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Characterizations of Hammerstein operators

S. SEGURA DE LEON

RIASSUNTO - Si estende agli operatori di Hammerstein il criterio, olienuio in
{14}, per riconoscere operatori integrali non lineari. Lo doppia dimostrazione consiste
nel fatto che lo condizione successiva é cambicta prendendo unae successione anziché
due € non vengono fatie ipotesi sull’ordine delle limitazione dell’operatore.

ABSTRACT — In this paper the critcrion for recognizing non-linear integral operators
obtained in [14} ig itnproved for Hammerstein operators. The twofold improvement
consists in that the sequential condition is changed taking one sequence insiead of two
ones and order doundedness of the operator is not assumed,
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— Introduction

This article is devoted to improving the characterization of order
bounded Uryson operators obtained in [14] for a wide and important
class of non-lincar operators; namely, that of Hammerstein operators;
8o that this paper complements [14]. In that article it was shown a se-
quential criterion for integral representation of non-linear operators sim-
ilar to those due to A.V. BUKHVALOV in [2] for linear operators and
to L. DREWNOwsKI and W. ORLICZ in [3] for functionals. In (3], L.
DREWNOWSKI and W. ORLICZ proved that an orthogonality additive
fuctional ®¢: E— IR has an integral representation if and only if the
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following condition holds.

Given (fo)2, and (9,)5%, two order bounded sequences in E, then fn —

nm=]

gn —0(*) implies ®fn — $gn — 0.

Nevertheless, they were successful improving their condition for function-
als in [4] taking just one sequence. On the other hand, it is obvious that
for linear operators we need to consider only one sequence too. Thus, it is
natural to ask whether Drewnowski and Orlicz® techniques also work for
non linear operators. We point out that this is not the case for Uryson
operators (the setting of [14]); however, in this paper we show that it
is possible to modify Drewnowski and Orlicz’ method for the class of
Hammerstein operators. The main result (theorem 2.4) states that a
necessary and sufficient condition for an orthogonally additive operator
T: BE— M(X,p) to be a Hammerstein operator is the following:

The operator can be factorized as T = Lo N, L being a regular linear op-
erator end N being a projection commuting operator, and if (f,)2., 5 an
order bounded sequence in E such that f, — f(*), then T f(x) — T f(z)
a.e

Incidentally, theorem 2.4 also includes another eriterion which char-
acterize Hammerstein operators. That condition is similar to the one
proved by W. SCHACHERMAYER in [10] for linear operators. This fact can
easily be proved for Hammerstein operators taking into account Schacher-
mayer's theorem and the above condition, but it is not so obvious the
generalization to Uryson operators since Schachermayer’s proof cannot be
applied. However, that criterion still holds for arbitrary order bounded
Uryson operators and a forthcoming article will be devoted to prove it.

1 — Preliminaries

As in [14] we shall use methods from the theory of Riesz spaces
(vector lattices) and from measure theory. We refer to the monographs
[1, 7, 12, 15, 17] for terminology and basic results in the theory of Riesz
spaces. Given E and F Riesz spaces, we dencte by Ly(E, F') the space of
all order bounded linear operators from E into F and by E, the space
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of all order continuous functionals on E. We recall that an operator
T: E—+ F is called orthogonally additive if T(f +g) = Tf + Ty
whenever f, g € F are disjoint (f L ¢ in symbols), and T is called order
bounded if it maps order bounded sets in £ onto order bounded sets in
F. In case that E is a vector sublattice of F, an operator is said to be
projection commuting if NoP = PoN holds for every order projection
P: E — F satisfying P(E) C E (see [8)). Throughout this paper the
characteristic function of 2 set B will be denoted by I5. Let (Y,v) beao-
finite and complete measure space. We shall denote by M(Y, v) the set of
all v~-measurable and v-almost everywhere finite functions on Y with the
usual identification of »-almost equal functions. Recall that the sequence
(fa)e2, in M(Y, v} is said that (*)-converges to f(f, — f(*) in symbols)
if every subsequence (f,, )i, contains a subsequence (f,, )32, such that
Frp (%) — f(y) v-a.e. For every B C Y with v{B) < oo, (*)-convergence
is the same as convergence in measure (that is, given € > 0, we have
that lim »(B}) = 0 holds, where B} := {y € Y| |faly) — fl¥)] > €} for
all n € IN).

