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Topological degree for perturbations of
linear maximal monotone mappings and

applications to a class of parabolic problems
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RIASSUNTO - Si costruisce una teoria del gradeo topolegico per le applicazioni delle
forma F = L+ 5, dove L é un operatore monotono messimale ed § & un’applicazione
non lineare di clesse (54) nel dominio di L. La teoria é applicata alio studio di una
classe di problermi parabolict non lineari o1 valori iniziali.

ABSTRACT - We construct a topelogicel degree for a class of mappings of the form
F =L+ 5 where L ts closed densely defined marimal monotone operator and 5 is a
nonlinear map of class (54) with respect to the domain of L. The degree theory is then
appiied in the study of a class of nonlinear parabolic initial-boundary value problems.
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1 — Introduction

The topological degree theory of mappings has been one of the most
important tools in the study of nonlinear functional equations. The clas-
sical degree for continucus mappings from a bounded open subset of R"
to IR" was introduced by Brouwer in 1912. In the celebrated paper by
Leray and Schauder in 1934 the degree was constructed for mappings
in infinite dimensional Banach spaces of the form F = I + C, where [
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is the identity map and € is compact. Since then a number of further
extensions have been introduced.

Important recent contributions are due to Browder in the framework
of studying nonlinear mappings of monotone type from a real reflexive Ba-
nach space X to its dual space X* ({3,4], see also [1,2]}). The present note
provides a further contribution in this direction. We shall construct an
approximative degree theory for a class of mappings of the form F = L+ 8§
from the domain D(L) in X to X", where L is a closed densecly defined
maximal monotone operator and S is & nonlinear map of class (S, ) with
respect to D(L). Our construction is based on suitable approximations
of L + 5 by a family of mappings of class (5.} with respect to the graph
norm topology of D(L), as indicated in the previous work by Browder
{4,5] {cf. also [8]). The degree theory obtained makes it possible to use
continuation methods in the study of nonlinear equations

(1.1) Lu+S{u)=h, weD(L)
where 5 may be pseudomonotone or quasimonotone with respect to D{L).

As a specific example of the equation (1.1) we deal with nonlincar para-
bolic initial-boundary value problem of the type

%+A(u)= in 2 x (0,T"
(1.2) u(z,0) =0 in Q
Dey(z,t) =0 on 81 x 0,7 for all |ol € m — 1,

where Q is a bounded open subset in RY, & is a given function defined
in @ =% x{0,T) and A is a divergence operator of order 2m,

Aulx,t) = Z (-1 D* Au{x,t, ulz,t), ..., D™ulz, t))

|| <m

satisfying some growth, monotonicity and coercivity conditions. In fact,
our results on the existence of weak solutions for (1.2) are based on the
systematic study of various monctonicity properties of A and we get some
refincments to the classical results obtained before by diffcrent methods.
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2 — Prerequisites

Let X be a real reflexive Banach space and let X* stand for its
dual space with respect to the continuous pairing {-,-). We may assume
without loss of generality that X and X" are locally uniformly convex
(see [6], for example). The norm convergence in X and X~ is denoted by
—, and the weak convergence by —. We shall be dealing with mappings
T acting from a subset D{T) in X to X*. T is said to be bounded, if it
takes bounded sets of X to bounded sets of X", and demicontinuous, if
u, — u implies T{u,) — T(u) in X*. We alsc need the following classes
of mappings of monctone type. A mapping T': D(T) — X" is called

-monotone (we denote T € (MON)) if {T(u) — T(v),u —v) >0 for
all u,v € D(T).

-guasimonotone (T € (QM)) if for any sequence {u,} in D(T) with
1%, — u we have limsup{T{u,},u, — u) > 0.

-pseudomonatone (T € (PM)) if for any sequence {u,} in D{T) with
un, — u and limsup{7T{u,), 4, — 4} < 0, we have im{T(u,), 4 — un) =0,
and if u € D(T7), then T(u,) — T(u).

-of class {S,) (T € (S,)) if for any sequence {u,} in D(T) with
Un — u and limsup{T(u,), t, — 1) <0, we have u, -+ u.

If we assume that all mappings are demicontinuous and defined in
the whole space X, then (5,) C (PM) C (QM) and (MON) C (PM).
It is also important to observe that (S, )+ (QM) is contained in {5,). A
monotone map T : D(T) — X* is called mazimal monotone (T € (M M))
if its graph

G(T) = {(u,T(w)) € X x X* | u € D(T)}

is not a proper subset of any monotone set in X x X*. If L is & linear
densely defined monotone map from D(L) to X*, then a necessary and
sufficient condition for L € {M M) is that G(L) is a closed subspace of
X x X* and L" is monotone (see (6], for example).

