Topological degree for perturbations of linear maximal monotone mappings and applications to a class of parabolic problems

J. BERKOVITS - V. MUSTONEN

RIASSUNTO – Si costruisce una teoria del grado topologico per le applicazioni della forma F=L+S, dove L è un operatore monotono massimale ed S è un'applicazione non lineare di classe (S_+) nel dominio di L. La teoria è applicata allo studio di una classe di problemi parabolici non lineari ai valori iniziali.

ABSTRACT – We construct a topological degree for a class of mappings of the form F = L + S where L is closed densely defined maximal monotone operator and S is a nonlinear map of class (S_+) with respect to the domain of L. The degree theory is then applied in the study of a class of nonlinear parabolic initial-boundary value problems.

KEY WORDS -- Topological degree - Nonlinear parabolic problems - Mappings of monotone type.

A.M.S. Classification: 47H17 - 35K30

1 - Introduction

The topological degree theory of mappings has been one of the most important tools in the study of nonlinear functional equations. The classical degree for continuous mappings from a bounded open subset of \mathbb{R}^n to \mathbb{R}^n was introduced by Brouwer in 1912. In the celebrated paper by Leray and Schauder in 1934 the degree was constructed for mappings in infinite dimensional Banach spaces of the form F = I + C, where I

is the identity map and C is compact. Since then a number of further extensions have been introduced.

Important recent contributions are due to Browder in the framework of studying nonlinear mappings of monotone type from a real reflexive Banach space X to its dual space X^* ([3,4], see also [1,2]). The present note provides a further contribution in this direction. We shall construct an approximative degree theory for a class of mappings of the form F = L + S from the domain D(L) in X to X^* , where L is a closed densely defined maximal monotone operator and S is a nonlinear map of class (S_+) with respect to D(L). Our construction is based on suitable approximations of L + S by a family of mappings of class (S_+) with respect to the graph norm topology of D(L), as indicated in the previous work by Browder [4,5] (cf. also [8]). The degree theory obtained makes it possible to use continuation methods in the study of nonlinear equations

$$(1.1) Lu + S(u) = h, \quad u \in D(L)$$

where S may be pseudomonotone or quasimonotone with respect to D(L). As a specific example of the equation (1.1) we deal with nonlinear parabolic initial-boundary value problem of the type

$$(1.2) \begin{cases} \frac{\partial u}{\partial t} + A(u) = h & \text{in } \Omega \times [0, T] \\ u(x, 0) = 0 & \text{in } \Omega \\ D^{\alpha}u(x, t) = 0 & \text{on } \partial\Omega \times [0, T] \text{ for all } |\alpha| \le m - 1, \end{cases}$$

where Ω is a bounded open subset in \mathbb{R}^N , h is a given function defined in $Q = \Omega \times \{0, T\}$ and A is a divergence operator of order 2m,

$$Au(x,t) = \sum_{|\alpha| \le m} (-1)^{|\alpha|} D^{\alpha} A_{\alpha}(x,t,u(x,t),\ldots,D^m u(x,t))$$

satisfying some growth, monotonicity and coercivity conditions. In fact, our results on the existence of weak solutions for (1.2) are based on the systematic study of various monotonicity properties of A and we get some refinements to the classical results obtained before by different methods.

2 - Prerequisites

Let X be a real reflexive Banach space and let X^* stand for its dual space with respect to the continuous pairing $\langle \cdot, \cdot \rangle$. We may assume without loss of generality that X and X^* are locally uniformly convex (see [6], for example). The norm convergence in X and X^* is denoted by \rightarrow , and the weak convergence by \rightarrow . We shall be dealing with mappings T acting from a subset D(T) in X to X^* . T is said to be bounded, if it takes bounded sets of X to bounded sets of X^* , and demicontinuous, if $u_n \rightarrow u$ implies $T(u_n) \rightarrow T(u)$ in X^* . We also need the following classes of mappings of monotone type. A mapping $T: D(T) \rightarrow X^*$ is called

-monotone (we denote $T \in (MON)$) if $\langle T(u) - T(v), u - v \rangle \ge 0$ for all $u, v \in D(T)$.

-quasimonotone $(T \in (QM))$ if for any sequence $\{u_n\}$ in D(T) with $u_n \to u$ we have $\limsup (T(u_n), u_n - u) \ge 0$.

-pseudomonotone $(T \in (PM))$ if for any sequence $\{u_n\}$ in D(T) with $u_n \to u$ and $\limsup \langle T(u_n), u_n - u \rangle \leq 0$, we have $\lim \langle T(u_n), u - u_n \rangle = 0$, and if $u \in D(T)$, then $T(u_n) \to T(u)$.

-of class (S_+) $(T \in (S_+))$ if for any sequence $\{u_n\}$ in D(T) with $u_n \to u$ and $\limsup \langle T(u_n), u_n - u \rangle \leq 0$, we have $u_n \to u$.

If we assume that all mappings are demicontinuous and defined in the whole space X, then $(S_+) \subset (PM) \subset (QM)$ and $(MON) \subset (PM)$. It is also important to observe that $(S_+) + (QM)$ is contained in (S_+) . A monotone map $T: D(T) \to X^*$ is called maximal monotone $(T \in (MM))$ if its graph

$$G(T) = \{(u, T(u)) \in X \times X^* \mid u \in D(T)\}$$

is not a proper subset of any monotone set in $X \times X^*$. If L is a linear densely defined monotone map from D(L) to X^* , then a necessary and sufficient condition for $L \in (MM)$ is that G(L) is a closed subspace of $X \times X^*$ and L^* is monotone (see [6], for example).

In our study we deal with mappings of the form F = L + S where L is a given linear densely defined maximal monotone map from $D(L) \subset X$ to X^* and S is a bounded demicontinuous map of monotone type from X to X^* satisfying one of the monotonicity conditions with respect to the graph norm topology of D(L). Thus, for instance, we call S pseudomonotone with respect to D(L), if for any sequence $\{u_n\}$ in D(L) with $u_n \to u$,

 $Lu_n \to Lu$ and $\limsup \langle S(u_n), u_n - u \rangle \leq 0$, we have $\lim \langle S(u_n), u_n - u \rangle = 0$ and $S(u_n) \to S(u)$. Analogous definitions apply for mappings of class (S_+) and quasimonotone mappings with respect to D(L).

It is well-known that the conditions

$$||J(u)|| = ||u||, |\langle J(u), u \rangle = ||u||^2 \text{ for all } u \in X$$

determine a unique map J from X to X^* , which is called the *duality* map. In our case it is bijective bicontinuous strictly monotone and of class (S_+) . Since J^{-1} can be identified with the duality map from X^* to X^{**} , it is also of class (S_+) . Using the duality map one can show that a map T is maximal monotone if and only if the range of $T + \lambda J$ is the whole space X^* for every $\lambda > 0$. For more details and proofs we refer to [6].

3 - Construction of a degree function

Let X be a real reflexive Banach space. We assume that X and its dual space X^* are locally uniformly convex. Let L be a closed linear maximal monotone map from $D(L) \subset X$ to X^* such that D(L) is dense in X. Since the graph of L is a closed set in $X \times X^*$, Y = D(L) equipped with the graph norm

$$||u||_Y = ||u||_X + ||Lu||_{X^*}, \quad u \in Y,$$

becomes a real reflexive Banach space. We shall assume that Y and its dual space Y^* are also locally uniformly convex.