In what follows E will denote an order ideal in M(Y,»}). Without
restrictions we shall assume that the carrier of E is Y (see [17, §86]).
Thus, there exists an increasing sequence (¥)%2, of v-measurable sets

such that Y = Cl Y,, v(Y,) < co and Iy, € E for all n € IN [17, theorem
n=i

86.2].
Consider two o-finite and complete measure spaces (X, g) and (Y,v),

define the product measure space as usual and denote by (X xY,p x
v) its completion. We recall that every p x v-measurable set can be
approximated by finite unions of generalised rectangles [see 5, p. 56]. To
be precise, fixed a 4 x v-measurable set Z and given ¢ > 0 one can find
£ X v-measurable sets Ag x By for k=1,...,n such that

b X v(ZA( U Ae x B,,)) <e.
k=]

Let K: X xY — R be a g x v-measurable function and let N: Y x
IR — IR be a function with N{y,0) = 0 for v-almost all ¥ € Y and in such
a way that the product function satisfies the Carathéodory conditions;

that is,
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(C1) The function K(-,-)N(-,t) is s x v~-measurable for all t € IR

{C2) The function K(x,y)N(y,") is continuous on R for & x v-almost all
(x,y)e X xY. '

An operator T: E — M(X, 11} will be called & Hammerstein opera-
tor with kernel X (z,y)N(y,t) if for every f€ E

(1) The function z— [ |K(z,9)N(y, f(¥))ldv is prae. finite.
(2) (Tf)(z)= }[ K(z,y)N(y, f{y))dvp-ae

That is, we consider that 7T is a Hammerstein operator if it is a
Uryson operator {see [8]) with a special kernel. We remark that the
above use of the concept of Hammerstein operator is slightly different
of (and apparently wider than) the usual one (see [8]). The reason lies
in the product by the function K(z,y). In fact, if there exists a u x v-
measurable set Z such that K(z,y) = 0 for all {z,y} € Z, then the
product may satisfies (C,) and (C;) even if the Carathéodory conditions
on the function N (that is, the function N(-,¢) is v»-measurable for all
t € R, and Ny, -) is continuous on IR for v-almost all y € Y} do not hold.
In our case, it is also possible to factorize the operator as T = LoV where
L: Domy(K)— M(X, p) is a linear integral operator (see [17, §93] for a
detailed definition} and N: E — Domy (K) is a Nemytskii operator (i.e.,
there is a function N: Y x IR — IR such that (Nf)(¥) = N(y, f(y)) v-
a.e. for all £ € E). Obviously this factorization is not unique (which
may be useful, see remark in [6, p. 377]). In what follows we consider
that functions N generating Nemytskii operators satisfy N(y,0) = 0 for
v-almost all ¥ € ¥ since there is not loss of generality and this condition
implies that the considered operator is projection commuting.

In our task of recognizing Hammerstein operators we shall apply some
characterizations of linear integral operators which we next list. Firstly
recall that a subset M of M(X, i} is said to be equimeasurable if for
all ¢ > 0 and all Xp € X with u{Xo) < oo there exists X, C X, with
#(Xo=X1) < € such that {gllx,|¢g € M} is a relatively norm-compact
subset of L=(X), ulx,). A.R. SCHEP observe in [13, lemma 3.1] that
if the sequence (g,)%%, forms an equimeasurable set in M(X,u), then

n=1
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gn — g(*) implies ga(z) — g{z) p-a.e. (see also [11] where it is proved
a converse for convex sets).

THEOREM A. For a regular linear operator L: E — M(X, ,u) the
Jollowing statements are equivalent.

(1) L is an integral operator.

(2) L lies in the bond in L, (B, M(X, 1)) generated by E;®@M (X, p) (i.e.,
by operators of finite rank).

(3) If (fa)., is a sequence in E such that 0 € f, < g € E, then
So —0(*) tmplies Lfn(z) —0 p-a.e

(4) L is (*)-continuous (i.e., it transforms order bounded (*)-convergent
sequences in E in (*)-convergent sequences} and maps order bounded
sets of E into equimeasurable sets.

