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Kantorovich majorants for nonlinear operators and
applications to Uryson integral equations

J. APPELL - A. CARBONE - P.P. ZABREJKO

RIASSUNTO — Si studiano maggiorazioni alla Kantorovich per operatori non lineari
in spazi muniti di K-norme, ossia funzionali sublineari che assumono valori nel cono
di elementi positivi di qualche spazio di Banach. La convergenza di successive appros-
simazioni per punti fissi del corrispondente maggiorante. I risultati astratti vengono
illustrati tramite equazioni integrali non lineari di tipo Uryson, per le quali si possono
calcolare i maggioranti di Kantorovich sotto forma esplicita.

ABSTRACT - Nonlinear Kantorovich majorants of nonlinear operators are studied
in spaces equipped with a K-norm, i.e. a sublinear functional taking values in the cone of
positive elements of some Banach space. Convergence of successive approzimations for
fixed points of such operators reduces then to convergence of successive approzimations
for fized points of the corresponding majorant. The abstract results are illustrated by
nonlinear integral equations of Uryson type, where one can represent the Kantorovich

majorant quite explicitly.
KEY WORDS. - Kantorovich majorants - Nonlinear operators - Spaces with K-
norms - Successive approzimations - Fized points - Uryson integral equations.
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Already in the classical work of L.V. Kantorovich (see, e.g., [3]) on
successive approximations of operator equations, the idea arose to use
so-called K -norms, i.e. sublinear functionals taking values in the cone of
positive elements of some ordered space.

This made it in fact possible to pass from the iterates of a given (usu-
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ally, complicated) operator to those of another (usually, simple) operator
in an ordered space, which is nowadays called Kantorovich majorant. In
the first papers, Kantorovich majorants were throughout linear, and took
values in a finite-dimensional space. Already in this simple case, many
new interesting abstract theorems have been obtained; some results in this
spirit may be found in the book [6]. In particular, the use of K-norms
with values in some Euclidean space made it possible to strengthen var-
ious known existence theorems for integral equations or boundary value
problems.

Essentially new results, however, may be obtained if one admits also
K-norms in infinite-dimensional ordered Banach spaces. Here we mention
the papers (1], [2], where the authors use the simple (though infinite-
dimensional!) K-norm Jz[= |z()| (see below).

This leads to completely new results, for instance, in the theory
of nonlinear integral equations of Hammerstein type, and gives also a
mathematically rigorous justification of A.M. Samojlenko’s convergence
method for periodic solutions to various types of non-autonomous differ-
ential equations.

In the present paper we apply the majorant method to nonlinear
integral equations of Uryson type. In comparison to previous work, there
are two essential new features. First, we consider K-norms with values
in a large class of infinite-dimensional Banach spaces. Second, we admit
nonlinear Kantorovich majorants as well. As a consequence, we obtain
new existence and uniqueness theorems for Uryson equations in a rather
elegant and straightforward way.

1 - K-normed spaces

Let B be a real Banach space which is ordered by some cone K.
Given a real linear space X, a K-normon X isamap |-[: X — K
which has the usual algebraic properties of a norm, i. e. |z[= 6 iff z =6,
JAz[= |\|Jz| for A € R, and ]z + y[<]z[+]y[ for z, y € X. Of course, the
case B = IR and K = [0,00) gives the usual definition of a norm. Given
Zo € X and R € K, by B(zo, R) we shall denote throughout the K-ball

(1.1) B(zo,R) = {z:z € X, ]z — zo[< R}.
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Recall (3}, [9] that a sequence (z,), in a K-normed space X is called
o-convergentto z, € X if there exists a monotonically decreasing sequence
(Tn)n in K such that inf r, = 6 and ]z, —z.[< 7,; equivalently, this means
that 0 < z <lz,—z.] (n=1,2,...)implies that z = §. Similarly, (z,),
is called o-fundamental if § < z <]z, — z,[ (m,n = 1,2,...) implies
that z = 0. Denoting by 9(X) the set of all o-fundamental sequences
in X, we call X 9J-sequentially complete if every sequence (z,), € ¥(X)
is o-convergent. More generally, we define the C-sequential completeness
of X for any subset C of 9(X). Examples will be given below. We say
that an ordered Banach space B has the W-property (where W stands for
Weierstrass) if every monotonically increasing sequence (r,), in K C B
which is bounded from above has a supremum.