In our study we deal with mappings of the form F = L+ § where L is
a given linear densely defined maximal monotone map from D(L) C X to
X* and 8 is a bounded demicontinuous map of monotone type from X to
X* satisfying one of the monotonicity conditions with respect to the graph
norm topology of D(L). Thus, for instance, we call § pseudomonotone
with respect to D{L), if for any sequence {u,} in D(L) with u, — u,
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Lu, — Lu and limsup{S{ua}, ¥, —u) < 0, we have im{S{u,), un—u) = 0
and S{u,) — S{u). Analogous definitions apply for mappings of class
{S+) and quasimonotone mappings with respect to D(L).

It is well-known that the conditions

I = [l (J(u),u) = {ull® for all w € X

determine a unique map J from X to X*, which is called the duality
map. In our case it is bijective bicontinuous strictly monotone and of
class (54). Since J7! can be identified with the duality map from X* to
X**, it is also of class {S,). Using the duality map one can show that
& map T is maximal monotone if and only if the range of T+ AJ is the
whole space X* for every A > 0. For more details and proofs we refer to
[6].

3 — Construction of a degree function

Let X be a real reflexive Banach space. We assume that X and its
dual space X* are locally uniformly convex. Let L be a cluosed linear
maximal monotone map from D(L} C X to X* such that D2(L) is dense
in X. Since the graph of L is a closed set in X x X*, Y = D(L) equipped
with the graph norm

lully = |[ulix + [Lujlxs, ue?,

becomes a real reflexive Banach space. We shall assume that ¥ and its
dual space Y'* are also locally uniformly convex.

Let 7 stand for the natural embedding of ¥ to X and j* for its adjoint
from X* to Y. For each open and bounded subset (G of X we denote

FolL;Sy) ={L+8: GND(L)— X*| S is a bounded demicontinuous
map of class (S, ) with respect to D(L) from G to X°}

and

He(L; 8.)={L+S(t) : GND{L) > X*| 5() (0 <t <1}is a bounded
homotopy of class (S, ) with respect to D(L) from G to
X"}
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Recall that S(t) with 0 < ¢t < 1 is called a homotopy of class {5,}
with respect to D{L), if the conditions u,, — u, Lu, — Lu, t, — ¢
and lim sup(${t,)u,, 4, — ) < 0 imply u, — v and S{2a)(ua)} — S{t)(u).
Note that the class Hg(L; 5. ) includes all affine homotopies L+{1—£}5,+
tS, with 81,5, € Fg(L; S, ). In order to find suitable approximations for
mappings F € Fo(L; 5,) we denote

L=j0Loj,

which cbviously is a bounded linear monotone map from ¥ to ¥*. Simi-
larly we denote

§(t)=j"oS(t)os:jHG) »Y"
whenever $(¢) is a homotopy from G to X*. Since j is continuous from
Y to X, i YG) = Gn D(L) is closed and j7'(G) = GN D{L) is open in
Y. It is easy to check that
(3.1) NG ciTHG) 8(THG)) € iTHOE).
Note that we have used the same notation for closures and boundaries
in both X and Y. In what follows we also need the map M : ¥ — ¥~
defined by
(3.2) (M(u),) = (Lv,J (L)), wv €Y,
where (-, -) denotes the pairing between Y and Y*, and J~! is the inverse
of the duality map J : X — X*. In fact, for all those u € Y for which
M(u) € 7°(X*), we have J~!(Lu) € D(L*) and by {3.2)

M(u) = 7 L*JH{Lu).

We shall need this representation later in proving Lemma 2. For each
admissible mep F € F¢{L;S;) or homotopy F(t) € He(L; S¢) and for
each ¢ > 0 we define

Fo=L+8+eMand Fy(t) = L+ 8(t) + e M.
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Then we have

LeEmMMA 1. If F(t) € He(L; 5,) and € > 0, then Fy(t) is a bounded
homotopy of class (S,) from j~Y{G) C Y to Y*. In particular, for each
£ >0, F, is a bounded demicontinvous map of cluss (S,.) from j71(G) C
Y to Y.

PROOF. Assume F(t) € He(L;S,) and £ > 0. Let {un} C G D(L)

with v, — v in Y, t, — ¢ and limsup(F,(¢)(tn), %4, — ¥} < 0. Then
u, —=uin X, Ly, — Luin X* and

limsup{{Lu, — Lu, u,, — u) + {S(t.)(un), un — w)+
e{Lun — Lu, 7 {Lu,) - J7H{Lu)}} < 0.

Since L is monotone and J~! is strictly monotone we conclude that

limsup{S(t,)(un), un —u) <0

By the (S )-property of S{t) we obtain u, — u in X and S{ta)(un) —
§(t)(x) in X*. Therefore also

Uim{Lu, — Lu, J 7' {Lup) — J 7} {Lu)) =D

implying by the (S, )-property of J~! that Lu, — Lu in X" and the
assertion follows. 0
Let F'(t) € He(L; 8,) and let {h(t)|0 < ¢ < 1} be a continuous curve
in X", We denote
K = {u € j7HG)|F.(t)(u) = 5°h(t) for some e > 0 and 0 < ¢ < 1}.

