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Solutions of the Boussinesq equation generated

by weak symmetries

F. CIANETTI - E. PUCCI

RIASSUNTO - St determinano due famiglie a tre parametri di soluzioni dell’equa-
zione di Boussinesq. Queste soluzioni sono ottenute come soluzioni invarianti rispetto
a gruppi di simmetria puntuale deboli che non appartengono alla classe di simmetria
secondo Bluman e Cole. Una di queste famiglie non rientra tra le soluzioni ottenute da
Clarkson e Kruskal a da Lou, con metodi diretti di riduzione.

ABSTRACT -~ We determine two families of co® solutions for the Boussinesq equa-
tion. They are inveriant with respect to weak symmetry groups that do not belong to
the class of Bluman and Cole’s non-classical symmetries. One of these families is not
obtainable using the methods of direct similarity reduction.
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1 — Introduction

The Lie symmetry groups of a partial differential equation are contin-
uous groups of point transformations, sending all solutions of the equation
into other solutions of the same equation. Besides such classical groups
(each one uniquely determined by a Lie algebra of vector fields, called
“generators” of the group), other groups may be considered: they are
called weak symmetry groups and are groups of point symmetries, under
whose action a non-empty subclass of solutions is invariant.
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The “non-classical® groups, introduced by BLUMAN and COLE [1],
and some other groups, whose existence for the heat equation has been
notified by OLVER and ROSENAU (2], are examples of this second kind of
symmetry groups.

In (3], it is defined the procedure to characterize all weak symmetry
groups that are admitted by a given partial differential equation. For any
of those groups, it is possible to determine the corresponding family of
invariant solutions: they are solutions of the invariance equation of the
group and, at the same time, of the partial differential equation.

In this note, we determine two families of solutions S,, of the Boussi-
nesq equation (BE), obtained as invariant solutions associated to weak
symmetry groups, which are not “non-classical”. A class of these solu-
tions cannot be obtained using the methods of direct similarity reduction,
proposed by CLARKSON and KRUSKAL [4] and by Lou [6].

In fact, in [5] we evidenced that, for any partial differential equa-
tion, the family of invariant solutions obtained by direct method (let us
call it Scky) is included in the family of the invariant solutions, which
correspond to non-classical symmetries (let us call it Sne)-

For the Boussinesq equation, all solutions of the family Sck. have
been characterized in [4] and [6]; in (7], LEVI and WINTERNITZ found
the “non-classical” groups, to which are associated the solutions in Sye
that match the list of solutions in Scx given in [4]. The other solutions
in Scir, given in [6], are also invariant solutions under the other non-
classical groups, and here we give the explicit expression of all such group.
In this way, we also show that, for the Boussinesq equation, the two
families of solutions Syc and Sck. coincide.

A class of Sw is also enclosed in Snc, and precisely is a solution in
Scx, given in [6]. The other class is not enclosed in Syc, therefore it is
not possible to find this class via the direct similarity reduction.

9 — Classical and weak symmetries for a partial differential equa-

tion

Let

(2.1) Az, t,u,ug, Uy ...) =0
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be a differential equation of order n in u(z, t), with (z,¢) € X C R? and
u € U C R, Let us call U™ the space of all derivatives of u up to order
n and assume that A € C*®(X x U x U™). With any continuous group
of point transformations, a vector field

v = (E(x’ t’ u)’ T(zl t) u)l n(z! t) u))
is associated, together with an operator

0 ] 6
0 = ¢~ — —
pr _Eax-i-rs +'r)au

and an invariance equation
(2.2) I=n—fu, — 7y, =0.

As it is well-known, the vector fields v, associated to Lie symmetry
groups, are defined by the linear and homogeneous system obtained by
setting identically equal to zero,

(2.3) pr(")AlAzo =0.

In (2.3), pr™ indicates the n-th prolonged operator of v, which is proved
to be dependent on &,7, 7 and all their derivatives up to order n (for the
explicit expression see [8]).

