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‘A geometrical stability for T-minimum

solutions of Hamiltonian systems
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RIASSUNTO - In questo lavoro si provano alcuni risultati di stabilita per traiettorie
associate ad una classe di soluzioni periodiche di certi sistemi Hamiltoniani cutonomi,
rispetto ad alcune perturbazioni delle superfici di energia fissata che le contengono. Si
ottengono alcune opportune estensioni anche al caso nonautonomo.

ABSTRACT - In this paper one proves some stability results for trajectories as-
sociated with a class of periodic solutions of autonomous Hamiltonian systems, with
respect to some perturbations of fized energy surfaces containing them. One obtains
some suitable extensions to the nonautonomous case too.
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— Introduzione

In [3] some stability results concerning a class of periodic solutions
of autonomous Hamiltonian systems with a fixed minimal period T, the
so-called T-minimum solutions, were stated, by taking into account the
minimality property of the critical points associated with the solutions
via the well known duality result by CLARKE and EKELAND [1]. Also,
some definitions and results related to the stability with respect to some
families of “fixed energy” surfaces were given. In [4] some extensions to
the nonautonomous case were obtained.
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Indeed it seems that the case concerning the “energy surfaces” was
not completely investigated, since the results are based on a connection
between “solution” and “trajectory lying on a fixed surface”, which is not
very meaningful in the sense that it doesn’t explain enough the meaning
of the “geometrical stability” of the Hamiltonian trajectories related to
the T-minimum solutions.

The aim of this paper is twofold. From one side, we wish to put
in a more geometrical formulation the stability results concerning the
“fixed energy surfaces” in the sense that we prove them for some closed
Hamiltonian trajectories which ly just on “converging” energy surfaces.
The definitions and statements are based on two general facts: firstly, the
Hamiltonian trajectories lying on a fixed level { H(z) = ¢ > 0} (where H is
the Hamiltonian function) are homothetic to the trajectories of any other
level {H(z) = ¢ > 0}, in case that H is positively homogeneous; secondly
the Hamiltonian trajectories on a fixed suitably “smooth” surface S don’t
depend on the Hamiltonian function representing S, in the sense that they
are the same unless of a suitable time - reparametrization.

The other type of results refers to the nonautonomous case and con-
cerns the possibility of considering in this case too some stability prop-
erties related to the Hamiltonian surfaces, which are connected to the
T-minimum solutions, but depend on the time (in the nonautonomous
case, one cannot say that the energy of a solution is a time-constant).

The main result yields a suggestive geometrical meaning, in terms of
one - parameter families of surfaces, of the fact, stated in [4], that, for
a suitable class of nonautonomous Hamiltonian systems, the T-minimum
solutions “converge” to a T-minimum solution of an autonomous system.

1 -~ The autonomous case

Let us consider the following Hamiltonian system
(H) Jz = H'(2)
where J(z,y) = (y, —z) Y(z,y) € R*" and H belongs to the class

H ={H € C'(R*™,R)|H is a convex function such that
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(Hy) ay|z|* < H(z) VzeR¥™
(Hy) H(z) <aplz|* VzeR™
(Hs) H'(z)-z<aH(z) VzeR?™

for some a;,a, >0 and a € (1,2)}.

Let F* be the functional defined on the space

T
L8 = {v € L?(0,T; 1R“’)|/ v(t)dt = o} , with = a_ai T>0
b _

as
F‘(v)=‘/oTG(v)—-;-/(;TL'lv~v

where G is the Legendre transform of H, that is

G(v) = sup {v .z—H(z)|z € IRZN}

and L=J % is defined from the space

HY = {z € HY(0, T; R™) / Tz(t)dt =0, 2(0)= z(T)}

into L.

In (1] CLARKE and EKELAND proved, for any T > 0, the existence of
a solution z of () with minimal period T, where z = G'(u) and u is a
minimizing point of F* on Ls.

We call T-minimum solution of (H) any solution z constructed in
such a way (see [3]).

Let us consider now the following class G, = {S|S is the boundary
of a bounded, closed, convex subset B of R*™ with 0 € B}.

