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RIASSUNTO — Gli autori studiano la convergenza in media L? delle derivate dell’in-
terpolazione estesa di Hermite sugli zeri dei polinomi di Jacobi pit nodi addizionali

ABSTRACT — The author study the weighted LP convergence of derivatives of ez-
tended Hermite interpolation on the zeros of Jacobi polynomials plus additional points.
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1 - Introduction

The uniform and mean convergence properties of Hermite interpolat-
ing polynomials on the zeros of Jacobi polynomials were widely studied;
interested reader should consult [14,15,20,22,23,25) and the references
given within. In these papers the good behaviour of Hermite interpo-
lating polynomials was proved only for particular matrices, substantially
when the Jacobi parameters are less than 0.

(*)This material is based upon work supported by the Italian Research Council (all the
authors) and by the Ministero della Universita e della Ricerca Scientifica e Tecnologica
(the third author).
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We ask if we can extend the previous convergence results to other
interpolation matrices. Positive answers to this problem have been given
in [2,4].

Very recently a collocation method for solving numerically singular
integral equations was introduced in [12] and it was proved in [13] that
the zeros of the polynomials p{&~®)(z)p(*%)(z), -1 < a < 1,a # 0,
or p{&1-®)(z)p!=%* V(z), 0 < a < 1 have an arcsin distribution. This
property allowed to introduce the so called extended matrices

Y: = {tx2m, k = 1,...,2m/ts 2m zeros of pf,‘f""‘) (:r)pf,,"""") (z)}

},2 = {tk,2m+1) k= la cety 2m + 1/tk.2m+1 zeros Of p’(:,l—a)(m)ps;:iﬂ—l)(m)}

and to consider the corresponding extended Hermite interpolating polynomial
interpolating the function f and f’ at the zeros of Y; or Y. (See [6]).

Procedures of extended interpolation, of Lagrange, Hermite and Her-
mite-Fejér type, have been object of research in the last years 3, 5, 7-9,
21).

Extended interpolation turns out to be useful for the numerical eval-
uation of the interpolation error based on the zeros of orthogonal polyno-
mials. Indeed, let Hy,(w(™~%); f) be the polynomial interpolating f and
f' at the zeros of p,(w(*~*)) and Hn(Y1; f) be the Hermite polynomial
interpolating f and f’ at the nodes of the matrix ¥, and suppose that
H,.(w®~%; f) and Hn(Y1; f) have the same order of convergence to f. In
practice we assume the difference |Hp(w(*=%); f) — Hy(wl™=2); f),n >
m + 1, as the error of H,,(w®~%; f). Therefore, if n = m + 1, we need
4m + 2 evaluations of f and f’, while, by using only 4m evaluations of
f and f', we can compare Hop(w®=9; f) by Hm(Ya; f), which is much
more accurate.

It was proved [6] that by adding some additional nodes near the end-
points £1, the corresponding extended Hermite interpolating polynomial
can approximate well in infinitely many ways a function and its deriva-
tives simultaneously in uniform norm.

On the other hand, ERDSs and TURAN in [10] proved that, for every
nodes matrix, the Lebesgue constants of Hermite interpolating polyno-
mial in uniform norm are greater or equal O(logm) and then not bounded.
Therefore it is more convenient to consider the convergence in weighted

L? norm, where the Lebesgue constants of Hermite interpolating poly-
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nomial introduced in (6] are bounded, as we prove in the present paper.
In addition in Theorems 3.2-3.4 we give results about the weighted L?
convergence of the derivatives of the above Hermite interpolating poly-
nomial. This interpolating process has the remarkable property that the
convergence conditions are independent on the Jacobi parameter.

2 — Preliminaries and notations
Spaces of functions

We define C?, L? and (Llog*L)? on the interval [—1,1] in the usual
way. Thus e.g. f € (Llog*L)?, 0 < p < o0, if and only if

1 1/p
I riog*15l, = { [ U@ hogf)ds} < oo

We recall that u is a generalized Jacobi weight (v €GJ) if
u(z) = ¢(z)v*P)(z) = ¢(z)(1 — z)*(1 +z)?, -1<z<1, of>-1

with ¢ nonnegative and ¢*! € L. If in addition ¢ is continuous and its
modulus of continuity w satisfies fo1 w(¢;t)t~'dt < oo, then we say u is a
generalized smooth Jacobi weight (u € GSJ).