Let j stand for the natural embedding of Y to X and j^* for its adjoint from X^* to Y^* . For each open and bounded subset G of X we denote

$$\mathcal{F}_G(L; S_+) = \{L + S : \bar{G} \cap D(L) \to X^* \mid S \text{ is a bounded demicontinuous}$$

map of class (S_+) with respect to $D(L)$ from \bar{G} to X^*

and

 $\mathcal{H}_G(L;S_+) = \{L+S(t): \bar{G} \cap D(L) \to X^* \mid S(t) \ (0 \le t \le 1) \text{ is a bounded homotopy of class } (S_+) \text{ with respect to } D(L) \text{ from } \bar{G} \text{ to } X^*\}.$

Recall that S(t) with $0 \le t \le 1$ is called a homotopy of class (S_+) with respect to D(L), if the conditions $u_n \to u$, $Lu_n \to Lu$, $t_n \to t$ and $\limsup (S(t_n)u_n, u_n - u) \le 0$ imply $u_n \to u$ and $S(t_n)(u_n) \to S(t)(u)$. Note that the class $\mathcal{H}_G(L; S_+)$ includes all affine homotopies $L+(1-t)S_1+tS_2$ with $S_1, S_2 \in \mathcal{F}_G(L; S_+)$. In order to find suitable approximations for mappings $F \in \mathcal{F}_G(L; S_+)$ we denote

$$\hat{L} = j^* \circ L \circ j,$$

which obviously is a bounded linear monotone map from Y to Y^* . Similarly we denote

$$\hat{S}(t) = j^* \circ S(t) \circ j : j^{-1}(\bar{G}) \to Y^*$$

whenever S(t) is a homotopy from \bar{G} to X^* . Since j is continuous from Y to X, $j^{-1}(\bar{G}) = \bar{G} \cap D(L)$ is closed and $j^{-1}(G) = G \cap D(L)$ is open in Y. It is easy to check that

$$(3.1) \overline{j^{-1}(\overline{G})} \subset j^{-1}(\overline{G}); \quad \partial(j^{-1}(G)) \subset j^{-1}(\partial G).$$

Note that we have used the same notation for closures and boundaries in both X and Y. In what follows we also need the map $M:Y\to Y^*$ defined by

$$(3.2) (M(u), v) = \langle Lv, J^{-1}(Lu) \rangle, \quad u, v \in Y,$$

where (\cdot,\cdot) denotes the pairing between Y and Y^* , and J^{-1} is the inverse of the duality map $J:X\to X^*$. In fact, for all those $u\in Y$ for which $M(u)\in j^*(X^*)$, we have $J^{-1}(Lu)\in D(L^*)$ and by (3.2)

$$M(u) = j^*L^*J^{-1}(Lu).$$

We shall need this representation later in proving Lemma 2. For each admissible map $F \in \mathcal{F}_G(L; S_+)$ or homotopy $F(t) \in \mathcal{H}_G(L; S_+)$ and for each $\varepsilon > 0$ we define

$$\hat{F}_{\varepsilon} = \hat{L} + \hat{S} + \varepsilon M$$
 and $\hat{F}_{\varepsilon}(t) = \hat{L} + \hat{S}(t) + \varepsilon M$.

Then we have

LEMMA 1. If $F(t) \in \mathcal{H}_G(L; S_+)$ and $\varepsilon > 0$, then $\hat{F}_{\varepsilon}(t)$ is a bounded homotopy of class (S_+) from $j^{-1}(\bar{G}) \subset Y$ to Y^* . In particular, for each $\varepsilon > 0$, \hat{F}_{ε} is a bounded demicontinuous map of class (S_+) from $j^{-1}(\bar{G}) \subset Y$ to Y^* .

PROOF. Assume $F(t) \in \mathcal{H}_G(L; S_+)$ and $\varepsilon > 0$. Let $\{u_n\} \subset \bar{G} \cap D(L)$ with $u_n \to u$ in Y, $t_n \to t$ and $\limsup(\hat{F}_{\varepsilon}(t)(u_n), u_n - u) \leq 0$. Then $u_n \to u$ in X, $Lu_n \to Lu$ in X^* and

$$\limsup \{ \langle Lu_n - Lu, u_n - u \rangle + \langle S(t_n)(u_n), u_n - u \rangle + \varepsilon \langle Lu_n - Lu, J^{-1}(Lu_n) - J^{-1}(Lu) \rangle \} \le 0.$$

Since L is monotone and J^{-1} is strictly monotone we conclude that

$$\limsup \langle S(t_n)(u_n), u_n - u \rangle \leq 0.$$

By the (S_+) -property of S(t) we obtain $u_n \to u$ in X and $S(t_n)(u_n) \to S(t)(u)$ in X^* . Therefore also

$$\lim \langle Lu_n-Lu,J^{-1}(Lu_n)-J^{-1}(Lu)\rangle=0$$

implying by the (S_+) -property of J^{-1} that $Lu_n \to Lu$ in X^* and the assertion follows.

Let $F(t) \in \mathcal{H}_G(L; S_+)$ and let $\{h(t)|0 \le t \le 1\}$ be a continuous curve in X^* . We denote

$$K = \{u \in j^{-1}(\bar{G}) | \hat{F}_{\epsilon}(t)(u) = j^*h(t) \text{ for some } \epsilon > 0 \text{ and } 0 \le t \le 1\}.$$

Note that $j(K) \subset \overline{G}$ implying that K is bounded in X. The fact that K is bounded also in Y follows from

LEMMA 2. There exists a constant R > 0, independent of ε and t, such that $K \subset B_R(Y) = \{v \in Y \mid ||v||_Y < R\}$.

PROOF. Without loss of generality we may assume that $h(t) \equiv 0$. Let $u \in K$ be arbitrary. Then for some $\varepsilon > 0$ and $0 \le t \le 1$,

$$(3.3) \qquad \langle Lu,v\rangle + \langle S(t)(u),v\rangle + \varepsilon \langle L^*J^{-1}(Lu),v\rangle = 0$$

for all $v \in D(L)$. Observe that $J^{-1}(Lu) \in D(L^*)$ since $M(u) \in j^*(X^*)$. Since D(L) is dense in X, the equation (3.3) holds for all $v \in X$. Hence we can insert $v = J^{-1}(Lu)$ to get

$$\langle Lu, J^{-1}(Lu) \rangle + \langle S(t)(u), J^{-1}(Lu) \rangle + \varepsilon \langle L^{\bullet}J^{-1}(Lu), J^{-1}(Lu) \rangle = 0.$$

Recalling that L^* is monotone we obtain

$$||Lu||_{X^*}^2 \le ||S(t)(u)||_{X^*} ||J^{-1}(Lu)||_{X^*}$$

Since $||J^{-1}(Lu)||_X = ||Lu||_{X^-}$ and since S(t) is a bounded homotopy from a bounded set \bar{G} to X^* we conclude that

$$||Lu||_{X^*} \leq c_1$$

for some positive constant c_1 independent of $\epsilon > 0$ and $t \in [0, 1]$, completing the proof.

The relationship between $F(t) \in \mathcal{H}_G(L; S_+)$ and its approximation $\hat{F}_e(t)$ is shown by

LEMMA 3. Let $A \subset \overline{G}$ be a closed set, $F(t) \in \mathcal{H}_G(L; S_+)$ an admissible homotopy and h(t) a continuous curve in X^* such that

$$h(t) \notin F(t)(A \cap D(L))$$
 for all $t \in [0, 1]$.

Then there exists $\varepsilon_0 > 0$ such that

$$j^*h(t) \notin \hat{F}_{\epsilon}(t)(j^{-1}(A))$$
 for all $t \in [0,1]$ and $0 < \epsilon < \epsilon_0$.