Let be S € G, and let us define

(Mz)* zeR™ - {0}
0

Hs(2)={ 2=0

where A(z) is the gauge function of S that is the unique positive number
such that z = A(z)z with Z € S.
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Obviously Hy is a positively homogeneous function of degree a and

one has § = {v € R|Hs(v) = 1}.
Let us consider the following Hamiltonian system

(Hs) Jz = Hi(z)
In [3] the following definition was given

DEFINITION 1. We say that z is a T-minimum solution with respect
to S if it is a T-minimum solution of (Hsg).

Let us recall the definition of I-convergence (see e.g. [2]).

DEFINITION 2. Let {S,} be a sequence of subset in R*". We say
that {S,} T'-converges to Sp (So =T — Lm Sn) if

1) Vu € Sp 3v,,€S,,|1)0=nlz§.1°v,,
2) Vg, € Sy, | lim vy, =vp => w € So
n—oo

The following proposition was proved in [3]

PROPOSITION 1. Let S, S, € 6, Vn e N,S; =T"— nh_.no‘o S,.. Then
any sequence {2,}, with z, T-minimum solution with respect to S, admits
a subsequence converging in H:f to a T-minimum solution with respect
to So.

REMARK 1. One obtains, as an obvious corollary of Proposition 1,
that, if {z,} is a sequence of T-minimum solutions with rspect to S,
converging in H:g" , then its limit is a T-minimum solution with respect
to Sp. Of course, this type of remark can be done also for the following
convergence results, which will have always a similar “structure” as the
statement of Proposition 1.

Let us observe that the trajectory associated with a T-minimum so-
lution with respect to S might not belong to S. Anyway it is obvious
that, any solution - trajectory Z can be carried upon S by a (unique)
homothety, that is there exists a unique r > 0 such that

(1) z2=1%
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belongs to S. From (1) and from the homogeneity property of Hg one
has
1= Hs(‘)"?) = TGHs(E)

r=<%(z)>l/a

Therefore it is natural to give the following.

then

DEFINITION 3. We say that a trajectory z in S is a T- minimum
trajectory with respect to S if there exists a T-minimum solution Z of
(Hs) such that z is homothetic to Z, that is such that

REMARK 2. We point out that the T-minimum trajectories with
respect to S are solutions of the system

(Hs) Ji =r?""Hy(z) = Hs(2)

where Hg = 712~ H.

Moreover the surface S = {v € R*¥|Hs(v) = 1} can be represented
also as S = {v € R*|Hg(v) = r*-=}.

Also for the T-minimum trajectories w.r. to S it is possible to state
a stability result given by the following

THEOREM 1. Let 53,5, €6, VneN, So=TI- nlig.xos,..

Then any sequence {z,} with z, T-minimum trajectory w.r. to S,
admits a subsequence converging in H;'B to a T-minimum trajectory w.r.
to So.

PRrooF. From proposition 1, it follows that there exists a subsequence

Z,,; converging in H;'a to Zp. From Lemma 1 of [3] one has that z,, =
v . s A

(1/Hs,.j (E,.J.)) ai,.j converges in H;‘ﬁ to 20 = (l/H(E))l/" %o which is

a T-minimum trajectory w.r. to Hg,, since Zp is a T-minimum solution

of (Hs,) as follows from Proposition 1. _ 0
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Let us consider now the following class

$, ={H € C*(R*;R)|H is a convex function,
H(z)>0 VzeR™ H(z) =0+ z=0}

and, for any b > 0, let us consider the surface
S, ={veR*™|H(v) =b} where H € 5H,.
In [3] the following definition was introduced

DEFINITION 4. We say that z is a T-minimum solution w.r. to
(H,b) if it is ¢ T-minimum solution w.r. to S, that is if it is a T~
minimum solution of

(Hsy) Jz = Hg,(2)

and the following proposition was proved

PRrROPOSITION 2. Let H € $3,b0,b, > 0 and nlinolo bn, = bo. Then
any sequence {z,} with z, T-minimum solution w.r. to (H,b,) admits a
subsequence converging in H;‘ﬁ to a T-minimum solution w.r. to (H, bo).

In this case too, a solution - trajectory of (Hg,) might not belong to
S, but still, in a similar way as for the previous case, one can carry it
upon S, by a suitable homothety.