2 - Kantorovich majorants

Let X be a K-normed space and A a (nonlinear) operator defined on
some K-ball B(z,, R) and taking values in X. An operator @ : K —» K
is called Kantorovich majorant for A if

(2.) JA(z + h) - Az[< 3(|z[+]A[) - 2(J=[)

for |z — zo[+]h[< R. Of course, an operator A may have several Kan-
torovich majorants. It is an interesting and important problem to deter-
mine the minimal of all Kantorovich majorants, if there are any. Surpris-
ingly, this is in fact possible in many cases. For the sake of simplicity, we
take o = @ in what follows.

The usefulness of Kantorovich majorants consists in the fact that,
on the one hand, the operator ® is often much easier to deal with than
the operator A (for instance, ® is always positive, by definition), and, on
the other, many properties of ® carry over to analogous properties of A
(for instance, convergence of successive approximations, see Theorem 2
below).

Suppose that the Banach space B is & K-space in the sense of [3], [4],
i.e. every bounded set in B has a supremum. For fixed a,b € K let

(2.2) W(a,b) =sup f:]A(a:,- + h;) — Az;],

i—1
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where the sup is taken over all finite chains {rg,7y,... ,7m} C K such
thata =1 <7 < ... STy ST = b, and |hy[< rj — 15y, Jz;(< 1
(7 =1,2,...,m). Obviously, the function (2.2) has the property that

(2.3) W(a,b) + W(b,c) < W(a,0),
and equality holds in (2.3) only in the scalar case B = IR.

THEOREM 1. Suppose that B is a K-space, and the function (2.2)
is defined on the conic interval < 6, R >. Then

(2.4) B 4(z) =)A6[+W (6, )

is a Kantorovich majorant for the operator A. Moreover, &, is minimal
in the sense that

(2.5) Pa(z) < 2(2)
Jor any other Kantorovich majorant ® of A.
PROOF. For |z[< r and Jh[< § we have, by (2.2) and (2.3),
JA(z + h) — Az[<W (r,7 + 6) 5
< W(O,r+8) ~W(0,r) = Bar + 6) — Ba(r).

Moreover, if ® is another Kantorovich majorant for A, and
{ro,T1,...yTm} C K satisfies § =19 <7 < ... £ Ty < T = 2,
then

1A(z; + hy) — Az;[< ®(r;) — B(r;-1) (i=1,...,m)

for ].’Bj[s Tj-1 and ]h:,[s Tj — Tj-1, and hence -

3 JAGz; + by) = Azyl< SI8() ~ 8y < 2(2) ~ 2(0).

i=1

This implies that
(2.6) @ 4(2) =]A[+W (6, z) <|AG[+D(z) — 2(8) = B(2)

as claimed. 0
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3 — Some fixed point theorems

We say that an operator ® : K — K has the F*-property (where F'
stands for Fatou) if, for any monotonically increasing sequence (,), in
K one has

(3.1) ®(sup{r,}) < sup{®(ra)}

Likewise, ® has the F~-property if, for any monotonically decreasing
sequence (r,), in K one has

(3.2) d(inf{r,}) > inf{®(rs)}.

Observe that, if the operator & is, in addition, monotone with respect to
the ordering induced by K, one has equality in both (3.1) and (3.2).

The following three lemmas give statements on fixed points of mono-
tone F+ or F~-operators which we shall need in the sequel; here Fix®
denotes the set of all fixed points of ®.

LEMMA 1. Suppose that B has the W-property, and & : K — K
is monotone and has the F*-property. If Fix® # 0 and ®(8) > 0, the

successive approzimations
(3.3) T4l = Q(7'1'5) (TO = 0)
are o-convergent to the minimal fired point r. of ®.