О

PROOF. We may assume again that $h(t) \equiv 0$. We shall argue by contradiction. Let us assume that there exist sequences $\{\varepsilon_n\}$, $\{t_n\}$ and $\{u_n\} \subset j^{-1}(A)$ such that $\varepsilon_n \to 0+$, $t_n \to t \in [0,1]$ and

(3.4)
$$\hat{L}u_n + \hat{S}(t_n)(u_n) + \varepsilon_n M(u_n) = 0$$

for all $n \in \mathbb{N}$. By Lemma 2 the sequence $\{u_n\}$ is bounded in Y implying that $u_n \to u$ in X and $Lu_n \to Lu$ in X^* with $u \in D(L)$, for a subsequence. Using the fact that L and J^{-1} are monotone we get from (3.4)

$$\begin{split} & \limsup \langle S(t_n)(u_n), u_n - u \rangle = \\ & = \lim \sup \{ -\langle Lu_n - Lu, u_n - u \rangle - \varepsilon_n \langle Lu_n - Lu, J^{-1}(Lu_n) - J^{-1}(Lu) \rangle \} \\ & \leq 0. \end{split}$$

Since S(t) is in $\mathcal{H}_G(L; S_+)$, $u_n \to u$ in X and $S(t_n)(u_n) \to S(t)(u)$ with $u \in A$. By (3.4)

$$(\hat{L}u_n, v) + (\hat{S}(t_n)(u_n), v) + \varepsilon_n(M(u_n), v) = 0$$

for all $v \in Y$ and $n \in \mathbb{N}$. Letting $n \to \infty$ we then have

$$\langle Lu, v \rangle + \langle S(t)(u), v \rangle = 0$$
 for all $v \in D(L)$.

Since D(L) is dense in X,

$$Lu + S(t)(u) = 0$$
 with $u \in A \cap D(L)$

contradicting our assumption. Hence the proof is complete.

If we choose $A = \partial G$, $S(t) = S \in \mathcal{F}_G(L; S_+)$ and $h(t) = h \in X^*$ in Lemma 3, then the condition $h \notin (L+S)(\partial G \cap D(L))$ implies that there exists $\varepsilon_0 > 0$ such that

$$j^*h \notin (\hat{L} + \hat{S} + \varepsilon M)(j^{-1}(\partial G))$$

for all ε with $0 < \varepsilon < \varepsilon_0$. Recalling (3.1) we also have

$$j^*h \notin (\hat{L} + \hat{S} + \varepsilon M)(\partial(j^{-1}(G)))$$

for all $0 < \varepsilon < \varepsilon_0$. Moreover, by Lemma 2 there exists a constant R > 0, independent of ε , such that

$$(3.5) \quad j^*h \neq \hat{L}u + \hat{S}(u) + \varepsilon M(u) \text{ for all } u \in \bar{G}, \ \|u\|_Y \geq R \text{ and } \varepsilon > 0.$$

Denoting $G_R(Y) = j^{-1}(G) \cap B_R(Y)$ we therefore have

$$j^*h \notin (\hat{L} + \hat{S} + \varepsilon M)(\partial G_R(Y))$$

for all $0 < \varepsilon < \varepsilon_0$. Since $\hat{F} = \hat{L} + \hat{S} + \varepsilon M$ is a map of class (S_+) from $j^{-1}(\bar{G})$ to Y^* by Lemma 1, the value of the unique topological S_+ -degree (see [3], [1])

$$d_{S_+}(\hat{L}+\hat{S}+\varepsilon M,G_R(Y),j^*h)$$

is well-defined for all $0 < \varepsilon < \varepsilon_0$ and independent of R provided (3.5) holds. Moreover, the value of the degree remains stable for all $0 < \varepsilon < \varepsilon_0$. Indeed, if ε_1 and ε_2 are arbitrary with $0 < \varepsilon_1 < \varepsilon_2 < \varepsilon_0$, we have

$$(1-t)(\hat{L}+\hat{S}+\varepsilon_1M)+t(\hat{L}+\hat{S}+\varepsilon_2M)=\hat{L}+\hat{S}+\varepsilon(t)M,$$

where $\varepsilon(t)=(1-t)\varepsilon_1+t\varepsilon_2$ satisfies $0<\varepsilon_1\leq \varepsilon(t)\leq \varepsilon_2$. Hence

$$i^*h \notin (\hat{L} + \hat{S} + \varepsilon(t)M)(\partial G_R(Y))$$
 for all $0 \le t \le 1$

and the invariance under admissible homotopies of the S_+ -degree implies that

$$d_{S_+}(\hat{L}+\hat{S}+\epsilon_1M,G_R(Y),j^*h)=d_{S_+}(\hat{L}+\hat{S}+\epsilon_2M,G_R(Y),j^*h).$$

Consequently, it is relevant to define a function d_L by

$$(3.6) d_L(L+S,G,h) = \lim_{\epsilon \to 0+} d_{S_+}(\hat{L}+\hat{S}+\epsilon M,G_R(Y),j^*h).$$

whenever $h \notin (L+S)(\partial G \cap D(L))$ and R is sufficiently large. We shall show in the next section that (3.6) defines a classical topological degree for $\mathcal{F}_G(L;S_+)$ with respect to the class $\mathcal{H}_G(L;S_+)$ of admissible homotopies and the normalizing map L+J. In the sequel we use the constant R in various situations and we always assume R to satisfy Lemma 2.

4 - Properties of the degree

For each open bounded subset G of X, $F = L + S \in \mathcal{F}_G(L; S_+)$ and $h \in X^* \backslash F(\partial G \cap D(L))$ the formula (3.5) defines the value of the function d_L . In order to check that d_L is in fact a good degree for the class $\mathcal{F}_G(L; S_+)$ we recall first the classical axioms of the topological degree function to be verified.

- (a) If $d_L(L+S,G,h) \neq 0$, then there exists $u \in G \cap D(L)$ such that Lu + S(u) = h.
- (b) (Additivity of domain) If G^1 and G^2 are open disjoint subsets of G and $h \notin (L+S)[(\tilde{G} \setminus (G^1 \cup G^2)) \cap D(L)]$, then

$$d_L(L+S,G,h) = d_L(L+S,G^1,h) + d_L(L+S,G^2,h).$$

(c) (Invariance under admissible homotopies) If $F(t) \in \mathcal{H}_G(L; S_+)$ and $h(t) \notin F(t)(\partial G \cap D(L))$ for all $t \in [0,1]$ where h(t) is a continuous curve in X^* , then

$$d_L(F(t), G, h(t))$$
 is constant for all $t \in [0, 1]$.

(d) L+J is the normalizing map, i.e.,

$$d_L(L+J,G,h)=1$$
 whenever $h\in (L+J)(G\cap D(L))$.

We shall verify the axioms (a) to (d) by using the corresponding axioms for the S_+ -degree satisfied by the related approximations.