Let us observe that, if there exist two different functions H, and H,

in $, such that
S = {v e R*”|H,(v) = ¢} = {v € R*"|H(v) = 2}

then the closed Hamiltonian trajectories on S related to the system (H,)
coincide, in a geometrical sense, with those related to (H2). Indeed there
exists a continous function A on IR?" such that, for any » € S, one has
H!(v) = A(v)Hj(v). From this relation it easily follows that, if z, is a
solution of (H,) and its trajectory belongs to S, then z;(t) = z1(7(¢))
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is a solution of (H;), where ~(t) is the maximal solution of the Cauchy

problem
{*'r(t) = Az (7(t)))
7(0) =0

Obviously it is defined one the whole real line, thanks to the boundedness
of (A-z).

Now, the surface
Sy = {v € R*™|H(v) = b}
can also be represented as
S, = {v e R*|Hg, (v) = 1}.

Let z be a solution of (H) with H(z) = b. The previous argument

implies that z(7,(t)) is a solution of (Hgs,) where 7,(t) is the solution of
the problem

@) {*’n(t) = Xo(z(%(t)))
7%(0) =0
and ), is the continuous function defined on S, such that, for any v € S,
3) H'(v)As(v) = Hg, (v)
that is
@ M(v) = Hg (v)-v _als(v) a

H'(v)-v  H'(v)-v H(@)-v
This argument suggests the following

DEFINITION 5.  Let z be a solution of (H) with H(z) = b. We
say that z is @ T-minimum trajectory w.r. to (H,b) if z(vs(t)) is a T-

minimum solution of (Hs, ), where «, is the solution of (2) and X, is given
by (4).
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Also for the T-minimum trajectories w.r. to the energy levels one
can state a stability result given by the following

THEOREM 2. Let by,b, > 0 Vn € IN and nlgglo b, = by. Then
any sequence {z,} with z, T-minimum trajectory w.r. to (H,b,) admits

a subsequence converging in H;'ﬂ to a T-minimum trajectory w.r. to
(H,bo).

PROOF. First of all let us prove that {v;,} uniformly converges to
{74, } Where, for any n € IN, v, (t) is the maximal solution of the problem

o {%" () = An(2a (% () = Fu(Toa (2))

%, (0) =0
An is the continuous function defined on S,, such that Vv € S,
(6) H'(v)An(v) = Hy, (v)

and Fy,(-) = (An * 2n)(+). Let us observe that Vn € IN

o

™ Mnlt) = g

By exploiting a well known result about the continuous dependence of
solutions of Cauchy problems on the datas, it is enough to prove the
following statements:

(8) F, uniformly converges to F,

(9) For any compact set] CIR there exist some c= c(I)
such that IFn(tl) b Fn(tZ)I < C|t1 - tzl th,tz €l YnelN
(10) F,, are equibounded

First of all, (8) follows from (7) and from the assumption that {z,} con-
verges to zo in H .



(9 A geometrical stability for T-minimum etc. 631

Let us prove (9). From (8) it follows that

|Fa(ts) = Fa(t2)] = |(An - 2a)(t1) = (An - 2a)(t2)] =
1 1
= Hza(t) - 2a(t)  H'(2n(t2)) - 2a(t)

For any n € IN let us consider the function

1
90 = FG®) 2

te[0,7)
Taking into account that z, is a solution of (H) and that v-Jv =0
Vv € R*", one has that :

o Ha () JH (2a(0) - 2(t)
(1) 90 =~ H () - 20O

Since H(z,) = b, and {b,} converges, then (H;) implies
(12) [|Zn]loo < comst
On the other side, by = lim b, > 0 so (H,) implies
(13) |2n)lee = const > 0
Then (11), (12), (13) and the continuity of H”, H' yield
(14) |¢4.(t)] < const Vn € IN,t € [0,T)
so (9) follows from Lagrange theorem.
Finally (10) derives from (8), (13) and the continuity of H'. Therefore
(8), (9), (10) hold and {v,,} uniformly converges to s,
At this point one observes that {z,} admits a subsequence {z,,}
converging in H;"’ , since (12) holds and also

(15) [2}}oc < const

and z, is a solution of (H,).
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Let zo = lim z, in H;"’ . Obviously z, is a solution of (H), let us
prove that z, is in fact a T-minimum trajectory that is (2o - 7s,) is a
T-minimum solution of (H. Sbo)‘