PROOF. By the monotonicity of ®, the sequence (3.3) is increasing
and bounded from above by any element r € Fix®. By the W-property
of B, the element r, = sup{r,} exists, and by the F*-property of ®,
equality holds in (3.1). a

It is not hard to see that, under the hypotheses of Lemma 1, the
successive approximations (3.3) o-converge to r. not only for ro = 8, but
for any initial value 7o €< 8, 7. >. However, a more precise statement is
possible:

LEMMA 2. Suppose that B has the W-property, and ® : K — K 1is
monotone and has the F~-property. IfFix® # 0, ®(F) < 7 (but ®(F) # )
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for some ¥ € K, and ® has no fized points in < r.,7 > different from r,,
then the successive approzimations

(3.4) Tns1 = O(rn) (<1 <F)
are o-convergent to r, for any ro €< 0,7 >.

PROOF. Defining a sequence (7,), by 7o = 7 and 7, = ®"(F) we
have 7,41 < 7n, since ® is monotone. By the F~-property of ®, we see
that 7. = inf 7, exists and satisfies r, < 7, < 7. Since, by assumption,
< r.,7 > NFix® = {r.}, we have 7, = ., i.e. (Fx)n is 0-convergent to r,.

Choose an arbitrary initial value p; €< 6,7 >, and consider the
successive approximations

(3.5) Pnt+1 = B(pa) (@< po 7).

Again by the monotonicity of ®, we have r, < pp < 7. But both (r,),
and (7,)n o-converge to 7., and so does (pn)n. 0

In what follows, we write
(3.6) A@)={r:r>r.,®(r)<r, Jim & (r) =r.},
where r, = min Fix® as before.

LEMMA 3. Suppose that B has the W -property, and <I> K- K
has the F~-property and is convexz, i.e.

(3.7 @ ((1-2Na+b) < (1—N®(a) + A®(b)
for 8 < a <b< R IfFix® # 0, r. = minFix®, r., € Fix® with
r. < T.., and there are no fized points of ® in < r.,7.. > different from

r. and r,., then

(38)  7(A) = (1 = Ar. + M. € AD) 0<X<1).
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PROOF. From the convexity of & it follows that
® (r(N) € (1 = N)B(r.) + A®(r..) =T(N).

Moreover, since < 1,,7(\) > NFix® = {r.}, by assumption, we con-
clude from Lemma 2 that ®*(r()\)) o-converges to r, as n — 0o. 0

4 — Operators with majorants

Let X be a C-sequentially complete K-normed space, A : B(zo, R) —
— X a given operator, and ® : K — K some Kantorovich majorant of A
on B(zq, R) having the F*-property. We suppose that r, = min Fix® is
a C-fized point of ®, i.e. the sequence (3.3) o-converges to 7, and belongs
to C C 9(X).

The following theorem is fundamental, since it makes it possible to

pass from fixed points of the majorant operator ® to fixed points of the
majorized operator A:

THEOREM 2. Under the above hypotheses, the operator A has a
unique fized point z, € B(0,1,), and the successive approzimations

(4.1) Tp4r = AZy (zo=96)

o-converge to z, and belong to C. Moreover,

(4.2) |Ze — Za[S Te —Tn (n=0,1,...),

with (Tn)n defined by (3.3). The fized point z, s also unigque in the set

(4.3) U®) = J{B(6,r) : r € A®)).
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PRrooOF. Since ® is a Kantorovich majorant of A, we have
]zm - zn[S Tm —Tn (m 2 n)v

and hence the sequence (z,), is C-fundamental. Its C-limit z, is then
a fixed point of A and satisfies (4.2). Suppose that z.. is another fixed
point of A in U(®P). This means that z.. = Az.. and |z..[< p for some
p 2 7. such that &(p) < p and Jim ®"(p) = r.. Since P is a Kantorovich
majorant of A, we may show, by E’:lduction, that

|Zae — Tn[< Pn — Tn (n=0,1,...).