The equivalence (1) <= (2) was proved by A.V. BUKHVALOV in
[2] (see also [17, theorem 95.1]) with additional hypothesis which were re-
moved by B. DE PAGTER in [9]. (1) <= (3) is due 0 A.V. BUKHVALOV
in [2] (see [17, theorems 96,5 and 96.8]). (1} <= (4) was stated by W.
SCHACHERMAYER. for [P-spaces in [10] and later by A. R. Schep in its
actual form. Finally we point out that the equivalence (3) <> (4) may
be proved in a direct way (see [11] and [13]).

2 - Characterizing Hammerstein operators

As before, let E be an order ideal in M(Y, 1) and assume that Y is
the carrier of E. We denote by Eg the set of all simple functions of E
with rationals values. That is,

Eg —{ —Zt;l&EElB C Y v-measurable and ¢, €Q fori=1,.., ,n}.

i=1

‘We shall assume that the sets (B;)?,, are pairwise disjoint.

‘We shall arrive to the main result into two stages, in the same way
as in [14]. We shall first see (theorem 2.1) that operators T = Lo N on
Eg satisfying



694 $. SEGURA DE LEON 6

For every order bounded sequence (g, )22, of characteristic functions of
E, I, — 0(*) implies T(t1g, ){(x) — 0 p-a.e. foralite Q.

are integrals operators with a Hammerstein type kernel K(z, y}N(y,¢t).
Observe that this kernel is only defined for rational values.

In a second step (theorem 2.3) our goal is to prove that if T': £ —
M (X, ) is an operator such that its restriction to Eg is as above, then
the function K(z,y)N(y,-) is uniformly continuous on the bounded sets
of Q for u x v-almost all (z,y) € X x Y whenever the operator T' is order
continuous in the following sense.

If (fa)=, is an order bounded sequence in E such that fo(y) — f(¥)
v-a.e. then Tf.(z) — T f(x) p-a.e.

Next one can follow the proof of [14, theorem 4.1] on account of
theorem 2.3 instead of [14, theorem 3.1). So that the kernel may be
extended in such a way that it satisfies the Carathéodory conditions and
represents the operator T on the whole space E.

THEOREM 2.1. Let T: Es — M(X, u) be an order bounded and
orthogonally additive operator such that T = Lo N, where L is a regular
operator defined on an ideal D in M(Y,v) and the operator N: Eg— D
is projection commuting. Assume that given an order bounded segquence
(18, )32 of characteristic functions of E, Ip, — 0(*) implies T(tXp, ()
—=0 p-a.e. for allt € Q. Then there is a p % v-measurable function
K: X xY — R and there is a function N: Y x @ — IR satisfying

(a) N(y,0) =0 for v-almost all y € Y
(b) The function N(-, 1} is v-measurable for allt €

and such that for every p € Fyg

Tp(a) = [ K(z,0)N (. 5(0))dvi - a.e.
Y
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ProOF. Without loss of generality two assumptions can be done. On
the one hand, there i is an increasing sequence (Y7,)2_, of v-measurable

sets such that ¥ = UYm,v(Ym)<ooa.nd1[ym€Eforallm€N

So after obtaining an mt.egral representation for functions p € Eg with
supp(p) C Yo for some m & IN, we can extend it to every p € Es. In fact,

let p = 2 t;I5, € Es. Since, for all ¢ = 1,... ,n, Ig,ny-y,,) — 0(*), we
have t.ha.t

mli_Jga T(te IB‘nY...) (z) =
=T (t; ]Ibi) (I) - ﬂilf‘lcln T (ts' IB.—n{Y‘-Y...}) (-"'") = T(t,‘ ]IBI) (.7:)

holds for p-almost all £ € X and so Jim T(pXy, Yz} = Tp(z)u-ae.
Now, it follows from T'(plly,, }(z) = [ K(z, )N (y, p(¥) Iy, (y))dv p-
Y

a.e for all m € N that Tp(z) = [ K(z,y)N(y,p(y))dv p-a.e. Thus,
Y

we may assume that ¥(Y) < oo and Iy € Es. On the other hand, we
may also assume that Np € L*=(Y, v) for every p € Es. Indeed, suppose
that the result is proved for this class of functions. Let p € Eg and
define Y,, := {y € Y| |Np(y)] £ m}, m € IN. As above, from the
representation for T(ply,,) for all m € IN. we get a representation for
the function T'p. So, we shall also assume that D C L*=(Y,»). Since the
space L,{D, M(X,u)) is Dedekind complete, Ly(D, M(X,u)) = (D ®
M(X,p))* @ (D, ® M(X, 1))* and consequently L = L, + L with L, €
(D7 ® M(X, 1)) and L, € (D ® M(X, p))¥. The operator L, is an
integral operator by Theorem A, Then there is & X -measurable function
K: X x Y — IR such that for every f € D