Indeed, unless of another subsequence, from one side the subsequence
Zn,;(t) = 2n;(7.(t)) converges in H;"’ to a T-minimum solution Z, of
(Hs,), thanks to Proposition 1, on the other side the uniform convergence
of {m,} to m, yields

Zo = 20(7 (%))

and the thesis follows. 0

2 — The nonautonomous case

Let H be a function defined from R, * IR*" into R such that

(16) H(,z)eC°(R,) VzeR¥™
(17) H(t,-)e CY(R*™) VteR,
(18) H(t,-) isstrictly convexon R* VteRR,

(19) H(.,z) is periodicon IR,, with minimal period
T forany zeR¥
ailz|* < H(t,z) < az]z]* VteR,, VzeR™

(20)
with a€(1,2), a),a; >0

Let us consider, for any n € IN, the following Hamiltonian system

(H.) { Jz(t) = H'(nt, 2(t))

z is T-periodic with minimal period T >0

It is easy to check that, as in the autonomous case, (H,) admits a solution
z, which can be obtained through the duality principle by Clarke and
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Ekeland. More precisely it is possible to show that the functional F;(v)
defined on L§ as

T 1 T
F*(v) / G(nt,v(t)) -~ 5 / L u(t) - v(2)
0 0
(where G is the Legendre transform of H in the z-variable that is

G(t,v) = sup{v -z — H(t,z)|]z € R*} V(t,v) € Ry x R?M)

admits a negative minimum on LZ and, if u, is a minimum point then
2, = G'(nt,u,(t)) is a solution of (H,). We call T-minimum solution of
(H,) any solution obtained in such a way (see [4]).

Let us recall the following result for T-minimum solution of (Ha,),
proved in [4]

PROPOSITION 3. Let H(t,z) = H(z)p(t) where H € C}(IR*"),
w € C(R,) and

(21) H is strictly convez on RN
(22) a)2]* < H(z) < a2]2]* Vz e R*™,a;,2;, >0, € (1,2)
(23) @ s periodic on IR,, with minimal period T

(24) there exists ¢ >0 suchthat o(t) >c Vie R,
Let us consider the following Hamiltonian system
H) Ji=H (e
where g = T ST o(t)dt. Then, putting {H.(t,2)} = {H(nt, z)}
= {H(z)p(nt)}, one has that any sequence {z,} with z, T-minimum so-

lution of (H,,_)_ admits a subsequence converging in H;‘p to a T-minimum
solution of (H).
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Let us consider now, for a fixed T > 0, the following class
S, = {S: R, — R*™| V¥t > 0,5(t) is the boundary of a bounded,
closed, convex subset B of R*" with 0 € B and T is the minimum
positive number such that S(t + T) = S(t) Vt > 0}

Let us show how it is possible to define a concept of T-minimum
solution related to some suitable elements S in the class &, and to give
a related convergence result, by exploiting Proposition 3. Indeed, let
S € G, and define the gauge function A(z,t) of S(t), for any ¢t € IR,. and
z € R*" as the unique number such that z = A(z,t)z, with z, € S(t) if
z #0,X(0,t) = 0. Then, put for an arbitrarily fixed number « € (1, 2),

(25)  Hs(t,z) = Hspy(2) = (M2, 8))*  Vte Ry,ze RV
one can state the following

LEMMA 1. Let S € G,. Then the corresponding Hs defined as in
(25) can be written as

(26) Hs(t, z) = H(2)ep(t)
with H € C*(R*M) homogeneous of degree o and satisfiyng (21) and

¢ € C°(R,) satisfiying (23), (24), if and only if there exists a continuous
function ¢ on R,., satisfiyng the assumptions

27 Y 18 periodic on R, with minimal period T
(28) 3 >0 st Y(t)>cd VieR,

such that

(29) 5(t) = {v e R*|H(v) = y(t)}.

Moreover (t) = (¢(t))~!.
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PROOF. Let Hg be represented by (26). Then obviously S(t) can be
written as in (29), with ¥(t) = (¢(t))~? as, by definition, S(t) = {v €
R*N|Hs(t,v) = 1}.