In the following we assume that

(2.1) wle=a(z) = (1-2)*(1+2)™, -l<a<la#0,-1<z<],

and we denote by {p@=}2_; = {pm(w(*~}%_, the system of or-
thonormal polynomials corresponding to the Jacobi weight function
w(®=2) that is p{@~*) is a polynomial of degree m with positive leading
coefficient ~p,(w@~) and [', pie=)(z)p{® %) (z)w(z)dz = m,n. Then
we denote by {z; m(w@}m, = {zim}R, the zeros of p{3'~* labelled
in increasing order.

Consider now the new weight w™*(z) = w(~*%)(z), and denote by
{pram}ee_ = (p, (w~*)}2_; the corresponding system of orthonor-
mal polynomials. It is known that the zeros z; m(w(~®%) = z},,,i =
1,...,m, of pm(w'~=) interlace with the zeros z;, of pi&"~, i.e.
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Tim < Tim,i=1,..,m, fa>0

and
Tipm < Tim, i=1,..,m, fa<0

and they have an arcsin distribution. (See [13]).

3 — Main results

If f is a given differentiable function on {—1,1], we denote by
H,.(Y1; f) the corresponding extended Hermite interpolating polynomial
on the zeros of p{&~*)p{ ), defined by

Hr(r?(yl; f;l'k.m) = f(i)(xk,m)’ i=0,1 k=1,..,m,

HOW; fizhm) = fO(2hm), =01, k=1,..,m.
Together with the matrix Y;, we can consider the following 2r ad-

-1 )
: T (1+ti2m)y J =17 and 2z =

ditional points y;m = —1+

tam,2m + 1(1 —tomam), %= 1,...,7, distributed on [-1,1] as follows
r

—“l=9y1,m <.t <Yrm < lr2m <tz2m <...
o <tomom < Z1m < oo < Zrm = 1.

Note that we can choose the additional nodes in many ways (see e.g.
[2,3]); here we considered the equispaced case just for sake of simplifica-
tion.

Then, we denote by Hy, -(Y3; f) the Hermite interpolating polynomial
of degree 4m+2r — 1 interpolating f and f’ on the nodes of the matrix ¥,
and on the additional points ¥jm,J =1,...,7 and z;m,i = 1, ...,7, defined
b

’ HY. (Y fiteam) = fO(team), i=01, k=1,..,2m,

(31) Hm.r(lfl; £ yk,m) = f(yk.m)a k=1,..r7

Ho r(Y15 fi 2em) = f2km), k=1,..,7
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We complete the definition by putting Hmo(Y1; f) = Hm(Y1; f)-

We will call H,,.(Y:; f) the ezstended Hermite interpolating polyno-
mial. '

In [6] we proved that, by a suitable choise of the number of additional
nodes, it is possible in infinitely many ways to approximate well a function
f and its derivatives simultaneously by H.(Yi;f). In addition error
estimates optimal in some sense were given.

Now, denoting by P, the set of algebraic polynomials of degree at
most n, we let

E(f)=pinllf-Pll, feC,

where ||.|| is the supremum norm on [-1, 1].
For the Hermite polynomial Hp, »(Y1; f) defined by (3.1) we give some
weighted L? convergence theorems.

THEOREM 3.1. Let w be the weight function defined by (2.1) and
let u € (Llog* L)P, with 0 < p < 00.
If

(3.2) 0(3/2—'»3/2—") € Ll’ uv(r—l,r—l) € Lp’
where r is a nonnegative integer, then for every function f € C*

(3.3) Jim [f ~ Hoe (55 £, = 0.

Furthermore

THEOREM 3.2. Let f € C9, withq > 1. Let w be the weight function
defined by (2.1). Assume u€ GJ and 0 < p < oo.
If :

(34) E-rHi-rtb el e up(r-§-1r=4-1) ¢ p,

where r and £ are nonnegative integers, with € < q, then, for h =0, ..., ¢,

const
ma—h

(3.5) [1f = B0 1P| < DB o(£9),

with some constant independent of f and m > 4q + 5.
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To complete the previous results, we remark that generally speak-
ing the polynomial H,(Y; f) interpolating f and f’ at the nodes of the
matrix Y; does not converge to f. Theorem 3.1 assures that, when the
hypotheses (3.2) are satisfied, then, by adding knots near the endpoints
+1, we can obtain an interpolating polynomial realizing the L” conver-
gence to the given function f. In addition Theorem 3.2 garantees the
simultaneous L? approximation of the function and of its derivatives by
extended Hermite interpolating polynomial.