Lof(@) = [ K(z,u)f)dvss - ae.
Y

Hence

(Lro NP = [ Kiz))Np(w)dv s~ ace
Y

On the other hand, define N(y,¢) := N(t1y){y)v-ae forallt e @ It is
easy to see that the function N satisfies conditions (a) and (b). Moreover,
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ifp= ‘gl tilly, € Eg, the sets (B;)%., being mutually disjoint, then

n n
Np(y) =3 N(t:1,) () = 3 1s,)N(t:1y ) () = Ny, p(y))v - ae.
i=1 i=1

Thus, the result follows from the following fact: (L; o N)(p)(x) =
0 p-a.e. for every p € Es. More conveniently, it follows from (L, o
N)(tEp)}(x) = 0 p-a.e. for all ¢ € Q and for all v-measurable set B.

Let B be a v-measurable set and let ¢t € Q. Firstly suppose that
N(tlg) > 0. Since L, = L — L; and L, is integral, if (¥p,}3%, is a
sequence of characteristic functions of F such that Ig, — 0(*), then
(L, o N)(tlp,)(z}) — 0 p-a.e. Let A be a p-measurable set such that
1, € F and define L' f(z) := Ls(z) f f(y)dvp-a.e. for all f € D. On
account of D C L=(Y,v), it is wellydeﬁned and it follows that L' €
D.;® M(X,u). Hence, [L)] A L' = 0. Keeping in mind the Abramovich
theorem [1, theorem 3.16] we have that

(IZ1) A L')(t15) = inf {(JLs] 0 N)(tT5,) + (L' o N)(¢15.5,)1B C B1 } =0.

Now, using the same procedure as in the linear case (see [2] or [17, theorem
96,5)), one obtains that (L, o N)(tIg)(z) =0 p-a.e.

Finally consider an arbitrary tIg € Es. Put B* := {y € B|N(y,t) > 0}
and B~ =B-B*, It is straightforward that N*(y, t1s(y)) =N(y, t¥s+(¥)
and N~(y, tip(y)) = N(y, tlz-(y)). Hence

(L1 o N)(tI5)(z) = (L1 o N)(tEg+ )(2)} — (Zn o N)(tEp-(z) = Op — ace.
0

LEMMA 2.2. Let (fo:)PMe be o family of functions of M(X, 12)
which form an equimeasurable set. Assume that for each o = (e(n))2, €

ﬁ {1,... ,m(n)}, facm)(T) — f(z) holds u-a.e. Then there is a decreas-

::; sequence (h,)22, m M(X, u) satisfying

Q) [fai(z) — (@) < ha{z)ps-a.e. for alli € {1,...,m(n)} end for all
nelN.

(2) infpen hn{z) = Op-a.e.
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PROOF. Consider the finite sequences (f,;)" for n € N and con-
catenate all of them intc one single sequence. Then our hypothesis im-
ply that this sequence (*)-converges to f. Since the sequence lies in an
equimeasurable set, it actually converges to f p-a.e. from where the
required result follows easily. 0

THEOREM 2.3. Let T: E— M(X,it) be an orthogonally additive
operator such that there is ¢ y x v-measurable function K: X xY —-—»]R
and there is a function N: Y x Q — R satisfying

(1) N(y,0) =0 for v-almost ally € Y

(2) The function N(.,t) is u-measumble for all t € Q and such that for
every p € Eg

To(z) = [ K(z,5)N@,plo))dv - ace.
Y

Moreover, assume that for every order bounded sequence (f,)oz, in
B, foly) — f(y) v-a.e. implies Tfo(z) — T f(x) pt-a.e. Then for g x
v-almost all (z,y) € X x Y, the function K(z,y})N(y,-) is uniformly
continuous on the bounded sets of Q.