- (a) Assume $d_L(L+S,G,h) \neq 0$. If $h \notin (L+S)(G \cap D(L))$, then also $h \notin (L+S)(\bar{G} \cap D(L))$ and Lemma 3 implies $j^*h \notin \hat{F}_{\epsilon}(j^{-1}(\bar{G}))$ for all $\epsilon > 0$ small enough. A contradiction follows from (3.6).
- (b) Let G^1 and G^2 be open subsets of G with $G^1 \cap G^2 = \emptyset$. Assume that $h \notin (L+S)[(\bar{G} \setminus (G^1 \cup G^2)) \cap D(L)]$. By Lemmata 2 and 3 there exist constants $\varepsilon_0 > 0$ and R > 0 such that

$$\hat{L}u + \hat{S}u + \varepsilon M(u) \neq j^*h$$

for all $u \in j^{-1}(\bar{G})$ with $||u||_Y \ge R$, $\varepsilon > 0$, and

$$j^*h\notin (\hat{L}+\hat{S}+\varepsilon M)(j^{-1}(\bar{G}\backslash (G^1\cup G^2)))$$

for all $0 < \varepsilon < \varepsilon_0$. Note that $j^{-1}(\bar{G}\setminus (G^1\cup G^2))=j^{-1}(\bar{G})\setminus (j^{-1}(G^1)\cup j^{-1}(G^2))$. Then we also have

$$(4.1) j^*h \notin (\hat{L} + \hat{S} + \varepsilon M)(\overline{G_R(Y)} \setminus (G_R^1(Y) \cup G_R^2(Y)))$$

for all $0 < \varepsilon < \varepsilon_0$. Hence by (3.5) and the properties of the S₊-degree

$$\begin{aligned} d_L(L+S,G,h) &= d_{S_+}(\hat{L}+\hat{S}+\varepsilon M,G_R(Y),j^*h) \\ &= d_{S_+}(\hat{L}+\hat{S}+\varepsilon M,G_R^1(Y),j^*h) + d_{S_+}(\hat{L}+\hat{S}+\varepsilon M,G_R^2(Y),j^*h) \\ &= d_L(L+S,G^1,h) + d_L(L+S,G^2,h), \end{aligned}$$

where $0 < \varepsilon < \varepsilon_0$.

(c) Let $F(t) = L + S(t) \in \mathcal{H}_G(L; S_+)$ and h(t) a continuous curve in X^* with $h(t) \notin F(t)(\partial G \cap D(L))$ for all $t \in [0, 1]$. By Lemma 3 there exists $\varepsilon_0 > 0$ such that

$$j^*h(t) \notin \hat{F}_{\varepsilon}(t)(j^{-1}(\partial G))$$
 for all $t \in [0,1]$ and $0 < \varepsilon < \varepsilon_0$.

By Lemma 2 there exists R > 0 such that

$$\hat{L}u + \hat{S}(t)(u) + \varepsilon M(u) \neq j^*h$$

for all $t \in [0,1]$, $\varepsilon > 0$ and $u \in j^{-1}(\bar{G})$ with $||u||_Y \ge R$. Hence $j^*h(t) \notin \hat{F}_{\varepsilon}(t)(\partial G_R(Y))$ for all $t \in [0,1]$, $0 < \varepsilon < \varepsilon_0$, and the invariance under S_+ -homotopies of the S_+ -degree gives

$$\begin{split} d_L(F(t),G,h(t)) &= \lim_{\varepsilon \to 0+} d_{S_+}(\hat{F}_\varepsilon(t),G_R(Y),j^*h(t)) \\ &= \text{constant} \quad \text{ for all } t \in [0,1]. \end{split}$$

(d) We must check that L+J admits the property of a normalizing map. It is well-known that L+J from D(L) to X^* is one-to-one and onto. Let G be an open bounded subset in X, $h \in (L+J)(G \cap D(L))$ and let $B_r(X) = \{v \in X \mid ||v||_X < r\}$ contain G. Using (b) we get

$$d_L(L+J,G,h)=d_L(L+J,B_r(X),h).$$

We consider the solutions of the equation

(4.2)
$$Lu + J(u) = th, \quad u \in D(L), \ 0 \le t \le 1.$$

Then (4.2) implies

$$||u||_X^2 = -\langle Lu, u \rangle + t\langle h, u \rangle$$

$$\leq ||h||_{X^*} ||u||_X.$$

Therefore the solutions of (4.2) satisfy $||u||_X \le ||h||_{X^*}$. Thus, by choosing $\tau > ||h||_{X^*}$,

$$Lu + J(u) \neq th \text{ for all } t \in [0, 1], u \in D(L), ||u||_{X} = r.$$

Using (c) we have

$$d_L(L+J, B_r(X), h) = d_L(L+J, B_r(X), 0)$$

and by (3.5)

$$d_{L}(L+J, B_{r}(X), 0) = \lim_{\varepsilon \to 0+} d_{S_{+}}(\hat{L} + \hat{J} + \varepsilon M, j^{-1}(B_{r}(X)) \cap B_{R}(Y), 0)$$

= $\lim_{\varepsilon \to 0+} d_{S_{+}}(\hat{L} + \hat{J} + \varepsilon M, B_{R}(Y), 0).$

Let J_Y denote the duality map from Y to Y*. It is easy to see that

$$(1-t)J_Y(u)+t(\hat{L}u+\hat{J}(u)+\varepsilon M(u))\neq 0$$

for all $t \in [0,1]$, $0 < \varepsilon < \varepsilon_0$, $||u||_Y = R$. Hence

$$\lim_{\epsilon \to 0+} d_{S_+}(\hat{L}+\hat{J}+\epsilon M, B_R(Y), 0) = d_{S_+}(J_Y, B_R(Y), 0) = 1.$$

Collecting the results above we get the desired result

$$d_L(L+J,G,h)=1.$$

Thus we can conclude the following

THEOREM 1. Let X be a real reflexive Banach space, L a closed linear maximal monotone densely defined map from $D(L) \subset X$ to X^* , G an open bounded subset in X and $\mathcal{F}_G(L;S_+)$ the class of admissible mappings. Then there exists a topological degree function d_L satisfying the properties (a) to (d) with respect to the class $\mathcal{H}_G(L;S_+)$ of admissible homotopies and normalizing map L+J.

5 - Existence theorems

We describe some standard results which can be derived by continuation methods as soon as a classical degree theory is available. Let X be a real reflexive Banach space, L a closed linear maximal monotone map: $D(L) \to X^*$ with D(L) dense in X and G an open bounded subset in X. If $F = L + S \in \mathcal{F}_G(L; S_+)$ and $h \in X^*$ is given, we are interested in the solvability of the equation

(5.1)
$$Lu + S(u) = h, \quad u \in \bar{G} \cap D(L).$$

More generally, denoting

$$\mathcal{F}_G(L;PM) = \{F = L + S | S : \bar{G} \to X^* \text{ is pseudomonotone}$$
 with respect to $D(L)\}$

and

$$\mathcal{F}_G(L;QM) = \{F = L + S | S : \bar{G} \to X^* \text{ is quasimonotone} \}$$

with respect to $D(L)$

we can use the fact that the mappings $F = L + S \in \mathcal{F}_G(L;QM)$ admit good approximations $\{F_\varepsilon = L + S + \varepsilon J | \varepsilon > 0\}$ in $\mathcal{F}_G(L;S_+)$, and homotopy arguments can be applied to the broader classes $\mathcal{F}_G(L;QM)$ and $\mathcal{F}_G(L;PM)$. Our basic existence theorem is the following

THEOREM 2. Let G be an open bounded subset in X with $0 \in G$ and let $F = L + S \in \mathcal{F}_G(L; QM)$. If

(5.2)
$$Lu+(1-t)J(u)+tS(u)\neq 0$$
 for all $u\in\partial G\cap D(L)$ and $0\leq t<1$, then $0\in\overline{(L+S)(G\cap D(L))}$.