From (3.2) and (3.4) it follows that, as in the uniform case [6], the
number of additional nodes depends only on the order of differentiation ¢
and on the order of smoothness of f, ¢, but is independent on the Jacobi
parameter o and there exist infinitely many good matrices for which (3.3)
and (3.5) hold.

When the weight u is defined by

(3.6) u(z) = v (z),
we can explicit the conditions (3.4). For instance, Theorem 3.2 implies

Corollary 3.3 . Let f € C9, withq > 1. Let w and u € L® be defined by
(2.1)and (3.6) respectively. Let 0 < £ < q and 0 < p < 0o. Then, there exists
an integer , defined by

£ 1 q
-2‘—'7—;+1<7'<5+2
y4

such that, for h =0,...,

?

([ 179 - HO v Fioppwrerta) < DE, (1)

with some constant independent of f and m > 4q + 5.
An useful consequence of Corollary 3.3 is the following

COROLLARY 3.4. Let fe C9 withq > 1landlet 0 < ¢ < q. Let
w and u be defined by (2.1) and (3 6) respectively. Then, there exists an
integer r, defined by

f y<r<@42
2 7TST%73
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such that, for h=0,..,¢,

1
[ ¥ @) - HO.Y fio)lu(@de < oo Bnmo£9),

with some constant independent of f and m > 4q+ 5.

The last corollary has interesting applications in quadrature pro-
1

cesses, when we want to approximate integrals of the type [f9(z)u(z)dzr,
21

1 € g < o0, u € GJ, by an interpolatory product rule obtained by re-
placing f by an Hermite interpolating polynomial.

We remark that the same results as above can be obtained, if we
consider the extended Hermite polynomial H,,.(Y;; f) on the nodes of
the matrix Y,.

4 — Proofs of the main results

‘We assume in the following
(4.1) u(z) = p(z)v"9(z) € GJ,

and denote by z; (1), ¢ = 1,2,...,m the zeros of the m—th orthonor-
mal polynomial p,,(u) corresponding to the weight u and by A m(p) =
Am (B zim (), i =1,2,...,m, the Cotes numbers, where

Am(p;z) = Z_p?(u;:c)]— ,

is the m—th Christoffel function.

For the convenience of the reader, we provide a collection of properties
of generalized Jacobi polynomials p,(u) which will be applied in the
sequel. Let u €GJ and set z; (1) = cosb;, for 0 < i < m + 1 where
To,m(i) = —1, Tmpr,m(p) =1and 0 < 6;,, < 7. Then

. (4.2) 0"'". - 0,'.‘.1‘"‘ ~ m“l,
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uniformly for 0 < ¢ <m, m € N. (See [16, Theorem 9.22, p.166].)
Let 1 €GJ and let u be given by (4.1). Then

(4.3) Aim() ~ M1 = Ty () (1 + 20, (1)),

uniformly for 1 <i <m, m € N. (See [16, Theorem 6.3.28, p.120).)
If in addition ¢ € Lipas1, then

(4:4) X (u; s m(u) < const m™1 (1 — Ty m (1)) 2(1 + 25 m (1)),
uniformly for 0 < i <m, m € N (see (19, Lemma 2, p. 36]). Moreover
45)  |pm(u;7)| < const(VIi—z +m )y (VItz+ m-1)~6-4,

uniformly for —1 < £ <1 and m € N (see [1, Theorem 1.1, p.226]), in
particular,

46)  Ipm(iz)| ~ M (1), 1-mT?<z <1,
and
@7 | 2)] ~ M~ (i -1)], 1<z < -14+m™2,

uniformly for m € N. (See also [19}).

Let 4 €GJ and 0 < p < oo. If ¢ is a fixed positive number and v
is an arbitrary, not necessarily integrable, Jacobi weight, then for every
polynomial @ of degree at most cm

3 Qe m (P o(zm (N (8) < const [ QPO

(See [16, Theorem 9.25, p.168].)
If » is given by (4.1) then for any ﬁxed ¢ > 0 we define A,,(c) by

An(c) = [-14+em %1 —em™,

and let 1¢, denote the characteristic function of Ay (c). Then there exists
a ¢ > 0 such that for every polynomial @ of degree at most m

(4.8) NQIPwll; < const [[|QPulzl, ,
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(cf. Theorem 6.3.28 and Remark 6.3.29 in [16].)
Now we introduce the polynomials

r

Ao(z) =1, A.(z)= H(z ~¥Yim) T>0,

j=1

Bo(z) =1, B.(z)= H(:z: - zjm), T>0.
=1
Denoting by L,(V;h) the Lagrange polynomial of degree n — 1 inter-
polating the bounded function k on the nodes of the matrix V, we can
write