PROOF. First we shall reduce our general hypothesis to a simpler
case. Since the measures p and ¥ are ¢-finite and Y is the carrier of E
we may suppose that g(X) < oo, ¥(Y) < o0 and Iy € E. Furthermore ,
we may also assume that the operator f — N(-, f(-)) is order bounded.
Indeed, suppose that the result is true in that particular case and let u
be a weak unit in Domy (K) (note that such weak unit always exists and
we may take 0 < u(y) < o for every y € Y). Now, given the function
N, define

N,(y,t) := N(y, )" Anu(y) - N(y, £)” Anu(y)

for all n € N. It is obvious that N,(y,t) — N(y,t) for all y € ¥ and all
t € Q. Each of these functions generates an order bounded operator and
g0 each function K{z,y)Na(y,") is uniformly continuous on the bounded
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sets for u x v-almost all (z,y) € X x Y. Consider the sets
Z, = {(a:, y) € X x Y| The function K(z,y)Na(¥, ) is uniformly

continuous on the bounded sets }

and fix (z,y) & U Z,. If K(z,y) = 0, then it is obvious that the function

K(z,y)N(y,") 1s umformly continuous on the bounded sets. Otherwise,
note that if s € @ satisfies |N{(y, s)| < nu(y) for some n € NN, then
Nn(y, s} = N.(y,s) for every m > n and so N,(y,s) = N(y,s). Fixing
t € Q it is possible to find n € IN such that [N(y,t)] < nu(y) and
consequently N,(y,t) = N(y,t). It follows from |N,(y,{)| < nu{y) and
the uniform continuity of the function K(z,y)Nn(y,-) that there exists
an open bounded neighborhood V' of t such that [K{x, y)Na(y,s)| <
n|K(z,y)lu(y) for every s € V. So K(z,y)Na(y,s) = K(z,y)N(y,3)
for every s € V N Q and hence the function K(z,y)N(y, ) is uniformly
continuous on VNQ. From this local property we next pass to the general
case by relative compactness. Let a,b € Q with @ < b and consider
t € [2,b) N Q. Then there is an opern neighborhood V; of ¢ such that the
function K(z, y)N(y,-} is uniformly continuous on V; N Q. Applying the
classical Borel s theorem we may get #,12,... ,¢, € [a,5) N Q such that

{e,b) C U Vi,; thus, K(z, y)N(y,-) is umformly continuous on (g, 5] N Q.

Therefore, the function K(x, y}N(y, ') is uniformly continuous on the
bounded sets of § and, consequently, we can suppose that the operator
JF— N(-, f(-)) is order bounded.

Keep s € @ s > 0, fixed. Since the operator T is order bounded and
by [14, proposition 2.7], given slly € E, it is possible to find a positive
and i x v-measurable function M, satisfying

(i) ¥fp € [—s1y,sIy| NE,, then IK(w, y)N(y,p(y))| < My(z,y) pxv-
a.e.
{ii) The function M,(z, -} is v-integrable for u-almost all z € X.
(iii} The function h{z) := J M,(z,y)dy is u-a.e. finite.

In the same way as in [14, theorem 3.1] there is not loss of generality
in supposing that the function % is y-integrable and so the function M,
is u % p-integrable by Tonelli-Hobson’s theorem.
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We remark that the proof of [14, theorem 3.1] is based in its first
stage, that is, on the following fact:

The map &: ([—sly,sly] N E,, |- loo} — R defined by

20) = [ K@ u)N@w,p@)du x v

X=¥Y

is uniformly continuous.

So, to obtain the result it is enough to see that for every sequences

(pn)oz) and {(ga)3%, in E, with |pa], |¢.} < sTy for all n € N, it follows
from lm |[pn — gnllec =0 that

Jim [ K@)V pa) - K@ 9N, aa))du x v = 0.
XY

Let (pn)az, and {g.)72, be sequences in [—sTy, sTy] such that ,,H_I.E‘n ipn —
grnllco = 0. For every n € N, put 8, := supypnllpn — Qnlleo- Then the
sequence (§,)22, is decreasing and converges to 0. If K(z, ¥)N(y, pa(¥))—
K(z,y)N(y,¢.(y)) — 0 in g x v-measure, then the conclusion follows
from the dominated convergence theorem.w Assume that the sequence
(K (, )N (v, Pn(¥)) - K(z, y)N(y, q,,(y))) - does not converge to @ in
1t X v-measure to get a contradiction. In order to use the same arguments
as L. DREWNOWSKI and W. ORLICZ do in [4, theorem 2.3] the following
facts are needed.