Note that j(K) C G implying that K is bounded in X. The fact that K
is bounded also in ¥ follows from

LEMMA 2. There exisis a constant R > 0, independent of € and t,
such that K C Bp(Y)={v €Y | |v|ly < R}.
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PROOF. Without loss of generality we may assume that h(t) = 0.
Let u € K be arbitrary. Then forsomee >0 and 0 <¢ <1,

(3.3) {Lu,v) + (S(t)(u),v) + (LI (Lu),v) =0
for all v € D{L). Observe that J~!(Lu) € D(L"*) since M{u) € 7°(X*).

Since D(L) is dense in X, the equation (3.3) holds for all v € X. Hence
we can insert v = J*(Lu) to get

(L, J7HLu)) + {(S(t) (), T (L)) + e{L*J 7 {Lu), J~Y(Lu)} = 0.
Recalling that L* is monotone we obtain
Ll < 1Sl x- 1T (L) x-

Since ||J! (Lu)llx = |[Zullx- and since S(¢} is & bounded homotopy from
& bounded set & to X* we conclude that

[ Zulx- < ¢

for some positive constant ¢, independent of £ > 0 and t € [0,1], com-
pleting the proof. 0

_ The relationship between F(t) € He(L; S4) and its approximation
F,(t) is shown by

LEMMA 3. Let A C G be o closed set, F(t) € He(L;S,) an
admissible homotopy and R(t) a continuous curve in X* such that

h(t) € F(O)AND(L)) forallt €[0,1}
Then there erists 5 > 0 such thai

PR E EOGTA)  foralite[0,1] and0<e < €.
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PROOF. We may assume again that h{t) = 0. We shall argue by
contradiction. Let us assume that there exist sequences {e,}, {¢t.} and
{un} C 3~ A) such that g, — 0+, £, — ¢ € [0,1] and

(3.4) Ly + 8t (un) + €M {u,) =0

for all n € IN. By Lemma 2 the sequence {u,} is bounded in ¥ implying
that u, — v in X and Lu, — Luin X* with v € D(L), for a subsequence.
Using the fact that L and J~! are monotone we get from (3.4)

Hmsup{S{t,)(ts), un — u} =
= lim sup{—{Lttn — Ltt, tip — ©) —€a {Lutn — L, T {Lu,)— T (Lu))}
<0

Since S(t) is in H¢(L; S4), un — u in X and S(t,)(un) — S(¢)(u) with
u € A. By (3.4)

(Lun,v) + (S{tn) (wn), v) + €a(M(un),v) = 0
for all v € Y and n € IN. Letting n — oo we then have
{Lu, v} + {S{t)(w),v) = 0 for all v € D(L).
Since D(L) is dense in X,
Lu + 5(t)(u) = 0 with u € AN D(L)

contradicting our assumption. Hence the proof is complete. a

If we choose A = 8G, S(t) = § € Fg(L;5,) and h{t) = h € X" in
Lemma 3, then the condition h ¢ (L + SYBGN D(L)) implies that there
exists go > 0 such that

R (L+8+eM)(iHG))
for all £ with 0 < £ < €o- Recalling (3.1) we also have

iR g (L+8+eM)BGHG))
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for all 0 < € < £5. Moreover, by Lemma 2 there exists a constant R > a,
independent of &, such that

(3.5) j*h#Lu+8u)+eMu)forallue G, fully > Rande > 0.
Denoting Gp(Y) = j-1(G) N Br{Y') we therefore have
j*h ¢ (L+ 8+ eM)(BCa(Y))

for all 0 < € < g. Since ' = L + § + eM is a map of class {S,) from
77 (G) to Y* by Lemma 1, the value of the unique topological S, -degree
(see {3}, 1) .

ds, (L+8+eM,Gr(Y),i"h)

is well-defined for all 0 < £ < £ and independent of R provided (3.5)
holds. Moreover, the value of the degree remains stable for all § < € < ;.
Indeed, if £, and &; are arbitrary with 0 < £, < £ < g, we have

A=t +8+e M)+ t{L+8+eM)=L+S+et)M,
where e(t) = (1 — t)g; + te; satisfies 0 < &; < £(t) < £,. Hence
he (L+8+et)MYOGa(Y)) forall 0 <t <1

and the invariance under admissible hornotopies of the S, -degree implies
that

ds, (b + 8 +e1M,Gr(Y),5°R) = ds, (L + § + &M, GR(Y), j*R).
Consequently, it is relevant to define a function d; by
(36)  di(L+S,G,h)= lim ds, (L+ 8 +eM,Gr(Y),i*h).

whenever h ¢ (L + 5)(8G n D(L)) and R is sufficiently large. We shall
show in the next section that (3.6) defines a classical topological degree for
Fe(L; §,) with respect to the class He(L; S4+) of admissible homotopies
and the normalizing map L + J. In the sequel we use the constant R in
vericus situations and we always assume R to satisfy Lemma 2.
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4- Properties of the degree

For each open bounded subset G of X, F =L 4 5 € Fg(L; 5S¢} and
he X"\F(8GN D(L)) the formula (3.5) defines the value of the function
dr. In order to check that dp is in fact a good degree for the class
Fo(L; S,) we recall first the classical axioms of the topological degree
function to be verified.