. __f_ _ f(z1,m) "
(4.9) Lr(Zy Aer ' m) h Ar(zl.m)Qm(zl,m) N
f
+ Z(x 21,m)(T — Zom ) (T = Zio1,m) [21,m,zzm, o Ziymi AerJ
=2
f _ f(yl.m)
(4.10) L.(Y; B Qm,x) = Br(yl,m)Qm(yl,m)+
f
+ Z(x Ym )T — B2, m)ee (T — Yoy, m) [yl myY2,my o ¥ims 5 A Ber}
=2
with
(4.11) Qm(z) = [P~ (z)pls > ()]
Here [u,, ..., u,; h] is the divided difference of the function % at the points
ULy ooey Up.

The following lemmas are needed to prove the results stated in the
previous section.

LEMMA 4.1. (Telyakovskii-Gopengauz)[11,24] Let f € C?. Then for
m > 4q + 5 there ezists a sequence of polynomials {Gn} such that for
|z} <1 and for j =0,1,...,q

V1 9-J (f(q) v1

|F9(z) — GY)(z)| < const[—— -z,

z]

with some constant independent of f and m.
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LEMMA 4.2.  For every f € CY, there exists a polynomial P,, of
degree m > 4q + 5, such that

|fD(z) — PO (z)| < const [-—lif—z]q-iEm—q(f @),

with |z] 1,4 =0,...,q and for some constant independent of f and m.

PROOF. Let g, be an algebraic polynomial of degree m > g, such that
F@ — g@|| € Em—o(f@). From Lemma 4.1 there exists a polynomial
Gm, m > 4q + 5, such that

V1-2z?
m

[ = 5)(z) — G| < const (=1 0((f - gm)®; 1) <

\/—_2

Sconst[ —

]q—'“(f gm)@|| < const [ 1° Emeg(F ),

from which the assertion follows, for Py, = gm + Gm- 0
Denoting by m = f — P, the remainder term, we have the following

LEMMA 4.3. Let w be the weight function defined by (2.1) and
let L.(Z),L.(Y) and Qm be the polynomials defined by (4.9), (4.10) and
(4.11) respectively. For every function f € Cl,q > 1, if vi-rtlLi-r+1) ¢
L! then

(4. 12) 2
|L(Z; z)| < const (f("))(\/l —-z+ l)q lz] <1
)Aer! = me m—q m ] —_
(4.13) v
const @ ( — l)"
IL (Zi Ber’ )| s mq Em““l(f ) 1 +Z+ m ’ Izl S 13

with some constant independent of m.



[11] Extended Hermite interpolation with additional etc. 719

Proor. To prove (4.12), firstly assume that the points z n,,i =
1,...,7 are all coincident. From (4.6) it follows

Qn(@)| ~m?, Zm<z<1
Thus, by Markov-Bernstein inequality
|Qn(@)] < const M2 || Qe sy mai~ M*@m(D), 71m ST S,

and

Qn(z) m?
l [Qm(z)] I | Q2 .’E) | Qm(l)’ ym<z<l

In view of the last inequality and taking into account that

1 o _ G) A(1—3)
[Qm(x)] Qm(x)z:() Qm(-’E)] Q (Z)s

(see [18]), we deduce

z1m$z<1.

o m
(4.14) | J7 | const sy m ST S

1
Qnm ()
Now, we recall that

el
[zl,ma z2,m1---)zi,ms Aer Z _ 1)| A (x)Qm(z) z=¢;
Zym < & < zim.

So, by Leibniz formula

|[zlm:z2,vm ’z”mAQ ]|_
r&'m

0} (l—l—l)l

semnl )k lawl

(,_1).2( )j_zi:o(j.)lrw(e.-n-

1 -9y 1 q6-1-0
oz@eellZmles |
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On the other hand, by Lemma 4.2
ITS,? (th)l < const m‘z(""')Em_q(f(")), l= 0) e @y k = 1, oy T

Since the function 1/A,(z) and its derivatives are bounded for z > 0, by
(4.14)

| [zl,m) Z2,my -+ v 9 Zi;my -ig_m] I_
Em_o(f@) 22 Em_o(f@)m2-2
< const 2"5,,.(1) Z m2 ~ qu(l)mm: _

Recalling (4.9) and since (—21,m)(Z—22,m )+ (T—2Zi-1,m) < (V1—z+
m~1)%-2 for |z| < 1, we deduce