Let (p,)2., and (ga)2, be two sequences in [~slly, sly]N B, and assume
that there is a function v € E such that p,(y) — u(y) and g.(y) — u(y)
v-a.e.

CLAM 1. If for eachn € N, W, C X x Y denctes a finite union
of generclised rectangles and Z, := X x Y-W,, then we have that

lim [ K(2,3) (N @ 2n0) I (2,9)+ N (3,9 (0)) 1z, (2,9) ) dis x v=

n—im)
XxY

- f (Tu)(z)dp
X
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CLAIM 2. We have that

Jm [ 1K(z,9)1 NG, 2a@)) = N g @)l x v =0
XxY

[+ =]
and consequently the sequence (K (z, ¥)(N(y,pa(¥)) = N (y,qfu(y)))“_1
corverges to 0 in u x v-measure.

min)
PROOF OF CLAIM 1. Suppose that foreveryn € N, W,, = 1) Ani ¥

i=1
B,; where A,; C X and B,; C Y. We may and will assume that for each
n € I, the sets (4,,,) and (Bn)™ are mutually disjoint. So,

m{n} m(n) :
Zp= ( J Aw x _(Y-B,.i)) U ((X~ J AM) x Y) .

m] i=1

To apply Lemma 2.2 we need to put our limit in a suitable form, so
that we make the following computation.

| K@ (NG ) T @) + N 00 Ty 2,9) e x v =
XxY

m(n}
= [ K@ Moot L@ a0+

XxY

4+ N(,¢.(1) 1a,,(z)Ty-5,, (y)] +N (g (W) XU Ang (z)) dp X v=
m(n}

= [ (3 1@ [ K@u)IN 050 1000(6) + a0} -2, ()
X Y

i=1

+ L U and (z) / K(z,y)N(y, qa(y))dv')d,u =
=l ¥

mn) i
= f ( 3 Tan (DT WaTn,, + Galy-2,)(2)+
X

i=1l

+ o 0, (@T (@) ).
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It follows from p,{y) — uly) and ¢.(y) — u(y) v-a.e. that for every
o = (o(n),., € I'[1 {1,...,m(n)}, we have

2a()1p,, 0 (1) + € (W) Iyv-5,,, (¥) — (v} v — 2ce.

Since this sequence is order bounded in E, we obtain that T(p,1 Brotm T
@nlly-5,,(,,)(2) — Tu(z) p-ae. On the other hand, since the family
{pals,, + guly-g,,li = 1,... ,m(n);n € IN} is order bounded in E and
the operator f — N (., f(+)) is order bounded, it follows from Theorem
A that the set

{T(Pals,, + guly-5, )i = 1,... ,m(n)in € N}

is equimeasurable. Now, by Lemma 2.2, there is a decreasing sequence
(hn)im in M(X, 1) satisfying

(1) |T(pnls,; + galy-g,.)(2z) — Tu(z)| < ha(z) p-a.e. for all i with 1 <
i < m(n) and for alln € IN.

(2) infaen bn(z) =0 p-ae.

We may suppose without loss of generality that |Tg.(zx) — Tu(z)| <
ha(z) also hold u-a.e. for all n € IN since Tga(z) — Tu(z} p-ae. On
the other hand, we may also assume that b, < 2k for all n € IN. Hence,

f K(z,y) (N (%, 2o (1)) Tw (2, ¥) + N(y, an (1)) 12, (2, y)) dp X v+

XxY

- [@w@an| <
X

m(n)
< ! ( > I,,.(2)

T(oaLs,, + galy-5,,)(z) - Tu(z)|+

+ ‘:x-u::::* and@[T(an)(&) = Tu(e)|Jau <

m(n)

p3 / Z Ta, (2)hn(z) + nl X.U'n("l An ‘](x)hn(x)dnu = [ ho(z)dp.
X =1 V=i X
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Since k, < 2h for all n € IN, h being a u-integrable function, and
ho{z) — 0 p-ae., it follows from the dominated convergence theorem
that lim f h,(z)dp = 0. Thus,

fl-»mx

rll'l-% [ K(z,y) (N(P,Pn(y)) Tw, (z, ¥)+N (¥, ¢ (1)) 12, (z, y)) dux v=

XxY

= [ru)=)an
X

as desired. ]

