.9) cannot

be replaced by the usual norm Elélg cxpw (Inl Yk

agN®
EXAMPLE 1.12. Let (z;) be a sequence in IR" such that

|Z1f > |22| > --- =0

and K = {z;,2;,--- } U {0}. Define

uld) = 3 mslg(z;) — (0]

i=
where (m;) is a sequence of positive numbers such that
o0 o0
domilzl =1, 3 m;=oo
J=1 j=1

Such a sequence always exists, since lim |z;} = 0. Then u defines an
J—cx

ultradistribution with support K. In fact it defines a distribution of
order 1. Now we suppose that for some A > 1and C >0

[u()] £ Cllu.kas ¢ € Euy(R7).

Choose ¢ € ,)(IR™) which is equal to 1 in a neighborhood of {z1,--- ,z;}
and 0 near {z;41,Z;42,°" -, } U {0}. Then it is clear that

ij <C,
i<y

which leads to a contradiction when j goes to oo.

On the other hand, even though the second term of the right-hand
side in (1.9) can not be omitted, we can give an optimal condition for
some compact set as follows:

THEOREM 1.13. Let K be a compact set in R" with finitely many
connected components such that any two points x,y in the same compo-
nent can be joined by a rectifiable curve in K of length < Blz—y|. Ifu is
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an ultradistribution with support in K, it follows that there ezists A > 1
and constant C > 0 such that

(1.10) lu(g)| < C sug % ¢ € Ew)(IR™).

PROOF. Let s — z(s) be a curve in K with z(0) = y and arc length
s. Then

Csm—|k|+l

(—m Z sup |8'¢(z)|

" ij=m+1 Z€K

(1.11) IFu(s)] <

if
R =0 ale) - Y omvion) T Y
JiEm—|k|

This is obvious when |k| = m. If |k| < m and (1.11) is already proved for
derivatives of higher order, we conclude by induction that

dFk(S) s™- Il s !
I l_(m Ikl)!,,,z up [8'¢)|.

=m+1 zEK

Since F3(0) = 0 we obtain (1.11) with C replaced by nC. If d(z, y) is the
infimum of the curves from z to y in K then (1.11) gives

B~ 3 og

{H<m—(k|
Ca(a, )
< = sup |8'¢(z)|
CETESVEP IR
A nB(m +1),, |z — yjm-lkIH
< Cld|.
> l¢l ,K.Aexp[nB(P ( )](m—|k|+1)'
Then it follows that
(1.12) lBllwcx < 21@w,knBa

which completes the proof.
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The compact sets satisfying the hypothesis in Theorem 1.13 are some-
times said to be regular in the sense of Whitney.

COROLLARY 1.14. Let K be regular compact set in the sense of
Whitney and ¢ a function in C*(K) with |¢l, xa < +00. Then ¢ can
be extended to a function in E)(IR").

PROOF. By (1.12) and Lemma 1.5 it is obvious.

2 — Decomposition theorem

Let X and Y be compact subsets of IR™ throughout this section.
LoJasiewicz 9] proved that u € £(X UY) can be decomposed as a
sum u; + u, where uy € £'(X) and u, € £'(Y) if X and Y satisfy
some geometric conditions. But in 1985 HORMANDER [7] showed that
the decomposition as above always holds for the quasianalytic ultradis-
tributions, but not for the nonquasianalytic ultradistributions. Recently,
CHUNG-KIM [4] gave a necessary and sufficient condition for X and Y
so that the decomposition is possible for the (nonquasianalytic) ultra-
distributions &/ Mp) defined by sequences. We give here a necessary and
sufficient condition for the case of £,

DEFINITION 2.1.  Two compacts sets X and Y are (w)-regularly
situated if for each A > 1 there exist X' > 1 and C > 0 such that for any

melN

ey LEET g2y < eI ()

for somepeIN and forallz € X.
Now let 6 be the diagonal mapping
6: Eu(X UY) = £ (X) x E)(Y)

defined by §(F) = (F|x, Fly). Then § is a continuous injection. Let 7
be the mapping

T Ewy(X) X Ey(Y) = Ey(X NY)



592 S-Y. CHUNG - D. KIM [10]

defined by n(F,G) = F|xny — Glxny. Then Lemma 1.5 implies 7 is a
continuous surjection and roé = 0. Now we can obtain the dual mappings

82 £, (X) @ Ely(Y) = Ely(X X Y)

and
7' €y (X NY) = £,y (X) ® &, (Y)
with &' (u,v) = u + v and 7'(u) = (v, —u).

Now we are in a position to prove the main result of this paper.

THEOREM 2.2.  Under the above assumption the following state-

ments are equivalent :
(i) Either XNY =¢ or X and Y are (w)-regularly situated.

(ii) The sequence
0 = Eu)(X UY)-5E0)(X) x Euy(Y)Ew)(X NY) - 0

is exact.
(iii) The sequence

0 — £y (X NY)THE(X) @ £,y (Y) S5, (X UY) = 0

is ezact.
(i) Every ultradistribution u € £,(X UY) can be decomposed as

uy + uz, where u; € £,)(X ) and uz € £, (Y).