(4.15)

| L (Z; ;) |< const ————= Bn- "(f )y Z[m\/I —z+1% |z| <1

’AQ Qm(l)m? {5

At first, assume that |z| < 1 —m™?; then by (4.15)

Em—q(f(Q)) (1 _ x)r—-l'

,IL') I< const W

| L2 2

Recalling that Qn,(1) ~ m?, we obtain

Em_(f@ _ _
':C) |< const ;mq_(—r'_*_T))'(l—fB)r 1, l$| £1-m 2

(416) | Ln(Z: 555

The hypothesis r < ¢/2+ 2 assures that ¢/2—7+2 > 0. Then, since
m~2 <1 - z?, from (4.16) we get

|L,-(Z; Tm/Aer;z)I < const, —E‘l‘%({(qﬁ(v 1-~- :1:)"*‘"’-

that is (4.12). If |z| > 1 — m~2, then the inequality (4.12) follows imme-
diately by (4.15).
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If the nodes are all simple, then, firstly assume that |z| < 1 —dm™2
with d a positive constant. Then it results

Ar(@)| ~ (1 +2)

If we write the polynomial L,.(Z; ) Q ———;z) in the Lagrange form, we

get

- T—2Zim Tm(Zim)
v AT .
A Qm ) kZl 1I;éIk Zem — Ziym Ar(zi,m)Qm(Zi'm)

By (3.2) and (3.3) we have

L(2;

|47 (zim)| S const, i=1,..,7

On the other hand
| T — Zim l < mzr—z(\/l—z+m-1)2r-z < m2r-2(1 z)r—
#k zk m

|z] < 1—dm™2

and working similarly as above, the assertion follows. Analogously we
can prove (4.13). a

LEMMA 44. (8] Letl1<p<o00,0<c<1,u€GSJandpeCGJ
Let A be a polynomial of degree (m— 1), with £ positive integer, such that
|A(z)pm (1; )| < ¢(z) for x € (—1,1) and m = 1,2... Given nonnegative
integers T and s, and o function u € L*, if v"p € L',¢u € I* and
Puv(™Dyu € (Llog*L)P then

> f\i,m(#)v"")(xi.m(#))‘ /_!1 1;(z)FP-*(z)u(z)% <

i=1

<const 1S FIP!, m=1,2..,

for every function F > 0 such that F € (Llog*L)P with some constant
independent of m and F.
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Finally we recall that, if u is any weight function defined by (4.1),
then, for every z € [-1, 1],

= (L zem(u)?
1 m*(z — 2 m(u))?

1

1
(4.17) S(WIiEz+ )%+,
m m

k#J

where j* denotes the index corresponding to the closest knot(s) to = and
p > 0 is a real number. The proof of this inequality follows directly from
(16, Lemma 9, p. 109].

PrOOF OF THE THEOREM 3.2. Let P, be the m—th polynomial
of the Lemma 4.2 corresponding to the function f € C%q > 1 and let
Tm = f — P be the remainder term. For 0 <p < oo and h =0,1,...,¢,
we have

”[f — Hp (Y1 f)](h)u"p < const{"rf,"‘)u"p + ”H,‘,:’,(Yl;rm)uny}.
Since u €GJ, we can write % in the form
u(z) = flap(z), ¢* e L™

By [17, Theorem 5, p. 242] and (4.8), there is a number 0 < ¢* <1
such that

[1F = B 855 D100, < const{ Z2zellT)

+ ”Hm"' K;Tm)v("‘:’--g)ulg: m
P

h.}’

where 1° denotes the characteristic function of the set An(c*). We can
assume that ¢* is sufficiently small. More precisely, we will assume that
|A-(z)] ~ (1 + z)" and |B,(z)| ~ (1=-z), for |z] £ 1 —c"m~

From the definition one has that Hy, (Y1; f) can be written as follows
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(4.18)
Hp (Y15 i 7) = (A.B,)(z)p2, (w®=; 1)-

. (—a,a), Tm .
Hon (™, ArBrp?n(w(a.—a))’z)+

Tm
A By (W)’

+ (ArBr) (@)p (w!™ ) 2) Hn (w2 z)+

+ A @Qu()L (2 i) + B @@LV 353,

where again @, = [p{&'~*)p{-*)]2, Hence

| Honr(Ys; Fo- b= Du1e)), <

- - T, - _h .
<eonst {14, (0" Hi (w2 e L

- a,—a Tm —F,r— c*
+ || P2, () H,, ( (emed; o B “)))v" br-Buig ||, +

N A

A
e fonst-bb, (31 72 Y
| B.Qn
= const [Il + Iz + Ia + Iq].