PROOF. We may assume that $0 \notin \overline{(L+S)(\partial G \cap D(L))}$; otherwise there is nothing to prove. In order to employ the homotopy argument of the d_L -degree we show the existence of $\varepsilon_0 > 0$ such that

$$(5.3) (1-t)(Lu+J(u)) + t(Lu+S(u)+\varepsilon J(u)) \neq 0$$

for all $u \in \partial G \cap D(L)$, $0 \le t \le 1$ and $0 < \varepsilon < \varepsilon_0$. Indeed, assume the contrary, i.e., there are sequences $\{u_n\}$ in $\partial G \cap D(L)$, $\{t_n\}$ in [0,1] and $\{\varepsilon_n\}$ with $\varepsilon_n \to 0+$ such that

(5.4)
$$Lu_n + (1 - t_n)J(u_n) + t_n(S(u_n) + \varepsilon_n J(u_n)) = 0, \quad n \in \mathbb{N}.$$

Taking subsequences, if necessary, we have $u_n \to u$ in X, $t_n \to t$, $J(u_n) \to w$ in X^* and $S(u_n) \to z$ in X^* . By (5.4), $Lu_n \to -(1-t)w - tz$. Since the graph of L is weakly closed, $u \in D(L)$ and Lu = -(1-t)w - tz.

The case $t_n \to t = 1$ is excluded because (5.4) gives

$$Lu_n + S(u_n) = -(1 - t_n + t_n \varepsilon_n)J(u_n) + (1 - t_n)S(u_n) \rightarrow 0$$

implying $0 \in \overline{(L+S)(\partial G \cap D(L))}$. Hence we can assume that $0 \le t < 1$. By (5.4), monotonicity of L and the (QM)-property of S we have

$$\begin{split} &(1-t)\limsup \langle J(u_n), u_n - u \rangle \\ &= \limsup \langle (1-t_n + \varepsilon_n t_n) J(u_n), u_n - u \rangle \\ &= \limsup \langle -Lu_n - t_n S(u_n), u_n - u \rangle \\ &= -\liminf \{ \langle Lu_n, u_n - u \rangle + t_n \langle S(u_n), u_n - u \rangle \} \\ &\leq -\liminf \langle Lu_n - Lu, u_n - u \rangle - t \liminf \langle S(u_n), u_n - u \rangle \leq 0 \end{split}$$

Hence $\limsup \langle J(u_n), u_n - u \rangle \leq 0$ and the (S_+) -property of J implies $u_n \to u$ in X with $u \in \partial G \cap D(L)$. Letting $n \to \infty$ in (5.4) we get

$$Lu + (1-t)J(u) + tS(u) = 0$$
 with $u \in \partial G \cap D(L)$ and $0 \le t < 1$,

which contradicts (5.2).

Consequently, there exists $\varepsilon_0 > 0$ such that (5.3) holds. Since $L+S+\varepsilon J \in \mathcal{F}_G(L;S_+)$ and L+J is the normalizing map for d_L , the conditions

(5.3) and (c) imply that for each ε with $0 < \varepsilon < \varepsilon_0$ there exists $u_{\varepsilon} \in G \cap D(L)$ such that

(5.5)
$$Lu_{\varepsilon} + S(u_{\varepsilon}) + \varepsilon J(u_{\varepsilon}) = 0.$$

Letting $\varepsilon \to 0+$ in (5.5) we get $Lu_{\varepsilon}+S(u_{\varepsilon})\to 0$ implying that $0\in \overline{(L+S)(G\cap D(L))}\subset \overline{(L+S)(G\cap D(L))}$, completing the proof.

For mappings F = L + S in the classes $\mathcal{F}_G(L; S_+)$ or $\mathcal{F}_G(L; PM)$ we have better results. In fact, if $L + S \in \mathcal{F}_G(L; S_+)$ we can derive directly from the properties (a), (c), and (d) of the d_L -degree the following

COROLLARY 1. Let G be an open bounded subset in X with $0 \in G$ and let $F = L + S \in \mathcal{F}_G(L; S_+)$. If the condition (5.2) holds, then $0 \in (L+S)(\bar{G} \cap D(L))$. Moreover, if (5.2) holds also for t=1, then $d_L(L+S,G,0)=1$.

For mappings F = L + S in $\mathcal{F}_G(L; PM)$ we respectively have

COROLLARY 2. Let G be a convex open bounded subset in X with $0 \in G$ and let $F = L + S \in \mathcal{F}_G(L; PM)$. If the condition (5.2) holds, then $0 \in (L + S)(\bar{G} \cap D(L))$.

PROOF. In view of Theorem 2 it will be sufficient to show that $(L+S)(\bar{G}\cap D(L))$ is closed in X^* . Indeed, let $\{y_n\}$ be a sequence in X^* such that $y_n=Lu_n+S(u_n)$ with $\{u_n\}\subset \bar{G}\cap D(L)$ and $y_n\to y$ in X^* . Since G is bounded and convex, we can assume that $u_n\to u$ in X with $u\in \bar{G}$ and $S(u_n)\to z$ in X^* . Hence $Lu_n\to y-z$. Since also the graph of L is weakly closed, $u\in \bar{G}\cap D(L)$ and Lu=y-z. Consequently,

$$\limsup \langle S(u_n), u_n - u \rangle = \limsup \langle y_n - Lu_n, u_n - u \rangle$$
$$= -\lim \inf \langle Lu_n - Lu, u_n - u \rangle \le 0.$$

Since S is pseudomonotone with respect to D(L) we obtain $S(u_n)
ightharpoonup S(u) = z$ and $\langle S(u_n), u_n \rangle \rightarrow \langle S(u), u \rangle$. Thus $Lu + S(u) = y \in (L + S)(\tilde{G} \cap D(L))$.

Next we produce a version of Borsuk's theorem.

THEOREM 3. Let G be an open bounded subset in X such that $0 \in G$ and G is symmetric with respect to the origin. Assume that $S: \overline{G} \to X^*$ is a mapping satisfying the condition

(5.6)
$$S(-u) = -S(u) \text{ for all } u \in \partial G.$$

Then the following assertions hold

- (A) If $L+S \in \mathcal{F}_G(L; S_+)$, then $0 \in (L+S)(\bar{G} \cap D(L))$ and $d_L(L+S, G, 0)$ is odd whenever defined.
- (B) If $L+S \in \mathcal{F}_G(L;PM)$ and G is convex, then $0 \in (L+S)(\bar{G} \cap D(L))$
- (C) If $L + S \in \mathcal{F}_G(L; QM)$, then $0 \in \overline{(L+S)(\bar{G} \cap D(L))}$.

PROOF. Borsuk's theorem holds for the mappings of class (S_+) . On the other hand, if S satisfies (5.6), then $S + \epsilon J$, L + S and $\hat{L} + \hat{S} + \epsilon M$ satisfy the corresponding condition. Thus the proof is analogous to the proofs of Theorem 2 and Corollaries 1 and 2.

We close this section by some surjectivity results.

THEOREM 4. Let $L + S \in \mathcal{F}_X(L; PM)$ $(L + S \in \mathcal{F}_X(L; QM))$ and assume that S satisfies the condition

- (i) if $Lu_n + S(u_n) \to w$ in X^* , then $\{u_n\}$ is bounded in X, and one of the conditions
- (ii) there exists R > 0 such that $\langle S(u), u \rangle > 0$ for all $||u|| \geq R$,
- (iii) there exists R > 0 such that S(-u) = -S(u) for all $||u|| \ge R$.

Then $(L+S)(D(L)) = X^*$ ((L+S)(D(L)) is dense in X^* , respectively).