PROOF OF CLAIM 2. Define Z} :={z, y)e X xY|K(z, y)(N (3, Pa{¥))—
N(y,q,.(yP) > 0} and Z; = X x Y-Z} for all n € IN. Since the
function M, is u X v-integrable, for every n > 0 there is ¢ > O such
that g x (W) < ¢ implies [ M,(z,y)dg x v < 5/4. On the other

w
hand, given the set Z} one may find W} C X x Y, finite union of
generalised rectangles, such that g x v(Z}AW;}) < (. Now define the
sets W 1= X x Y-W}. It is immediate that 4 x v(Z; AW} < (.

To apply claim 1 compute

f [K(z, o) IN (4, 0.(3)) — N (3, ga(¥))ldes x v =

XxY
= / K (2, 3) (N %2 )) = Ny, aa(v)) ) dge x v—
z}
_ / K(z,y)(N(y,pn(y)) — Ny, qn(y)))du xvE
Za
< / K(z.y) (N (:2a(¥)) — N (v, qu(y)))dp- X y—
W'l'

+

B / K(z,) (N(y’i’n(y)) ~ Ny, Qn(y)))dp X v

wy

+2 f M (z,¥)dp xv+2 / M (z,y)dpx v <

woaz} WoAZ,
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< ’ [ K (@, 3) (N (¥, pa(9) Lt () + N @, 90 (8)) B (7, ) ) s x v~

XxY

- f K (@, 9){N 2 0)) Ly (2, ) + N4, 0 (0)) L (2,9) ) ds x v+

Xxy

Now claim 1 yields
Jim f K (@, y) (N (¥, Pa(9)) Gyt (2, 9)+ N (0, 60 (0)) Ly (2,9) )b x v=

XxY

= [ue)du
X

and

Jim f K (2,9) (N (4 2alo)) Ly (2, 9)+ N (3,0 (0)) L (2, ¥))dp x v=

XxY
= j (Tu)(z)du.
X
Hence,
”ILII;ID / !K(Iv y)' |N(ynpﬂ(y)) = N(y:‘?n(y))ld# xv=90
XxY
and so claim 2 is proved. a

Next, we finish the proof of theorem 2.3. Note that given (p,)5,
and (ga)5., sequences in [—s1y, sIy]NE, such that lim {pn —gnlles = O,
to obtain the desired contradiction, claim 2 cannot be applied since we
cannot assume that there is a function u as above. Nevertheless, we may
proceed as in the proof of [4, theorem 2.3]. Using the regularity of the
space M(X x Y,pu x v) (see [4], or [7,§71] and [15, chapter VI]|, we get
a function u € E N [~sly, sTy], which is not necessarily a member of
E,, and two sequences (p})=,,, (g,)%%, in [-sly,sly] N B, such that
u(y) = Jim Po{y) v-a.e. and u(y) = lim ¢.(y) v-a.e. Furthermore, we

also have that the sequence (K (=, v} (N, P () — Ny, Q'n(y)))) does

[
n=l
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not converge in x x v-measure to 0. Claim 2 finally gives the required
contradiction. D

By [8, corollary 6.4], every Hammerstein operator with range the
space M(X,p) is order bounded and, moreover, by [8, remark (Rj)]
inevery order interval {~f, f] in E, there exists v € [—/, f] such that
K (@, 9] 1N, o@))| < K(z, )] IN@.v@)! for all g € (-, 7). The
above facts will be used in the following result. Let us observe that al-
though the definition of Hammerstein operator in [8] is not exactly equal
to that used in this paper, the same reasoning it was made in [8] also
works in our case.

THEOREM 2.4. For an orthogonally additive operator T: E—
— M(X, ) the following assertions are equivalent.

(1) T is a Hammerstein operator.

(2) (2) T can be factorized as T = LoN, L being a regular linear operator
and N being a projection commauting operator.

(b) If (f2), s an order bounded sequence in E such that f, — f(*),
then T fo(z) — Tf(z) p-a.e.