(a) If di,(L + S,G,h) # 0, then there exists u € G N D(L) such that

Lu+ S(u)=h,

(b) (Additivity of domain) If G' and G? are open disjoint subsets of G
and k ¢ (L + S){(G\(G* WG?)) N D(L)), then

dy(L+S,G,h) =dy(L+ S,G' k) +d. (L +S,G*h).

(¢) (Invariance under admissible homotopies) If F(t) € He(l; S1) and
h(t) ¢ F(t}(6G N D(L)) for all t € [0,1] where A(t} is a continuous
curve in X*, then

d. {F(t),G, h(t)) is constant for all ¢ € [0, 1].

(d) L+ J is the normalizing map, i.e.,
di(L + J, G, k) = 1 whenever h € (L + J){(Gn D(L)).

We shall verify the axioms (a) to {d) by usihg the corresponding
axioms for the S, -degree satisfied by the related approximations.

(a) Assume d (L + S,G, h) # 0. If h ¢ (L + S)(GN D(L)), then also
k¢ (L+ SYGnD(L)) and Lemma 3 implics j*h ¢ F.(j7(G)) for all
¢ > 0 small enough. A contradiction follows from (3.6).

(b) Let G* and G? be open subsets of G with G'NG? = . Assume
that h ¢ (L +8)[(G\(G'UG?*))ND(L)]. By Lemmata 2 and 3 there exist
constants g > 0 and R > 0 such that

L+ Su+eMu) £5°h
for all w € j7~Y(G) with Jlully > R, € > 0, and

Fhe (L+S5+eMGHG\(G UGY))
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for all 0 < £ < gg. Note that j7{G\(G* UGH) = j-HENGHGH U
F~HG?). Then we also have

(4.1) Fhé (L+5+eM)(CrY)NGRY) UG
for all § < ¢ < 5. Hence by (3.5) and the properties of the 5, -degree

di(L+5,G k) =ds, (L + § + €M, Ga(Y), 5°R)
=dg, (L~ 8+ eM GH(Y),j°h) +ds, (L + S+ eM,GL(Y),5h)
=d (L + 8,G", k) + dr (L + 5,G*, ),

where 0 < £ < £.

(c) Let F(t) = L + S(¢} € He{L; 54) and h(t) a continuous curve in
X with h(t) ¢ F()(8Gn D(L}) for all t € [0,1]. By Lemma 3 there
exists g5 > 0 such that

JR(E) ¢ B()(57HOG)) for all t € [0,1] and 0 < & < &p.
By Lemma 2 there exists R > 0 such that
Lu+8()(w) +eMu) # 5°h
for all t € [0,1), & > 0 and u € §7(G) with ||ully > R. Hence j*A(t) ¢

F.(){8CGr(Y)) for all t € [0,1}, 0 < € < &, and the invariance under
S, -homotopies of the §,-degree gives

dz(F(t), G, h(t) = lim ds, (£ (), Gr(Y),5"h(8))
= constant  for all ¢ € [0, 1].

(d) We must check that L + J admits the property of a normalizing
map. It is well-known that L + J from D{L) to X" is one-to-one and
onto. Let G be an open bounded subset in X, & € (L + JY(G N D{L))
and let B.(X)={v € X | |[v] x < r} contain G. Using (b) we get

de(L+ J,G,h) = dy(L+ J, B.(X), ).
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We consider the solutions of the equation
(4.2) Lu+J{u)=th, ueD(L), 0<t<L
Then (4.2 ) implies

lullk = ~{Lu, u) + t{h, u)
< WAl lullx-

Therefore the solutions of (4.2) satisfy ||u|lx < ||k||x-. Thus, by choosing
T> ||hl}X-I

Lu+ J(u) #thfor allt € [0,1)], u€ D(L), |u/lx =
Using (c) we have
dr{L + J B, (X),h)=d (L + J,B.(X),0)
and by (3.5)
do(L + J,B(X),0) = lim ds, (L+ J+eM,j Y (B.(X)) N Br(Y),0)
= lim ds, (L + J +eM, Bp(Y),0).
Let Jy denote the duality map from ¥ to Y*. It is easy to sce that
(1— )y (u) + t(Lu+ J(u) + eM(u)) #£0
for all £ € [0,1], 0 < £ < &y, |fully = R. Hence
lim ds, (L + J +eM, B(Y),0) = ds, (Jy, Ba(Y),0) = 1.
Collecting the results above we get the desired result
d{L+J,G,h)=1.

Thus we can conclude the following
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THEGREM 1. Let X be a real reflerive Banach space, L a closed
linear mazimal monotone densely defined map from D{L} C X to X°,
G an open bounded subset in X and Fg(L;8,) the class of admissible
mappings. Then there exists a topological degree function dp satisfying
the properties (o) to (d) with respect to the class Hg(L; S4) of admissible
homotopies and normalizing map L + J.