On the contrary, let there exist a pair of functions H, ¢ satisfiyng
(21), (23), (24) and (22) with the further a-homogeneity assumption, in
such a way that (29) holds. It is enough to prove that the function

—_— 1/
At z) = (%) zeR™, t>0

is the gauge function of S(t), or, equivalently, the relation

1/a
(30) 2(t) (-F”’%) € S(2).

Indeed (30) is an obvious consequence of the a-homogeneity of H and
(29). So the thesis follows. 0

By virtue of Lemma 1, it makes sense the following

DEFINITION 6. Let 1 € C°(R,) satisfiyng (27), (28) and let H
satisfy (21) and (22) with the further a-homogeneity assumption. Let us
take S € G, of the form given by (29). From now on we will say that S
is of the type (H,v). Then one says that z is @ T-minimum solution w.r.
to S if z is a T-minimum solution of the system

(Hs) Jz = Hg(t, 2).
Obviously one can also consider,for any n € IN, the element Sn €6,
defined by
(31) Sn(t) = S(nt) = {v € R*"[H(v) = ¥(nt)}

and define & T-minimum solution z w.r. to S, as a T-minimum solution

of the system
(Hs,) Jz = Hg (t,2)
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REMARK 3. Let us recall the previous Definition 4. In case that the
function H appearing in the definition of the surface S; is homogeneous
of degree ¢, the Definition 6 is an obvious generalization of Definition 4,
where the function (t) is simply the constant number b.

By taking into account Definition 6, at this point the following result
can be stated as an easy consequence of Proposition 3 and Lemma 1.

THEOREM 3. Let S € G, be of the type (H,v) and let S,(t) be as in
(31). Let o = (po)™ = (& J <p(t)dt)" and let So = {v € R*"[H(v)
=1p}. Then any sequence {z,} with z, T-minimum solution w.r. to
Sn(t) admits a subsequence converging in H;'ﬂ to a T-minimum solution
w.r. to Sy.

As in the autonomous case, also in the non-autonomous one, it is
possible to give a suitable definition of T-minimum trajectory and a re-
lated convergence result. Indeed, let S € &, be of the type (H,), then
it follows that, for any z: R, — IR, with Z(¢) # 0 vt > 0, the

trajectory
NE VRN
Z(t) = (m) Z(t) t Z 0

verifies the relation

2t)eSEt)  VE20

One can, in particular, choose Z as a T-minimum solution w.r. to S:
indeed Z(t) # 0 Vt > 0, as a consequence of the more general result

LEMMA 2. Let H(t,z) satisfy assumptions (16), ..., (20) and let us
consider the Hamiltonian system (H,) for any n € IN. Then there exists
a constant number d > 0 such that, for any T-minimum solution of (H,),
one has

(32) lellze 2d,  f#llze 2 d
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PROOF. Let z be a T-minimum solution of (H,) and let v = Lz the
corresponding minimum point of the associated functional F;. By the
properties of the Legendre transform, one has

T 1 fT .
(33) / H(nt,z) = —F:(v) + —/ Ly.v
0 2 Jo
On the other side
(34) Lw.-v>0
as L™'v = H'(nt, z) and, by convexity of H with H(0) =0,

(35) H'(nt,z)-z> H(nt,2) >0

Therefore (33), (34), (35) imply

(36) /0 " Hnt,2) > —F*(1)

Nowe let T be an eigenvector of L~! of the type

=4y _ . (2m AW 2w . (2w
o(t) = (asm (Tt) + bcos (-ft) ; @ COS ( T t) bsin T t))

a,b € IRY. By using the first relation in (20) and the continuity of L~?,
one has

(37) F;(®) < e (laf? +181)"* = ¢ (lal? + [817)

for suitable constant number ¢;,c; > 0, independent of n. As 8 > 2, it
is easy to see that the function g(a,b) = ¢;(Ja|? + |b[?)?/% — c2(ai® + |b]%)
has a negative minimum, say M, which is independent of n so (37) yields

(38) F:m)<m<0 VnelN

Then the minimality property of v, (36) and (38) imply

T
(39) / Hnt,z)>-m>0 VnelN
(]
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At this point the first relation in (20) and (39) yield
lzllza > —m/a, >0

and the first relation in (32) follows.
On the other hand, since z is a solution of (H,), by the Holder
inequality, (35) and the first relation of (20), one obtains

-/;T|2|ﬁ=/oT|H’(z)|ﬁ2/0 (El(fl) >a / (|z|)p(a—1)_a1‘/orlzla

so the second relation in (32) is a consequence of the first one.