(3) (a) T can be factorized as T = LoN, L being a regular linear operator
and N being a projection commuting operator.

(b) T maps order bounded sets in E onto equimensyrable sets.

(¢) If (fa)22, is an order bounded sequence in E such that f,(y) —
— f(y) v-a.e. then T fo(z) — T f(z) p-a.e

Proor. (1) < (2). To prove this equivalence we essentially have
to proceed as in the proof of (14, theorem 4.1] applying theorem 2.3
instead of [14, theorem 3.1] and keeping in mind the previous remark.
(1) = (3) (a). This is obvious.
(1) => (3) (b). Suppose that T is = Hammerstein operator with ker-
nel K(z,y)N(y,t) and decompose it as usual defining L: Domy (K) —
— M(X,u) by Lf(z) := JK(:B, y)f(y)dv p-ae. and N: E— Domy(K)

by N f(y) := N(y, f(y)}) v-a.e. Note that there is not loss of generality in
assuming that T" is positive (that is, for every f € F we have Tf(z) > 0
p-a.e.; see also [8, proposition 5.3]) since we always can write a Hammer-
stein operator as a difference of two positive ones.
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As a consequence of the previous remark we obtain that given f € E,
f 2 0, it is possible to find v € [—f, f] such that 0 < K (x,y)N (v, 9(¥)) £
K(z,y)N(y,v(y)) for all g € [—f, f]. Define u(y) := N(y,v(¥)), let
g € |-, f] and consider the set B := {y € Y|N(y,9(y)) £ u(y)}. Then
K(z,y) = 0 for g x v-almost all (z,y) € X x (Y~B) and consequently
T(¢9) = T(91s) = Lo N(glg) € L([0,u]). Thus, T((—f, f]) C L([0,u])
and it follows from Theorem A that T([—f, f]) is an equimeasurable set.
(2) = (3) (c). This is immediate.
(3) =+ (2). Let (f.)=2, be an order bounded sequence in E such that
Fa— f("). The condition (3) (c) implies that Tf, — Tf(*) while it
follows from the condition (3) (b) that the set {T'f,[n € IN} is equimes-
surable. Hence, Tf,(z)— Tf(z) u-a.e. and so condition (2) (b} is
proved. _ o

It is clear that the Drewnowski and Orlicz theorem must be a par-
ticular case of the above result. To see it we only have to decompose
orthogonality additive functionals. Details are included in the following
result. Condition (2) is the one proved by L. DREWNOWSK! and W.
ORLICZ in (3], while condition (3) is similar to that generality used for
linear functionals (see [17, theorem 86.3)}.

PROPOSITION 2.5. Let &: E— TR be an orthogonality additive
Junctional. The following statements are equivalent.

(1) There exists a function N: Y x IR — IR satisfying the Carathéodory
conditions such that

f = fN(y,f(y))dv forevery fe€E.
Y

(2) Given an order bounded sequence (f,)3, in E, f,— f(*) tmplies
Bf, — 3f.

(3) Given an order bounded sequence (f,)°2, in E, f.{y) — f(y) v-a.e.

implies Of, — ®f.

PROOF. (1) == (3). This is a straightforward application of the
dominated convergence theorem keeping in mind that every integral func-
tional is order bounded (3, Lemma 2.2).
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(3) = (2). This is easy to see by assuming the opposite and passing
to subsequences to get a contradiction.

(2) = (1). As in the proof of Theorem 2.1, we may suppose that
v(Y) < oo and Ty € E without loss of generality. Consider that X
is a singleton (ie., X = {z} and so M{X,z) = R). To apply our
characterization of Hammerstein operators we only have to see that the
functional @ can be factorized. Fix f € E. Since v{B) = 0 implies
®(f15) = 0, by Radon-Nikodym theorem there is Nf € L'(Y,v) such
that ®(fIp) = f Nf dv for every B C Y. Thus, we have defined an op-

B

erator N: E — L}(Y,v) which is projection commuting by [3, Lemma

3.1 (a)]. Now it is enough to define L: L'(Y,») — R by Lg := [ gdv for
Y

all g € L}(Y,v) to factorize the functional as $ = Lo N. Note that L is
8 positive linear operator, so that it is regular. |
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