PROOF. The equivalences of (ii), (iii) and (iv) are easily obtained
from the the theory of the duality in F-space. Now we will prove the
equivalence of (i) and (ii).

The proof of (i) = (ii) : In proving this we have only to show that
Kerm CImé. Let F = (f*) € £u(X) and G = (¢*) € £w)(Y) with
f%=g* on X NY for all k€ IN". Define a jet H = (h*) by

. fHz) , zeX
hk(z)={g"(x) | zeY.
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Then it suffices to show that H is a Whitney jet in &,)(X UY’), which
implies that for each A > 1 there exists C > 0 such that

lk|+1

1

(22 IEHF@I <o E I e ()

(m — [kl + 1)!

for allm € IN, k| < m and z,y € X UY. The case that z and y both
belong to X or both belong to Y is clear. Hence we may assume that
re€XandyeY. If weextend Gto G € Ew(X UY) by using Lemma
1.5 and replace F by F — G, then it reduces to the case when G = 0 and
consequently F|xny = 0. In this case our inequality (2.2) can be written
simply as

|I _ ylm—|k|+1

(2.3) IF*(2)l < m

ePe" ("))

forallm € N, [k] <m, 2 € X and y € Y. Choose z € X NY satisfying
|x — 2| = d(z. X NY). Then it follows from the hypothesis (i) that there
exist X' > 1 and C, > 0 such that for each m’' € N

e I @y o BT e ()

for some p € IN. Here we may assume X > ), since exp[Ap*(2)] is a
decreasing function of A by (1.1). Since F belongs to £, (X) there exist
C, > 0 such that

expW Hy (% E0))

|z — zlm"-—lk!+1

k < >~ - .
for all m"” € IN, k] < m”, z € X and z € XNY where H is the constant
in Definition 1.1(().

To show the inequality (2.3) let m € IN and |k] < m. If we take
m'=m— |k|+1and m” =p+|k| — 1 in (2.4) and (2.5) respectively it
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follows from (1.2) and (1.5) that for some C3 > 0

p+ |kl
=g )

1@ < GE L i B

x ! L] 7 *
sCal 7 Iexp[/\tp(/\,)]exp[/\ ( )]
|z — y|m -k IH+1

e (PR el ()

< r I
< OGR!

Since X’ > ) it follows from (1.1) and (1.4) that there exists a constant
C > 0 such that

@) < 0'—“—""1”—1 explap (2
R+ 1) pP¢”

which is required.
The proof of (i) = (i) : We assume that Kerm =Imé. Then Imé is

closed. Hence the open mapping theorem for F-space implies that ¢ is a
homomorphism. Thus for each A > 1 there exist A;, A2 € IN and C > 0

such that .
| Fllw,xuyx < CUIFllw,x,a + 1 Fllw,va)

for all F € £,)(X UY). In particular, if F =0 on Y then

Iz _ Im-|k|+1

26) 1) < OlFlln 1

explo’ ("))

foralmeNN, |[k|]<m,z€Xandy €Y.
Let f € £.)(IR") with suppf in R™\Y. Considering f as a jet (8% f)

it follows from (1.8) that

gy m—lk|+1
(2.7) 18%F ()] < 20|f[w’x”\,%::n—_y|lk—|11—)! exp[/\cp-(m,-\f- 1 )

where X is the convex hull of X and ) =nl;.
Let fo be an ultradifferentiable function with fo (0) =1 and suppfo C
{z||z| < 1} and f(z) = fo(=22) where 2o € X and ¢ = d(zo, X NY).
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Then suppf does not meet Y. Applying (2.7) with k = (0,--- ,0) to f(z)
we have

28 1S 200fuxa 2 (Y,

On the other hand, since |f|, ¢y is positive there exists p € IN" such
that

|07 fo(x)]
elPl exp[Ne* (fpl/ V)]

(2.9) flozx <2

Therefore, it follows from (2.8) and (2.9) that for some C >0

el m+1
(2.10) rp‘ exp[/\'cp'(lpl ) < ._(__i_llTexp[)«p‘(ﬂ:—l)]

Since o € X and y € Y are arbitrary and € = d(zo, XNY'), (2.10) implies
that X and Y are (w)-regularly situated.

On the other hand, if X and Y are disjoint then all things considered

above are immediate. Therefore, the theorem is proved.

As stated in the introduction we only consider the decomposition
theorem for the space £,,(IR") of w-ultradistributions of Beurling type.
But the case of Roumieu type £, (IR") can be proved by slight variations
under the condition “{w}-regularly situated”, which means that for each
A’ > 1 there exist A > 1 and C > 0 such that

d(z,XNY)P

YL exple (¥ 2 < C2ET gl (am))

forallmeN, |[k| <m,and z € X.
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