We conclude that the sequence (z,), converges to z., as well. 1]

Theorem 2 may be considered as a modification of the classical Kan-
torovich theorem (see [3, Th. 5.7]). Observe that we did not just obtain
existence and uniqueness of z, € U(®) N FixA in Theorem 2, but also
some kind of “localization” of z., since ]z.[< minFix®. This important
information may be employed for approximate computations.

5 — Kantorovich - Uryson majorants

In this section we shall apply the previous results to the nonlinear
integral operator of Uryson type

(5.1) Adﬂ=dﬂ+£n@md®ﬂs

generated by some Carathéodory function x = k(t,s,u). Here we may
assume that (¢, s,0) = 0, since we have already “separated” the function

(5.2) aw=mm=ﬁqmma

in the definiton (5.1). It is natural to expect that possible majorants of
A have the form

(5.3) @@w=mm+4wm4ma.
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where £ = {(t,s,u) is some Carathéodory function which "majorizes”
(t,s,u) in a sense to be made precise. In fact, the following general
result was proved in [10]: '

LEMMA 4. For a real function f on [—R, R], its majorant ¢ is given
by

(5.4) #(u) = £(0)] + /o " sup |£'(€)]dv.

If we apply Lemma 4, for all ¢t € §2 and almost all s € , to the scalar
function

(5.5) £(w) = (t,5,%)

(assuming that the kernel function « admits a derivative &, with respect
to the last argument), we get

|ul
Bw) = Intt,,0) + [ sup [, (1,5,)] do.

Using now Fubini’s theorem, we arrive at the following

THEOREM 3. Let k = k(t,s,u) be a Carathéodory function which
has a derivative &/, with respect to the last variable. Then the Uryson
operator (5.1) admits a Kantorovich majorant of the form (5.3), where

lul
(5.6) ot s5,u) = / sup |K,(t, 8,€)|dv.
0 [§I<v

In what follows, we shall call the operator (5.3), with ¢ given by
(5.6), the Kantorovich-Uryson majorant. The question arises whether or
not the Kantorovich-Uryson majorant (5.3) is minimal.

To answer this question in general function spaces X seems to be
a difficult problem. However, in all important examples we know, the
operator (5.3) is in fact the minimal Kantorovich majorant ®,4 (see (2.4))
of the operator (5.1).
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For instance, a typical example for the applicability of our results is
the following. Suppose that X is an ideal space of measurable functions
[11] over a bounded domain  in Euclidean space; roughly speaking,
this means that X carries a monotone norm with respect to the natural
ordering (a.e.) of measurable functions. In this case we take B = X, K
the cone of all (a.e.) nonnegative functions in B, and

(5.7) Jz(= [=(-)]

as a natural K-norm. Assume now that the Carathéodory function k =
k(t, s,u) admits a derivative «,, with respect to the third variable, and
that the corresponding Uryson operator (5.1) acts in the space X (many
sufficient conditions, for general ideal spaces as well as for specific spaces
arising in applications, may be found in [12]). Combining Theorem 2 and
Theorem 3 yields now the following

THEOREM 4. Suppose that the integral equation
z(s)
z(t) = |a(t)] +/ / sup |k, (t,s,&)|dvds
1J0 [€1<v
has a minimal solution z. € K. Then the Uryson integral equation
z(t) = a(t) +/ k(t,s,z(s))ds
o

has a solution z, € B(6, z.) which is unique in the set (4.3).
Moreover, if the successive approzrimations

|2n(a)}
(5.8) Zans® =la®) + [ [ sup [, (1, 5,6)] dv s

o-converge to z. and belong to C C 9(X), then the successive approzima-
tions

(59) Tn41 (t) = a(t) + A K’(tt 8, :l:n(S)) ds

converge to z, and also belong to C.
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6 — Linear Kantorovich majorants

Now we shall be interested in linear (or affine) Kantorovich majorants
for the Uryson operator (5.1), i.e. majorants of the form

(6.1) B(2)(t) = la(t)] + Q=(t) ,

where Q is a linear operator in an ideal space X. More precisely, to each
nonnegative function R € X we associate the kernel function

|k(t, s, u) — (2, 3,v)]
6.2 =
(62) ar(%:2) fublol<R [u— vl

and the corresponding linear integral operator

(6.3) Qz(t) = /ﬂ gr(t, s)z(s)ds.