Instead, the vector fields v, associated with non-classical symmetry
groups (weak symmetry groups at the first step (3]) are defined by the
system obtained by setting identically equal to zero

(2.4) pr(")AlE_o =0

on the submanifold ¥ = 0, defined by (2.1), (2.2) and by the differential
consequences of (2.2), up to order n.

As it has been proved in (3], (2.4) is equivalent to the condition that
the system of equations (2.1) and (2.2) is complete, that is, such that any
differential consequence is also an algebraic consequence.

There exists only one independent differential consequence, that is,
the compatibility condition which implies the existence of solutions for
both of the equations (2.1) and (2.2).
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If we do not set (2.4) identically equal to zero (that is, if we do not
take (2.4) as completeness condition), but, on the contrary, we consider
it as another equation on u(z,t) besides (2.1) and (2.2), we obtain a new
system of equations, whose completeness condition is equivalent to set
identically zero the following expression

(2.5) pry? [pr'(’")Alz=o] Fe=0 0
on the manifold £* = 0, defined by £ = 0 and the equation (2.4).

This condition still defines a system of equations on &, 7,7, and its
solutions are weak symmetry groups at the second step.

The procedure can be repeated n times, and gives other weak sym-
metries up to the n-th step, the last possible step [3].

Clearly, any Lie symmetry and any weak symmetry at the k-th step
is also a weak symmetry at the (k + h)-th step, forany 1< h<n—k.

After determining the differential systems, which define the vector
fields of weak symmetries, it is possible to recover the invariant class of
solutions for any single group we are able to find.

In the following, the partial derivatives will be denoted with the
variable in subscript, and the ordinary derivatives with a supercscripted
comma; any parameter, appearing during the exposition, is to be consid-
ered as arbitrary constant.

3 — Lie groups and non-classical groups for the Boussinesq Equa-
tion

Let us consider the Boussinesq equation
(3.1) E = Uy + Ugzgz + Ulzz + (u:)> =0
It is known (7] that the generators of the Lie groups are
(3.2) E=az+b T=2at+2, n=-—2au

The generators of the non-classical groups that have been determined in
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[7], are the following:
§ =a(t)z + B(t),

T =1,

+28(8' +2p)],

where o and § are solutions of
(3.4) o +2a —4a* =0 and B"+2a8 - 4a’B=0.

Besides (3.3), there exist other non-classical symmetry groups, which are
defined by the generators

(3.5) £=1, 7=0, n=7()u+1),
where (z) and §(z,t) are solutions of the system

(3.6) Y +5vY +27y =0
(3.7) b2z + 376z + (57 + 47°)6 + 30772 — 57y — 10¢4° =0,

( ) 6::::'*'47,6:: + (36 - 267’{ - 1273)6: + 6tt+
3.8
+276% — 1292 + 507" + 284* = 0.

The (3.6) equation may be written using the differential operator D =
(E:E + ’7‘) as
D{y' +27’} =0.
In this form, it is not hard to find all the solutions:
a) (z)=0
s3) v(z) =(2z+ go)”' (non trivial solution of 4’ + 2y* = 0)

) (i) = £(FAEE),
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where f(z) is defined by
z+9:=2V3 [ £(fo0+ D)7V,

It reduces to v(z) = 2(z + g,)~! for g, =0.
The (3.7) equation admits the following general integral:

s¥) 6(z,t) = a,(t)z + a,(t) (corresponding to s,);

s¥)  6(z,t) = a1(t) (2T + go) + a2(t)(2z + go) /% — 5(2z + go)
(corresponding to s3);

s#) b(z,t) = al(t)'ye'f"d" + ap(t)(1 — 2z'y)e"f"’d’ + 377 +4°
(corresponding to s3).

It reduces to
6(z,t) = ar(t)(z + g2)° + ax(t)(z + g2)* when gy =0.