}.=

To bound I, we recall that v{3—r+13-7+1) ¢ L1 Thus, from Lemma
4.3, by (4.5)
|1¢; (2)Qm(z)| < const (v ()],

and

Em-o(f?) l|v(§-9+1.r—§)v(-1.-1)u“
mia P

I3 < const

Em—q(f(")) (or-4-1)
(4.20) < const—T “v ulL
Em_o(f9)
ms

< const
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Similarly,
@
(4.21) I, < const—E’“—";L(;f—).

In order to find a bound for I;, first we assume 1 < p < co. Then,
from the definition of Hermite interpolating polynomial, we can write [6]

- z) =
'A B’_p2 (w(a —a)) i

= e (W 2)(3 Cirm(hon) + 3 Clrtn (@) =

i=1 i=1

Hm(w(_° @),

= enpl (W T)[B) + 2 + T3 + By + I,

where
_ v (wExe))a?

Cm = 74 (w-=a))sin?ra

; m (w(-—a.a); z:,m)

Ci= {1 +(z = 2im) [ A"'A,-,m(w(“'"’)) -

?

(AB (@) Falw5,)
i BT |

/\?m(w("‘"'))an_l(w( *). 2} )
(& — Z}m)?(ArBr) (Tim)
oo Mm@
! (z - x;,m)(ATBT)(z;.m)
Letting & = v~ ~Hu, we get
Ss 1= ||Qm Esv(r_‘/z r—l/z)‘l‘lc ”v < ”szﬂ‘l “p =T.

Set F, = QmEs and ¥ = sgnF,. Recalling Lemma 4.2, by (4.3) we can
write
17 < consti‘."g_z E,\ (w(—a,a))v(g—r+a+1 §—r+p+1)(z )x

|/ ‘I’(z)lFm(Z)u(x)IP"lu(z)l ( ) Qm(‘f?ﬂ
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Thus, by Lemma 4.4
(q)
T, < const——2L__7 '""’(f )
and therefore

(@)
(4.22) Ss < const E"'——q(fq—).
md

P (w2 27|

Analogously, since
BOUSY: [P (w®; 25,.)|

< m(l - z:2)"2, (cf. eg.

i,m

[3]), we get,

. (@)
(4,23) Sy = ||ngw(r-h/2,r—h/2)u1$n II, < const _EKT%("L_),

Similarly, since

|(4-B,) (z2) 27)
_———=<
(4.8, =) = const (1 —
it results
. (9)
(4.24) Sy = ||QmEsv-Y2-UDy1€ || < const Em_,:l(.,f )

Then, by (4.4), we can prove

. E. (f9
(4.25) Sy = ||QmEpvrr/2r=A By ||, < const ——L— r:z(vf ) .

To find a bound for §; := ||QumEv~¥/37=4Du1 ||, by (4.3) and
(4.17), we get

@ -
T, < const 5"—‘T‘;qu—q)[(\/l T+ 1/m) N (VItz + 1/m) T+

— g?)/2t2-r _(f@®
Z (1 xk ] < const Mx

oy m2(z mk)Z me
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x{(vV1 =z + 1/m)¥** ¥ [(V1+z + 1/m)?** % + 1/m]+
HVITE+1m)e (VT2 + L/m)# 4 1/m]},

where j* denotes the index corresponding to the closest knot to . Hence
Em- —tf2-1r=t)2— - - - -
Sl < const QH,U(r /2-1,r=2/2 1)[v(q/2+1 rq/2+1 r)+m lv(q/2+1 r,0)+
< e

+m Ly @2y

and by the assumptions, it follows

En-o(f9)
ms

(4.26) S, < const
Working similarly we get
Ep_o(f@
(4.27) I, < const —"(‘f——).
m9

From (4.19)-(4.27) and the last considerations, we deduce (3.5) for p > 1.
In the case 0 < p < 1, the inequality (3.5) can be proved following a
procedure used in [18]. 0

PROOF OF THE THEOREM 3.1 To prove Theorem 3.2 we needed a
Markov-Bernstein type inequality. This is the reason for the assumption
u € GJ, which is necessary for such an inequality. When the derivatives
of the function f do not need to be approximated, the condition on u can
be relaxed and it is sufficient to assume u € (Llog*L)?. Then, following
the proof of the Theorem 3.2 with g = 1, one can prove (3.3). a
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