REMARK 4. One has to remark that, if Z is a solution of (Hs)
with S of the type (H,), (not necessarily a T-minimum solution), then
H(z(t)) is a constant number for any t > 0, so one shall put H(z(t) = ks
Vt > 0. Indeed, by observing that VH(Z(t)) - Z(t) = O one has, putting
o(t) = ($(¢) 1

FH20) = 3 (HEO0) = ¢ T (Ee)

then d
g (FEE®) iy
HEzO)p(t)  o(t)
therefore d
Sl (ﬁ(z(t)yp(t)) = d%lg@p(t)) )
SO

Ig (F(2(t)e(t)) = g(p(t)) + constant

which implies H (Z(t)) = hz, where hs only depends on Z (and not on ).
Really this observation will be not essential for the next definition
and theorem, but we have preferred to pointwise it for completeness.
At this point one can give the following

DEFINITION 7. Let S € &, of the type (H, %) and let S,(t) = S(nt)
Vn € IN, Vt > 0. Then one says that z is a T-minimum trajectory w.r.
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to S, if there exists a T-minimum solution Z w.r. S, such that

1/
2(t) = (ﬂh’iﬂ) 2t)  VE>0
Obviously, in particular, z(t) belongs S,(t) Vt > 0.

REMARK 5. Definition 7 generalizes Definition 3 in case that S =
{v € R?*|H(v) = b} where b is a constant positive number. Obviously
it is not a generalization of Definition 5. Indeed it doesn’t make sense,
in the nonautonomous case, develop an analogous argument as the one
related to the autonomous case on which is based Definition 5.

Now let us give the convergence result related to T-minimum trajec-
tories. In this nonautonomous case one can state that the “limit trajec-
tory” does not belong to the “limit surface” Sp = {v € R*M|H(v) = 4o}

-1
where i = (% foT go(t)dtz1 , but it is true unless of a suitable homothety.
Precisely one can state the following result

THEOREM 4. Let S € G, be of the type (H,¥) and let S,(t)
S(nt) ¥n € N, V¢ > 0. Let So = {v € R*™[H(v) = to} with ¢ =
(3 1 e(vya) .

Then, any sequence {z,} with z, T-minimum trajectory w.r. to
S.(t) admits a subsequence converging, in the weak *-topology of L*=(0, T}
]RzN), to an element Z, which is homothetic to a T-minimum trajectory
Zo w.r. to So. More precisely

Zo(t) = (dffﬁzo(t) vVt >0

where

Vo= [ Ot
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REMARK 6. In case that ¢(t) is a constant number b > 0 for any
t >0, so S,(t) reduces to the unique surface S = {v € R*|H(v) = b}
then 1, = (1) so z(t) = z(t) and Theorem 4 yields the compactness
of the set of T-minimum trajectories w.r. to S. Indeed it can also be
deduced from Theorem 2.

PROOF OF THEOREM 4. From Theorem 3 it follows that there ex-
ists a subsequence Z,; converging in H;‘ﬁ to Zp which is a T-minimum
solution w.r. to Sp. Then H(Z,;) = hz,, converges to H(zZo) = hz, so

l/a
Zn,/ (h;"j) converges to Zo/(hz, Ve in H;'B .

Since ¥(n;t) converges to 1, in the weak *-topology of L*(0,T;
IR?"), then

oo
%
( hfo 1/

n = converges to

N

0

in the weak *-topology of L=(0,T;IR*). Then %, is homothetic to the
T-minimum trajectory

1/a
(v .
29 = Zo since one obtains

hz,
5 _ _ Ya
% = Gy 0

REMARK 7. By looking at the proof of Theorem 4, one realizes that
the main reason for which the “limit-trajectory” of T-minimum trajec-
tories is not of this type is essential the fact that the “mean operation”
does not obviously commute with the “exponential operation”.
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