PROOF. We deal with the case $L + S \in \mathcal{F}_X(L; PM)$ where S satisfies the conditions (i) and (ii). All other cases are shown analogously. Let $h \in X^*$ be given. By the condition (i) there exist constants $R' \geq R$ and $\delta > 0$ such that

 $||Lu + S(u) + \varepsilon J(u) - th|| \ge \delta$ for all $u \in D(L)$, ||u|| = R', $0 \le t \le 1$ and $0 \le \varepsilon < \frac{\delta}{R'}$. Thus we obtain

$$d_L(L+S+\varepsilon J, B_{R'}(X), h) = d_L(L+S+\varepsilon J, B_{R'}(X), 0)$$

whenever $0 < \varepsilon < \frac{\delta}{R'}$. Denote

$$F(t)(u) = Lu + (1-t)J(u) + t(S(u) + \varepsilon J(u)), \quad 0 \le t \le 1.$$

If F(t)(u) = 0 for some $t \in [0,1]$, ||u|| = R' and $0 < \varepsilon < \frac{\delta}{R'}$, then by (ii)

$$0 = \langle F(t)(u), u \rangle = \langle Lu, u \rangle + (1 - t + \varepsilon t)R'^2 + t\langle S(u), u \rangle > 0,$$

a contradiction. Therefore, by the invariance under homotopies, we have for all $0 < \varepsilon < \frac{\delta}{R^2}$,

$$d_L(L+S+\varepsilon J, B_{R'}(X), 0) = d_L(L+J, B_{R'}(X), 0) = 1.$$

Hence there exists $u_{\varepsilon} \in D(L)$ such that $Lu_{\varepsilon} + S(u_{\varepsilon}) + \varepsilon J(u_{\varepsilon}) = h$. Letting $\varepsilon \to 0+$ we have Lu + S(u) = h for some $u \in D(L)$.

REMARK. We note that both of the conditions (i) and (ii) are met, if S satisfies the strong coercivity condition

$$(i)_S$$
 $\frac{\langle S(u), u \rangle}{\|u\|} \to \infty \text{ as } \|u\| \to \infty.$

6 - Applications to parabolic initial-boundary value problems

We shall consider initial-boundary value problems for differential operators of the form

$$(6.1) \frac{\partial u(x,t)}{\partial t} + \sum_{|\alpha| \leq m} (-1)^{|\alpha|} D^{\alpha} A_{\alpha}(x,t,u(x,t),Du(x,t),\ldots,D^{m} u(x,t))$$

in $Q = \Omega \times [0,T]$, where Ω is an open bounded subset in \mathbb{R}^N , $m \geq 1$ and the coefficients A_{α} are functions of $(x,t) \in Q$ and of $\xi = (\eta,\zeta) \in \mathbb{R}^{N_0}$ with $\eta = \{\eta_{\beta} \mid |\beta| \leq m-1\} \in \mathbb{R}^{N_1}$, $\zeta = \{\zeta_{\beta} \mid |\beta| = m\} \in \mathbb{R}^{N_2}$ and $N_1 + N_2 = N_0$. We assume that each $A_{\alpha}(x,t,\xi)$ is a Carathéodory function, i.e., measurable in (x,t) for fixed $\xi \in \mathbb{R}^{N_0}$ and continuous in ξ for almost all $(x,t) \in Q$. Then the familiar growth condition

$$(A_1)$$
 There exist $p>1$, $c_1>0$ and $k_1\in L^{p'}(Q)$, $p'=\frac{p}{p-1}$, such that

$$|A_{\alpha}(x,t,\eta,\zeta)| \le c_1(|\zeta|^{p-1} + |\eta|^{p-1} + k_1(x,t))$$

for all $(x,t) \in Q$, $\xi = (\eta,\zeta) \in \mathbb{R}^{N_0}$ and $|\alpha| \leq m$, implies that the latter part of (6.1),

(6.2)
$$A(u) = \sum_{|\alpha| \le m} (-1)^{|\alpha|} D^{\alpha} A_{\alpha}(x, t, u, Du, \dots, D^{m}u)$$

gives rise to a bounded continuous map S from the space $\mathcal{V} = L^p(0, T; V)$ with $V = W_0^{m,p}(\Omega)$ into its dual space $\mathcal{V}^* = L^{p'}(0, T; V^*)$ by the rule

(6.3)
$$\langle S(u), v \rangle = \sum_{|\alpha| \leq m} \int_{\mathcal{Q}} A_{\alpha}(x, t, u, Du, \dots, D^m u) D^{\alpha} v, \quad u, v \in \mathcal{V}.$$

We shall assume in the sequel that $2 \leq p < \infty$. (The case $1 can also be treated if we replace <math>\mathcal V$ by $\mathcal W = \mathcal V \cap L^2(Q)$ and modify the proofs accordingly cf. [9], [11]). Indeed, each $u \in \mathcal V$ with $u' \in \mathcal V^*$ also belongs to $C([0,T],L_2(\Omega))$ and the initial condition u(x,0)=0 in Ω makes sense. Thus the operator $\frac{\partial}{\partial t}$ induces a linear map from the subset $D(L)=\{v \in \mathcal V \mid v' \in \mathcal V^*,\ v(0)=0\}$ of $\mathcal V$ into $\mathcal V^*$ by

(6.4)
$$\langle Lu,v\rangle = \int_{0}^{T} \langle u'(t),v(t)\rangle dt, \quad u \in D(L), \ v \in \mathcal{V}.$$

Here u' stands for the generalized derivative of u, i.e.,

$$\int\limits_0^T u'(t)\varphi(t)dt = -\int\limits_0^T u(t)\frac{\partial \varphi(t)}{\partial t}dt \quad \text{ for all } \varphi \in C_0^\infty(0,T).$$

It can be shown (see [12] that L is a closed linear maximal monotone map. This is also true, if in D(L) the initial condition v(0) = 0 is replaced by the periodicity condition v(0) = v(T). A function $u \in V$ is called a *weak* solution of the initial-boundary value problem

(6.5)
$$\begin{cases} \frac{\partial u}{\partial t} + A(u) = h & \text{in } Q \\ D^{\alpha}u = 0 & \text{on } \partial\Omega \times [0, T] \text{ for all } |\alpha| \le m - 1 \\ u(x, 0) = 0 & \text{in } \Omega \end{cases}$$

if and only if

$$(6.6) Lu + S(u) = h, \quad u \in D(L).$$

Thus we can apply the results of section 5 to the study of the existence of weak solutions for (6.5) as soon as the operator A satisfies relevant monotonicity and coercivity conditions.

Indeed, if we assume that the coefficients A_{α} satisfy the classical Leray-Lions condition

$$(A_2)_S \qquad \sum_{|\alpha|=m} \{A_{\alpha}(x,t,\eta,\zeta) - A_{\alpha}(x,t,\eta,\zeta^*)\}(\zeta_{\alpha} - \zeta_{\alpha}^*) > 0$$

for all $(x,t) \in Q$, $\eta \in \mathbb{R}^{N_1}$ and $\zeta \neq \zeta^* \in \mathbb{R}^{N_2}$ or its weaker version

$$(A_2)_W \qquad \sum_{|\alpha|=m} \{A_{\alpha}(x,t,\eta,\zeta) - A_{\alpha}(x,t,\eta,\zeta^{\bullet})\} (\zeta_{\alpha} - \zeta_{\alpha}^{\bullet}) \ge 0$$

for all $(x,t) \in Q$, $\eta \in \mathbb{R}^{N_1}$ and $\zeta, \zeta^* \in \mathbb{R}^{N_2}$

and the strong coercivity condition

(A₃) There exist $c_0 > 0$ and $k_0 \in L_1(Q)$ such that

$$\sum_{|\alpha| \le m} A_{\alpha}(x,t,\xi) \xi_{\alpha} \ge c_0 |\xi|^p - k_0(x,t)$$

for all $(x,t) \in Q$ and $\xi \in \mathbb{R}^{N_0}$,

then the existence theorems of the present note are available.