The a,(t) and a,(t) are arbitrary functions of ¢.
The compatibility with (3.8) exists only in the following three cases,
corresponding to which (3.5) defines all possible non-classical symmetries

with 7 = 0:

a) Y(z)=0 6&(=,t)=a(t)z+a(t)
with a)+3a?=0 and aj +3a1a, =0;

) Yz)=2(z+g)7", 8(z)=48(z+g1)7%
cs) () =2(z+g)", 6(z)=0.
The invariant solutions which correspond to Lie groups are defined by

w(z) _ az+b

=) ih = 2EEC
Y=gtk z av2at + 2¢’

and w(z) solution of

w" + a?2*w" 4 2uww" + Ta*zw' + 2w'? + 8a’w = 0.
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The invariant solutions, corresponding to the non-classical groups, having
(3.3) as generators, are defined by [7]

u= w2k (t) - (az + B 2= zk(t) / B(OK(t)dt,
where k(t) = exp[— [ o(t)dt] and w(z) is solution of
w" + ww" + w'? 4 (AZ + B)w' + 24w - 2(Az+ B)’ = 0.

Here, A and B are constant parameters defined by:

2 _ J
A=°‘k4°/, B= “ﬁ L /ﬂt)k

These solutions coincide with those obtained using the direct reduction
method by C.K. [4].

The invariant solutions, which correspond to the non-classical groups
of generators (3.5), are defined by:
u = fy(z)w(t) + ai(z,t)
with 3, (z) = exp(f ydz), ou(z,t) = f; f 667 dz and w(t) solution of
w" + A+ Byw+ B, =0

where A, is the constant parameter A, = (8 + $18;)/6: and B, and B,
are the following functions of ¢

82
Bl(t) =( ml+2aaal "+aﬁil+ alﬁl)
8%a 8%a doy\2 8oy
Bi(t) = ( 55 tag t(ga) + o )

It is easy to recognize that such a class of solutions coincides with the
class given by direct reduction in [6].
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4 - Other symmetry groups and corresponding invariant solu-
tions

The method described in section 2, applied to the Boussinesq equa~
tion, allows to characterize the particular system of partial differential
equations, which defines the generators of weak symmetries.

Since the Boussinesq equation is an equation of the fourth order,
besides the defining system of non-classical weak symmetries (whose so-
lutions have been given in the previous section), there are three more
systems which define generators of other weak symmetries. They cor-
respond to the remaining possible steps to which one can impose the
completeness of the system (3.1) and (2.2).

Those three systems may be obtained, fairly easily, by means of sym-
bolic manipulation programs, by they are extremely long and involved be
analyzed and, therefore, not so meaningful.

It is more useful to look for solutions of those systems, which are
obtained using simplifying hypothesis on the form of the generators.

In the present section, we determine the generators for a few weak
symmetry groups and compute the corresponding invariant solutions.
The program we used in MACSYMA running on a “Symbolics 3620”.

We assume, for simplicity,

(4.1) £=£&(z,t), T=1, n=n(z,t).
The equation (2.4), for the Boussinesq equation, becomes of the form
El = — 66;3“;:; + uzz( - 4§zzz + 46263 + 2u€= + 266‘ + 7’)+

(4.2) 26:“: + Uz (4£€: — Uzz — 266 — €1t — €zzaz + 2n:)—
- 4577:6:: + 477th - 277:5: + UNzz + Nezzz + N = 0.

We consider this one as new equation to be associated with (3.1) and

(2.2).

The compatibility condition is now
(4.3) pr(")El E;—'O =0.
1=0- 'E1=0

5o = prt® [p,(n) E
E =0
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Setting this relation identically zero, one obtains the defining system for
weak symmetries at the second step, with generators of the kind (4.1).

Explicit computations show that, in order (4.3) to be true, it is nec-
essary that

(4.4) € = a(t)z + Bo(2)-

Using this form for ¢, (4.2) and (4.3) simplify a lot. The system of equa-
tions on ay(t), B2(t), n(x,t) that one obtains is still hard to be analyzed.
In particular, it admits solutions if oo, B2 and 7 solve the system

(4.5) a, —2a2=0

(4.6) e+ (a2z+ B)m + %22 +mz+72=0

(where o = 4803;
1 = 202005 + 14020 + 5203 0s;
V2 = 2023 + 28’3 + 602520, + 12033)