LEMMA 5. The operator (6.1), where a and Q are given by (5.2)
and (6.3), respectively, is a Kantorovich majorant for the Uryson operator
(5.1) on the K-ball B(6,R) if and only if the kernel function (6.2) is
defined.

PROOF. If g is defined, we get for |z| + |h| < R
|A(z + h)(t) — Az(2)| =

= | [t 20) + hio)) = n e 5, (oDl <

< | aalt, )Ih(s)lds = QIAl(e) =
= &(|z| + |hI)(2) — 2(I=])(?),
i.e. ® is a Kantorovich majorant for A, by the definition (5.7) of the

natural K-norm in X. Conversely, suppose that (2.1) holds on B(4, R),
where ® is given by (6.1). This implies, in particular, that

6.4) | [ [ntts5,2(6) + h(s)) —x(t, s, (5))ds

< /D ar(t, s)h(s) ds
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for any measurable subset D of Q. From (6.4) we conclude that
IK(ta S, 3(3) + h(s)) - K‘(ta S, .’B(S))l < qﬂ(ta s)lh.(s)l

for almost all ¢, s € Q. But this means that the kernel function (6.2) is
defined. 0

It is a striking fact that even a linear integral operator may fail to
have a Kantorovich majorant. In fact, since the Kantorovich majorant
® acts in the cone K of nonnegative functions, any operator A with
Kantorovich majorant is necessarily regular in the sense of {5], [12]. But
even in X = L, there are linear integral operators which are not regular.

Lemma 5 gives a criterion for the affine operator (6.1) to be a Kan-
torovich majorant for the nonlinear Uryson operator (5.1). To apply
Theorem 2, we have to guarantee the existence of a minimal fixed point
z, of the operator ®. Here the following general result is useful which
goes back essentially to [6], [7):

LEMMA 6. Let Q be a positive linear operator which acts in the
cone K of nonnegative functions in some ideal space X. Suppose that the
spectral radius p{Q) of Q satisfies

(6.5) P(Q) <1

Then, for any function a € K, the operator ®(z) =a + Qz has the only
fized point z, = (I — Q)~1®(0), and the set A(D) (see (8.6)) coincides
with the whole cone K.

We remark that the condition (6.5) is not necessary, in general, for
& to have a minimal fixed point, but only the condition p(Q) < 1. This
may be illustrated, for example, by means of the multiplication operator
Qz(t) = tz(t). Observe, however, that (6.5) is in fact necessary in case Q
is a compact operator.

Lemma 6 provides not only existence and uniquess of z, € Fix®
but also some precise information on the convergence of the successive
approximations (4.1). From (6.1) it follows that

(6.6) JAzy — Az [< Q)2 — 22
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and hence
Jou = 7l < Sl2; - 2yl<
(6.7) -
< Y QM0 (- Q) 'Qne(6).

Suppose that there exists a positive normalized eigenfunction ey of Q
which corresponds to the eigenvalue A = p(Q), and that

(6.8) J@%2[< dl|z]leo
for some k € IN and d > 0. From (6.7) we get then

p(Q)
S T=@

J&n — 2.

) ll‘I’(G)lleo,

and hence

n—k
o - 2l < 2D o0

Condition (6.8) holds always (with k = 0) if e, is an interior point of
the cone K. For k = 1, condition (6.8) means that Q acts from X into
the space X, of all measurable functions u for which the norm

[ulleg =inf{a: @ >0, —ae <u< e}

makes sense and is finite. A detailed discussion of this space, also from the
viewpoint of integral equations, may be found in the recent monograph

(7).
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