5 — Existence theorems

We describe some standard results which ¢an be derived by continu-
ation methods as soon as a classical degree theory is available. Let X be
a real reflexive Banach space, L a closed linear maximal monotone map:
D(L} — X~ with D(L) dense in X and G an open bounded subset in X.
If F=L+8 € Fg{L;S,) and h € X" is given, we are interested in the
solvability of the equation

(5.1) Lu+Su)=h, uweGNDL).
More generally, denoting

FolL; PM) ={F = L+ 8|5 : G -+ X" is pseudomonotone

with respect to D(L)}

and

Fo(L; QM) ={F =L+ S5|S: & — X* is quasimonotone

with respect to D{L)}

we can use the fact that the mappings F = L + 8 € Fg(L; QM) admit
good approximations {F, = L + S + e¢J]e > 0} in Fg(L;S4), and ho-
motopy arguments can be applied to the broader classes Fo(L; QM) and
Fo{L; PM) . Our basic existence theorem is the following

THEOREM 2. Let & be an open bounded subset in X with0 € G
andlet F =L+ 8 € Fe(L;QM). If

(5.2) Lu+(1—-t}J(u)+tS(u) #0 for allu € 6GND(L) and 0 <t < 1,

then 0 € (L + 8)(G N D(L)).
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ProOCF. We may assume that 0 ¢ (L + 5)(8G N D(L)); otherwise
there is nothing to prove. In order to employ the homotopy argument of
the dp-degree we show the existence of £¢ > 0 such that

(5.3) (1 —t)(Lu+ J(u)) +t{Lu+ Su) +eJ(u)) £0
forallu e 8GN DL}, 0 <€t <1land 0 < ¢ < &5. Indeed, assume the

contrary, i.e., there are sequences {u,} in 8GN D{L), {t,} in [0, 1] and
{€a} with £, — 0+ such that

(5.4) Lup + (1 = )T (un) + £ (S(up) + €, J{(u,)) =0, n €N,
Taking subsequences, if necessary, we have u, — uin X, t, — ¢, J(u,) —
w in X* and S(u,) — z in X*. By (54), Lu, — —(1 — )w — tz. Since

the graph of L is weakly closed, » € D(L) and Lu = —(1 — t)w — tz.
The case t, — t =1 is excluded because (5.4) gives

Lup + S(up) = —(1 — tn + tagn)J (un) + (1 ~ t5)S{us) = 0

implying 0 € (L + §)(8G N I){L}). Hence we can assume that 0 < ¢ < 1.
By (5.4), monotonicity of L and the (QM)-property of S we have

(1 — t} lim sup{J (u,), un — w)
=limsup{(l — £, + &atn)J{tn), tn — u}
=lmsup{—Lup — t,5{un}, g — u)
= — lminf{{Ltn, ty — 1) + £a{S(un), 2. — u)}
< — lminf{Lu, — Lu,up — w) — tliminf(S(u,), up —u) < 0

Hence limsup{J{(us),us — 1} < 0 and the (S, )-property of J implies
u, — u in X with u € 8GN D{L). Letting n — oo In (5.4 } we get

Lu+(1—8)J(u)+tS(u)=0withue d3GND(L)and 0 < ¢ < 1,

which contradicts (5.2).
Consequently, there exists g > 0 such that (5.3) holds. Since L+ 5+

eJ € Fe(L;5,) and L + J is the normalizing map for d;, the conditions
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(5.3) and (c) imply that for each £ with 0 < £ < gy there exists u, €
G N D(L) such that

(5.5) Lu, + S{u,) + eJ{u) = 0.

Letting € — 0+ in (5.5 ) we get Lu. + S(u.) — 0 implying that

0e{(L+8GNDLY)) c {L+5)(GnD(L)), completing the proof. 0
For mappings F' = L+ S in the classes Fo(L; 5,) or Fo(L; PM) we

have better results. In fact, if L -+ § € Fg(L; 8,) we can derive directly
from the properties (a), (c), and {d) of the d.-degree the following

COROLLARY 1. Let G be an open bounded subset in X with0 € G
and let ¥ = L+ 8 € Fg(L;8,). If the condition (5.2) holds, then
0 € (L + 8)(GnD(L)). Moreover, if (5.2) holds also for t = 1, then
dr(L+ 8,G,0)=1.

For mappings F' = L+ S in Fe{L; PM) we respectively have

COROLLARY 2. Let G be o conver open bounded subset in X with
0€Gandlet F = L+8 € Fo(L; PM). If the condition (5.2) holds,
then 0 € (L + S)(G N D(L)).