(4.7) (me + (e2% + Ba)s),, = 0

(2027]:: - 48&;)2: + 2ﬁ2n33 + 2a277: + 27’3!—

(4.8)
-8 — a2l + 2055, + 4032 =0
( - 480;7); + aofzet — 4‘1:77::)37 — 4oNzzze + 22+
(4.9) +2n2 — (387 + 6023 + 120362) 0= + Neeet

+BaMzee + doate — 283M2e + 8adn, =0

which is compatible only if a; = 0.
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It can be checked that the follwing are solutions of the system (4.5),
..y (4.9):
I) Qg = 0

Bz = bot® + byt + by
1
n= ——3-(6box + 1053t% + 15beby 82+

and
H) Q2 = 0

ﬂz = bot2 + blt + b2
n= 6box - Gbgta - gbobltﬁ—

— 2(5boby + b2)t — 2byb.

By comparison with (3.3), it can be seen that, for b, # 0, the I} and II)
give generators of weak symmetries which are not “non-classical”.
Related to these generators we find the similarity variable

(4.10) z =1 — (2bot + 3b,t? + 6b,t) /6;

the invariant solutions are, respectively, of the form

(411) ur = —2bot2 - b?,t‘ - 2bob1t3 - (2bob2 + bf)t2 - 2b1b2t + wl(z)
and

(4.12)  uyr = 6botz — bjt* — 2bobyt® — (2boby + b)t” ~ 2bybat + wa(2)
Since we are not dealing with “non-classical” weak symmetries, by sub-
stituting (4.11) and (4.12) in the Boussinesq equation, we do not obtain
ordinary differential equations in w; (2) or w;(z).

In fact, we obtain

(4.13)
t( et 2bow'1'z - 6b0w'1 - 6bob1) +w""1 + ('Ul1 + bg)w’l' + ‘wf - b,w'l - Zb% =0
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and

(414) t(6bywy z + 10bowh — 30boby) + w'’s + (w2 + b3)uws+
' w2 — byw) — 16boby — 26* = 0

Nevertheless, each of them is compatible at any ¢ if the following condi-
tions hold: for the (4.13), if

(4.15) wy(2) = —% —byz — b?
for any by, by, by; for the (4.14), if
(4.16) wy(z) = 3b1z+ bs

for any b; and by, by, b, such that 4bob, — by = 0.

If we substitute (4.15) in (4.11), by expressing z as function of z and
t via (4.10), we obtain the class of solutions:

_ (t)z3 + pa(t)2? + p3(t)T + pa(t)
Qz® + g2(t)z? + ga(t)z

Sl.

w *

u(z,t) =

where

pa(t) = — 216b%t4 — 432byb t° + (—864boby ~ 108b3)t*+
— 216b, byt + 216b3

pa(t) =+ (144b2b, — 36bob?)t® + (144bobyb, — 54b3)t4+
+ (288byb262 — 216b%b,)t> — 432b,b3t* — 432b3¢

Pa(t) = + 8b3t™° + 40b3b,t° + (48b3b, + 78b363) 7+
+ (19252b, by + T2beb3)t" + (96b3b% + 288bob2b, + 27648+
+ 360bob, b3 + +162b3b,)t® + (144bob3 + 378b3b2)t4+
+ 432b,b3t° + 216bit? + 2592
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and
@ =+216
g2(t) = — 144b,t3 — 216b,t% — 432b,t
gs(t) = = 24b3t® + 72boby t° + (144bobs + 5453)t* + 216b,b,t° + 216b5t°

Likewise, substituting (4.16) in (4.12), we obtain the class of solutions:

ST y(z,t)="Tt (t)$4; r2(t))
0

where
T (t) = 24b(2)t + 12bob1

ro(t) = 12b3t% + 24b2b,¢° + 18bob%t? + 5b3t — 4bobs
Each one of these classes depends on three arbitrary parameters.
The S are solutions not invariant under any non-classical group,
and therefore cannot be obtained using the direct reduction methods.
The SI! are solutions also invariant under the non-classical symmetry
(3.5) in the ¢;-case (a; = 0,a; = 6bot + 3b,); therefore it is possible to
find, as particular case, this family in [6].
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