A significant feature in the conditions $(A_2)_S$ and $(A_2)_W$ is that monotonicity is assigned only to the top order part

$$A^{(1)}(u) = \sum_{|\alpha|=m} (-1)^{|\alpha|} D^{\alpha} A_{\alpha}(\cdot, \cdot, u, Du, \dots, D^m u).$$

The lower order part of A is denoted by

$$A^{(2)}(u) = \sum_{|\alpha| \le m-1} (-1)^{|\alpha|} D^{\alpha} A_{\alpha}(\cdot, \cdot, u, Du, \dots, D^m u)$$

and the special case where $A^{(2)}$ is independent of $D^m u$ by $A^{(3)}$, i.e.,

$$A^{(3)}(u) = \sum_{|\alpha| \leq m-1} (-1)^{|\alpha|} D^{\alpha} A_{\alpha}(\cdot, \cdot, u, Du, \dots, D^{m-1}u).$$

If we denote the corresponding mappings by S_1 , S_2 and S_3 , i.e.,

(6.7)
$$\langle S_1(u), v \rangle = \sum_{|\alpha| = m} \int_{Q} A_{\alpha}(x, t, u, \dots, D^m u) D^{\alpha} v, \quad u, v \in \mathcal{V},$$

(6.8)
$$\langle S_2(u),v\rangle = \sum_{|\alpha| \leq m-1} \int_Q A_{\alpha}(x,t,u,\ldots,D^m u) D^{\alpha} v, \quad u,v \in \mathcal{V},$$

$$(6.9) \quad \langle S_3(u),v\rangle = \sum_{|\alpha| \leq m-1} \int\limits_O A_\alpha(x,t,u,\ldots,D^{m-1}u) D^\alpha v, \quad u,v \in \mathcal{V},$$

we have the following

PROPOSITION 1. Let Ω be an open bounded subset in \mathbb{R}^N , Q the cylinder $\Omega \times [0,T]$, A the differential operator defined by (6.2) and L the linear maximal monotone operator defined by (6.4). If S, S_1 , S_2 and S_3 are the mappings from V to V^* defined by (6.3), (6.7), (6.8) and (6.9), respectively, then the following assertions hold:

- (a) If A satisfies (A_1) and $(A_2)_S$, then S is pseudomonotone with respect to D(L).
- (b) If A satisfies (A_1) and $(A_2)_S$ and (A_3) , then S is of class (S_+) with respect to D(L).
- (c) If $A^{(1)}$ satisfies (A_1) and $(A_2)_W$, then S_1 is pseudomonotone with respect to D(L).
- (d) If $A^{(2)}$ satisfies (A_1) , then S_2 is quasimonotone with respect to D(L).
- (e) If $A^{(3)}$ satisfies (A_1) , then S_3 is completely continuous with respect to D(L).

PROOF. (a) This is the classical case (see [8]). It is shown in [10] that no coercivity condition is needed when Ω is a bounded domain in \mathbb{R}^N .

- (b) We refer to [11].
- (c) The proof is a straightforward modification of the elliptic case (cf. [7]). Indeed, let $\{u_n\} \subset D(L)$ with $u_n \to u$ in \mathcal{V} , $Lu_n \to Lu$ in \mathcal{V}^* and $\limsup (S_1(u_n), u_n u) \leq 0$. To prove assertion (c) we have to verify that $S_1(u_n) \to S_1(u)$ in \mathcal{V}^* and $\langle S_1(u_n), u_n \rangle \to \langle S_1(u), u \rangle$. Obviously it suffices to show the above convergences for a subsequence.

Since $u_n \to u$ in \mathcal{V} , $D^{\alpha}u_n \to D^{\alpha}u$ in $L^p(Q)$ for all $\alpha \leq m$, $S_1(u_n) \to h$ in \mathcal{V}^* and $A_{\alpha}(\cdot, \cdot, u_n, \dots, D^m u_n) \to h_{\alpha}$ in $L^p(Q)$ for all $|\alpha| = m$, for a subsequence. By Aubin's lemma $D^{\alpha}u_n \to D^{\alpha}u$ in $L^p(Q)$, $D^{\alpha}u_n(x,t) \to D^{\alpha}u(x,t)$ a.e. in Q for all $|\alpha| \leq m-1$ and there are functions $k_{\alpha} \in L^p(Q)$ such that $|D^{\alpha}u_n(x,t)| \leq k_{\alpha}(x,t)$ a.e. in Q, for a further subsequence. Here the action of $h \in \mathcal{V}^*$ is given by

$$\langle h,v
angle = \int\limits_{\Omega} \sum_{|lpha|=m} h_lpha D^lpha v, \quad v\in \mathcal{V},$$

and

$$\limsup \langle S_1(u_n), u_n \rangle \leq \langle h, u \rangle.$$

By $(A_2)_W$ we have for all $v = (v_{\alpha}) \in \prod_{|\alpha| = m} L^p(Q)$

$$egin{aligned} \langle S_1(u_n),u_n
angle &= \int\limits_{Q}\sum_{|lpha|=m}A_lpha(x,t,u_n,\ldots,D^mu_n)D^lpha u_n\ &\geq \int\limits_{Q}\sum_{|lpha|=m}A_lpha(x,t,u_n,\ldots,D^mu_n)v_lpha\ &+ \int\limits_{Q}\sum_{|lpha|=m}A_lpha(x,t,u_n,\ldots,D^{m-1}u_n,v)D^lpha u_n\ &- \int\limits_{Q}\sum_{|lpha|=m}A_lpha(x,t,u_n,\ldots,D^{m-1}u_n,v)v_lpha. \end{aligned}$$

Thus

$$\begin{split} \langle h,u \rangle & \geq \limsup \langle S_1(u_n),u_n \rangle \\ & \geq \sum_{|\alpha|=m} h_\alpha v_\alpha + \limsup \{ \int\limits_{Q} \sum_{|\alpha|=m} A_\alpha(x,t,u_n,\dots,D^{m-1}u_n,v) D^\alpha u_n \\ & - \int\limits_{Q} \sum_{|\alpha|=m} A_\alpha(x,t,u_n,\dots,D^{m-1}u_n,v) v_\alpha \}. \end{split}$$

Bearing in mind (A_1) and the Carathéodory condition we can use the dominated convergence theorem to obtain

$$A_{\alpha}(\cdot,\cdot,u_n,\ldots,D^{m-1}u_n,v)\to A_{\alpha}(\cdot,\cdot,u,\ldots,D^{m-1}u,v)$$

in $L^{p'}(Q)$. Therefore the above inequalites give

$$\sum_{|\alpha|=m} \int_{Q} \{A_{\alpha}(x,t,u,\ldots,D^{m-1}u,v) - h_{\alpha}\}(v_{\alpha} - D^{\alpha}u) \geq 0 \qquad \forall \ v \in \prod L^{p}(Q).$$