ProoF. In view of Theorem 2 it will be sufficient to show that (L +
SHG N D(L)) is closed in X*. Indeed, let {y,} be & sequence in X* such
that y, = Lu, + S(u,) with {u.} € GN D(L) and y, — ¥ in X*. Since
G is bounded and convex, we can assume that u, — uin X withu e G
and S(u,} — z in X*. Hence Lu, — y — z. Since also the graph of L is
weakly closed, u € G N D(L) and Lu = y — 2. Consequently,

lim sup({S{un), 4n — u) = limsup{y, — Ltis, upn — 1)
= — liminf{Lu, — Lu,u, —u} < 0.

Since S is pseudomonotonc with respect to D(L) we obtain S{u,) —
S(u) = 2 and (S(un),ua) — (S(u),u). Thus Lu + Su) =ye (L+
SYG n D(LY). 1]
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Next we produce a version of Borsuk’s theorem.

THEOREM 3. Let G be an open bounded subset in X such that0 € G
and G is symmetric with respect to the origin. Assume that §: G — X*
i3 o mapping satisfying the condition

(5.6) S({—u) = —S(u) for ell u € 8G.

Then the following assertions hold

(A) IfL+ S € Fo(L; 8,), thenO € (L+SHGND(L)) end d (L + S, G,0)
is odd whenever defined.

(B) If L+ S € Fo(L; PM) and G is conves, then 0 € (L + S)(GnN.D(L))

(C) If L+ 8 € Fo(L;QM), then 0 € (L + 8)}{(G N D(L)).

PRroor. Borsuk's theorem holds for the mappings of class {5,). On
the other hand, if § satisfies (5.6), then S+eJ, L+ Sand L+ § + eM
satisfy the corresponding condition. Thus the proof is analogous to the
proofs of Theorem 2 and Corollaries 1 and 2. a

‘We close this section by some surjectivity results.

THEOREM 4. Let L+ S5 € Fx(L; PM) (L + 8 € Fx(L;QM)) and
assume that § satisfies the condition
1) #f Lun + S(us) — w in X*, then {u,} is bounded in X,
and one of the conditions
(ii) there ezists R > 0 such that (S(u),u} > 0 for all ||lu| > B,
(iii) there ezists R > 0 such that S(—u) = —S{u) for all |lu|l > R.
Then (L + S)(D(L)) = X* (L + SY(D(L)) is dense in X*, respec-
tively).

ProoOF. We deal with the case L+ 5 € Fx(L; PM) where S satifies
the conditions (i) and (ii}. All other cases are shown analogously. Let
h € X* be given. By the condition (i) there exist constants R > R and

& > 0 such that
Lw+ S(u) + £J(u) —th| 2 §for all v € D(L), |uf| = B, 0<¢t < 1 and
0<e< %. Thus we obtain

dy(L+ 8 +&J, Bp(X),h) =dr(L+ 5+ ed, Bp(X),0)
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whenever 0 < ¢ < 7. Denote
F(t)(w) = Lu+ {1 — ) J(u) + t(S(u) + eJ(u)), 0<t<1,

If F(t)(u) =0 for some t € [0,1], |lul| = R’ and 0 <& < &, then by (ii)
0 = (F{)(u),u) = (Lu,u) + (1 — £+ ) R + £{S(u),u) > 0

a contradiction. Therefore, by the invariance under homotopies, we have
forali0<e< £,

dL(L+ S+EJ,BR!(X),0) = dL(L+ J, BH_!(X),O) =1.

Hence there exists u, € D(L) such that Lu, +5(u,)+eJ(u,) = h. Letting
€ — 0+ we have Lu + S(u) = h for some u € D(L). 0

REMARK. We note that both of the conditions {i) and (ii) are met,
if S satisfies the strong coercivity condition

(i)s SE%%)”LT‘—) — 00 8s |lu] = .

6 — Applications to parabolic initial-boundary value problems

We shall consider initial-boundary value problems for differential op-
erators of the form

611(:: t) + Z (-1) lel pe A, (z, ¢, u(z, t), Du(z, t),. ., D™u(z, 1))

(6.1) T2

|a]sm

in @ = 0 x [0,7), where € is an open bounded subset in R, m>1
and the cocfficents A, are functions of (z,t) € Qand of £ = (n,{) € IR Mo
with n = {ng | 18l < m—1} € R™, ( = {¢ | 16l = m} € R™
and N + N, = N,. We assume that each 4,(x,?,£) is a Carathéodory
function, i.e., measurable in (z,1) for fixed £ € R™ and continuous in £
for almost all (z,t) € Q. Then the familiar growth condition

(A,) There exist p> 1, ¢; > 0 and k; € IF(Q), #/ = 325, such that

|An($1 t: L8 C)I S Cl(|C|pu1 + |’71p”1 + kl(Ii t))
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for all (z,t) € Q, £ = (1,¢{) € R™ and |af < m,
implies that the latter part of (6.1),

(6.2) Alu) = 3 (-1 D°A,(x,t,u, Dy,..., D™y)

la|€m

gives rise to a bounded continuous map S from the space V = LP(0,T; V)
with V = W™P(Q) into its dual space V* = L7 (0,7;V*) by the rule

(63) (S =3 /‘Ak(a:,t,u,Du,...,D’"u)D“u, u,v € V.

-
lal<m g

We shall assume in the sequel that 2 < p < co. (The case 1 < p < 2
can also be treated if we replace V by W = VN L} Q) and medify the
proofs accordingly cf. [9], [11]). Indeed, each u € V with ' € V* also
belongs to C([0,T], Lz(Q)) and the initial condition u(z,0) = 0 in
makes sense. Thus the operator 2 induces a linear map from the subset
DL)y={veV|v eV, v(0) =0} of Vinto V* by

T
(6.4) {Lu, v) = f (W), v(E)dt, we D(L), ve V.
Q
Here u’ stands for the generalized derivative of u, i.e.,
T T 3 ¢
/u'(t)go(t)dt = -—‘/u(t)——(—eg-ldt for all ¢ € C5°(0,T).
a 0

It can be shown (see [12] that L is a closed linear maximal monotone map.
This is also true, if in D(L) the initial condition ©v(0) = 0 is replaced by
the periodicity condition v{0) = »(T"). A function = € V is called a weak
solution of the inijtial-boundary value problem

gl: + Afu) =h inQ
(6.5) Dy =90 on 80 x {0,T] for all |of < m — 1

u{z,0) =0 in 2 :
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if and only if
(6.6) Lu+ S(u)=h, ue D).

Thus we can apply the results of section 5 to the study of the existence
of weak solutions for (6.5) as soon as the operator A satisfies relevant
monotonicity and coercivity conditions.

Indeed, if we assume that the coefficients A, satisfy the classical
Leray-Lions condition

(42)s Y {4a(z Q) — Aal(z .1, (Ve — ) > 0
ja|=m

for all (x,t) € Q, n € R™ and ¢ £ ¢* € R™
or its weaker version

(Aﬂ)W E {An(xa £, 1, C) -—A,,(I, tJLC')}(Cu‘C;) =0

laj=m
for all (z,t) € Q, 7 € R™ and ¢,¢* € R

and the strong coercivity condition
{As) There exist ¢g > 0 and ky € L, {Q) such that

Z A,,(I,t, E)Eu > c(.'||£|p - ko(x:t)

lajigm

for all (z,t) € Q and £ € R™M,
then the existence theorems of the present note are available.

A significant feature in the conditions {4,)s and {A4;)w is that mo-
notonicity is assigned only to the top order part

AV(u) = Z (- D=AL (- %, Dy, ..., D™u).

la|=m

The lower order part of A is denoted by

APy = 5 (-1)eID*4,(, - v, Dy,...,D™u)

algm—1
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and the special case where A® is independent of D™u by A®), i.e.,

AB¥(y) = E (-1 DA (., u, Du,..., D™ ).

tel€m—1

If we denote the corresponding mappings by Sy, S5 and Sa, i.e.,

67  (Si(u),v) = Z/Aa(x,t,u,...,Dmu)D“u, wv €V,

i&i:mq
(6.8)  {Sz(u),v) Z /A (z,¢,u,...,D™u)D%, wu,veEV,
|a|<m—
(6.9) (Sa(uw),v)= > fA z,tu,..., D" ) D%, wveV,
lal€m 1%

we have the following

PROPOSITION 1. Let Q be an open bounded subset in RY, Q the
cylinder O x [0, T}, A the differential operator defined by (6.2) and L the
linear mazimal monotone operator defined by (6.4). If 5, &, 52 and 53
are the mappings from V to V* defined by (6.3), (6.7), (6.8) and (6.9),
respectively, then the following assertions hold:

(8) If A satisfies (A,) and (A,)s, then S is pseudomonotone with respect

to D{L).

(b) If A satisfies (A,) and (Az)s and (Ag), then S is of class (S4) with

respect to D(L).

(c) If AW satisfies (A;) ond (A,)w, then S, is pseudomonotone with

respect to D(L).

(d} If A satisfies (A,), then S, is quasimonotone with respect to D(L).
(e) If A® satisfies (A)), then S is completely continuous with respect
to D(L).
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PRroOF. (a) This is the classical case (see [8]). It is shown in {10} that
no coercivity condition is needed when € is a bounded domain in R".

{b) We refer to [11].

(¢) The proof is a straightforward modification of the elliptic case (cf.
[7]). Indeed, let {u,} ¢ D{L) with u, — u in V, Lu, — Lu in V* and
lim sup (S (un), tn ~u) < 0. To prove assertion (c) we have to verify that
S1(u,) — S1{u) in V* and {8, {ua), un) — {Si{u),u). Obviously it suffices
to show the above convergences for a subsequence.