Now we can employ Minty's trick. Indeed, setting $v_{\alpha} = D^{\alpha}u + sw_{\alpha}$ with s > 0 and $w = (w_{\alpha}) \in \prod L^{p}(Q)$ and letting $s \to 0+$ we have

$$\begin{split} \sum_{|\alpha|=m} \int\limits_{Q} \{A_{\alpha}(x,t,u,\dots,D^{m-1}u,D^{m}u) - h_{\alpha}(x,t)\} w_{\alpha} &\geq 0 \\ \text{for all } w = (w_{\alpha}) \in \prod L^{p}(Q). \end{split}$$

Hence $A_{\alpha}(x,t,u,\ldots,D^{m-1}u,D^mu)=h_{\alpha}(x,t)$ a.e. in Q for each $|\alpha|=m$ and thus $S_1(u)=h,\ S_1(u_n)\rightharpoonup S_1(u)$ in \mathcal{V}^* . It remains to show that $\langle S_1(u_n),u_n\rangle \to \langle S_1(u),u\rangle$. Since we already have that

$$\limsup \langle S_1(u_n), u_n \rangle \leq \sum_{|\alpha|=m} \int\limits_Q h_{\alpha} D^{\alpha} u = \langle S_1(u), u \rangle,$$

it suffices to verify that

$$\liminf \langle S_1(u_n), u_n \rangle \ge \langle S_1(u), u \rangle.$$

As above with v = u we get

$$\begin{aligned} & \lim\inf(S_1(u_n),u_n) = \liminf\sum_{|\alpha|=m} \int\limits_Q A_\alpha(x,t,u_n,\ldots,D^m u_n) D^\alpha u_n \\ & \geq \sum_{|\alpha|=m} \int\limits_Q A_\alpha(x,t,u,\ldots,D^m u) D^\alpha u + \sum_{|\alpha|=m} \int\limits_Q A_\alpha(x,t,u,\ldots,D^m u) D^\alpha u \\ & - \sum_{|\alpha|=m} \int\limits_Q A_\alpha(x,t,u,\ldots,D^m u) D^\alpha u = \langle S_1(u),u \rangle \end{aligned}$$

completing the proof of assertion (c).

(d) Let $\{u_n\} \subset D(L)$ with $u_n \to u$ in \mathcal{V} and $Lu_n \to Lu$ in \mathcal{V}^* . As in the previous case, $D^{\alpha}u_n \to D^{\alpha}u$ in $L^p(Q)$ for all $|\alpha| \leq m-1$, for a subsequence. Since $\{A_{\alpha}(\cdot, \cdot, u_n, \dots, D^m u_n)\}$ remains bounded in $L^{p'}(\Omega)$ for all $|\alpha| \leq m-1$, we have

$$\lim \langle S_2(u_n), u_n - u \rangle = \lim \int_{\Omega \mid \alpha \mid \leq m-1} A_{\alpha}(x, t, u_n, \dots, D^m u_n) (D^{\alpha} u_n - D^{\alpha} u) = 0$$

and the assertion follows.

(e) Assume again that $\{u_n\} \subset D(L)$ with $u_n \to u$ in \mathcal{V} and $Lu_n \to Lu$ in \mathcal{V}^* . It suffices to show that $S_3(u_n) \to S_3(u)$ in \mathcal{V}^* for a subsequence. By the same argument as in (c) $A_{\alpha}(\cdot, \cdot, u_n, \dots, D^{m-1}u_n) \to A_{\alpha}(\cdot, \cdot, u_n, \dots, D^{m-1}u)$ in $L^{p'}(Q)$. Hence

$$\begin{split} & \|S_{3}(u_{n}) - S_{3}(u)\| \\ &= \sup_{\|v\|=1} |\int_{Q|\alpha| \le m-1} \{A_{\alpha}(x, t, u_{n}, \dots, D^{m-1}u_{n}) - A_{\alpha}(x, t, u, \dots, D^{m-1}u)\} D^{\alpha}v| \\ &\le \sum_{|\alpha| \le m-1} \|A_{\alpha}(\cdot, \cdot, u_{n}, \dots, D^{m-1}u_{n}) - A_{\alpha}(\cdot, \cdot, u, \dots, D^{m-1}u)\|_{L^{p'}(Q)} \\ &\to 0 \text{ as } n \to \infty. \end{split}$$

We are now in the position to close our paper by results on the existence of weak solutions for the initial-boundary value problem (6.5). We can use the Proposition 1, Theorem 4 and the equivalence of (6.5)

with the equation (6.6). Bearing in mind that the condition (A_3) on the operator A implies that the mapping L + S satisfies the conditions (i) and (ii) of Theorem 4, we obtain

THEOREM 5. Let Ω be a bounded open subset in \mathbb{R}^N and Q the cylinder $\Omega \times [0,T]$. Then the following assertions hold

(a) If A satisfies (A_1) , $(A_2)_S$ and (A_3) , then the equation

$$Lu + S(u) = h$$

admits a solution $u \in D(L)$ for any given $h \in \mathcal{V}^{\bullet}$.

(b) If $A^{(1)}$ satisfies (A_1) and $(A_2)_W$, $A^{(3)}$ satisfies (A_1) and $A^{(1)} + A^{(3)}$ satisfies (A_3) , then the equation

$$Lu + S_1(u) + S_3(u) = h$$

admits a solution $u \in D(L)$ for any given $h \in \mathcal{V}^*$.

(c) If $A^{(1)}$ satisfies (A_1) and $(A_2)_W$, $A^{(2)}$ satisfies (A_1) and $A^{(1)} + A^{(2)}$ satisfies (A_3) , then the equation

$$Lu + S_1(u) + S_2(u) = h$$

is almost solvable in the sense that $(L + S_1 + S_2)(D(L))$ is dense in \mathcal{V}^* .

REFERENCES

- J. BERKOVITS V. MUSTONEN: On the topological degree for mappings of monotone type, Nonlinear Anal. TMA 10 (1986), 1373-1383.
- [2] J. BERKOVITS V. MUSTONEN: An extension of the Leray-Schauder degree and applications to nonlinear wave equations, Differential and Integral equations 3 (1990), 945-963.
- [3] F. E. BROWDER: Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. 9 (1983), 1-39.

- [4] F. E. BROWDER: Degree theory for nonlinear mappings, Proc. Sympos. Pure. Math., Vol. 45, Part I, AMS, Providence (1986), 203-226.
- [5] F. E. BROWDER: Strongly nonlinear parabolic equations of higher order, Atti Acc. Lincei, 77 (1986), 159-172.
- [6] K. Deimling: Nonlinear functional analysis, Springer-Verlag, Berlin, 1985.
- [7] J. P. GOSSEZ V. MUSTONEN: Pseudomonotonicity and Leray-Lions condition, to appear.
- [8] J. L. LIONS: Quelques méthodes de resolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, 1969.
- [9] G. MAHLER: Nonlinear parabolic problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A82, (1978/1979), 201-209.
- [10] V. MUSTONEN: On pseudomonotone operators and nonlinear parabolic initialboundary value problems on unbounded domains, Ann. Acad. Sci. Fenn. Ser. AI, Vol. 6 (1981), 225-232.
- [11] V. MUSTONEN: Mappings of monotone type: Theory and applications, Proceedings of the international spring school "Nonlinear Analysis, Function spaces and Applications" Vol. 4, Teubner Texte zur Mathematik, Band 119 (1990), 104-126.
- [12] E. Zeidler: Nonlinear functional analysis and its applications, II A and II B, Springer-Verlag, New York-Berlin-Heidelberg, 1990.

Lavoro pervenuto alla redazione il 18 aprile 1991 ed accettato per la pubblicazione il 4 giugno 1992 su parere favorevole di L. Boccardo e di T. Galiouet