Since u, — u in V, D%u, — D%uin L2(Q) forall o < m, Si{u,) — A
in V* and A.(, " Un,...,D™un) — hs in L (Q) for all |a] = m, for a
subsequence. By Aubin's lemma D%u, — D°u in LP(Q), D°un(z,t) —
Deu(z,t) a.e. in Q for all o] < m—1 and there are functions k, € LP(Q)
such that |D%u,(z,t)| € ka(z,t) ae. in @, for a further subsequence.
Here the action of A € V* is given by

(ho) = [ 32 haDs, veV,

Q .cl=m

and
lim Sup(sl(un) ’ un) < (h: ‘U.).

By (A2)w we have forallv = {v,) € [ LP(Q)

la|=m
(S1{tn), tn / Z Aa(T, by tny ooy D™t ) D%y
Q Jox|=m
fZA Tt Uy e ey D™ )V
|ex|=mm

Z Aol(Ty b, Uny ..o, D™ Uy, ) Dy,

qQ lel=m

E Azt tny o, D™ Uy, )0,
g lalm
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Thus

(h: u) > lim sup(5, (un)mun)
> z hnuﬂ+limsup{/ z Ag(z b2y o, D™ 0) D,y

[exf=rre Q lal=m

/ L Aelz,tUn, - -, D™ g, v)ug )

la|=m

Bearing in mind (A4,) and the Carathéodory condition we can use the
dominated convergence theorem to obtain

Aa('n U8Ry, Dm_lun:u) - Aa(': Yy Uyeas ’Dm_lu! U)

in L#'(Q). Therefore the above inequalites give

S /{Aa(z, 5., DT, v)—he (e D) 20 Vv e [[LA(Q).
lal=m g3

Now we can employ Minty’s trick. Indeed, setting v, = D®*u + sw, with
8> 0 and w = (w,) € [ L7(Q) and letting § — 0+ we have

Z {Aa(z,t,u, ..., D™ 'y, D™u) — halz,t)}we > 0
In|-_—mQ
for all w = {w,) € [ LA{Q).

Hence A,(z,t,u,..., D™ 'u, D™u) = ho(z,t) a.e. in Q for each [a] =

and thus S;(z) = h, Si(za) — Si{u) in V. It remains to show that
{51 (tn), un) = (S1(u),u). Since we already have that

lim sup(S; (Un}, tn) Z /h D%u = (S;(u), u},
|a|_-mQ

it suffices to verify that

lim inf (S (1), n) > (Sy(u), u).
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As above with v = u we get

liminf (S (tn), n) = liminf 3 f Ao(2,t, s - - -, D™u) D0,

lal=m g
>3 /Aa(z,t,u,...,D”‘u)D“u+ ) /Aa(z,t,u,...,D“‘u)D“u
lel=mg laj=m 3
-3 ] Ao(@,t, 4, ..., D™u)Du = (Si(u),u)

lal=m &

completing the proof of assertion (c).

(d) Let {u,} ¢ D(L) with 4, — u in V and Lu, = Lu in V*. As
in the previous case, D*u, — D®u in LP(Q) for all o] < m -1, for a
subsequence. Since {Aa(:, ", %n,...,D™ty,)} remains bounded in Q)
for all |a] € m — 1, we have

lirn(Sa(an),tn =) = i [ 3 Aal@, by, Dtn)(Da = D) = 0
glalsm-1

and the assertion follows.

(€) Assume ggain that {un} C D(L) withu, — uinV and Lz, — Lu
in V*. It suffices to show that Sa(u,) — Ss(u) in V" for a subse-
quence. By the same argument as in (¢) Aa(')yUny-.., D™ up) —
Ag(ey 8. .., D™ ) in L7 (Q). Hence

lISa(un) — Ss(u)l

— sup | f 3™ {Aa(@s by tmy- .- DMt = Aale, tyu, ., D)} D]
flvfi=1 glalgm-1

< Z "Ac(" L YEER Dm-lun) - Aa('v By Dm—'l“)"Lp'(Q)

la]j€m-1
— D as n — oo. 0

We are now in the position to close our peper by results on the
existence of weak solutions for the initial-boundary value problem (6.5).
We can use the Proposition 1, Theorem 4 and the equivalence of (6.5}
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with the equation (6.6). Bearing in mind that the condition (A;3) on the
operator A implies that the mapping L + § satisfies the conditions (i)
and (ii} of Theorem 4, we obtain

THEOREM 5. Let §) be a bounded open subset in RY and Q the
cylinder 2 x [0, T]. Then the following assertions hold

(2) If A satisfies (A1), (A2)s and (A3}, then the equation
Lu+Su)y=h

admits a solution u € D(L) for any given h € V*.
(b) If AW satisfies (A,) and (A2)w, A satisfies (A,) ond AV + A®
satisfies (As), then the equation

Lu+ 51 (u)+ S3(u) =4

admits o solution u € D(L) for any given h € V*,
(¢) If AW satisfies (A,) and (A2)w, AP satisfies (4;) and AW + AD
satisfies (A3), then the equation

Lu+ S;(u) + Sg(‘ll) =h

iy almost solvable in the sense that (L + 5y + $;)(D(L)) is dense in
) L
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