Some natural operations on vector fields

W.M. MIKULSKI

RIASSUNTO – Per ogni funtore H viene determinata una biiezione tra le fibre di H su $0 \in \mathbb{R}$ e l'insieme delle trasformazioni naturali che trasformano campi vettoriali in sezioni di H. Vengono descritte esplicitamente tutte le trasformazioni, a rilevamento naturale, della base, che trasformano campi vettoriali su varietà n-dimensionali in campi vettoriali sul funtore lineare fibrato tangente di ordine r sulle varietà n-dimensionali, purché risulti $n \ge 2$.

ABSTRACT – For every bundle functor H we determine a bijection between the fibre of H over $0 \in \mathbb{R}$ and the set of all natural transformations transforming vector fields into sections of H. We describe explicitly all natural base-extending transformations transforming vector fields on n-manifolds into vector fields on the linear tangent bundle functor of order r over n-manifolds, provided $n \ge 2$.

 $\label{eq:Key-Words} \textbf{Key Words} - \textit{Natural bundle - Bundle functor - Natural transformation - natural base-extending transformation.}$

A.M.S. CLASSIFICATION: 58A20 - 53A55

- Introduction

A natural bundle was introduced by A. NIJENHUIS [12], as a modern approach to the classical theory of geometrical objects. According to him geometrical objects on a manifold M are sections of some natural bundle FM over M.

Let G be a natural bundle. In differential geometry we studied many geometric (canonical) constructions transforming geometrical objects on

M into geometrical objects on GM. Geometrical objects on M are sections of a natural bundle $FM \to M$ and geometrical objects on GM are sections of a natural bundle $H(GM) \to GM$. If we denote by ΓFM the set of sections of $FM \to M$, then a construction (transformation)

$$\mathcal{D}_M:\Gamma FM\to\Gamma H(GM)$$

is called "natural" or "canonical" if for any embedding $\varphi: M \to N$ and sections $\sigma_1 \in \Gamma FM$, $\sigma_2 \in \Gamma FN$ which are φ -conjugate (i.e. $F\varphi \circ \sigma_1 = \sigma_2 \circ \varphi$) the sections $\mathcal{D}_M(\sigma_1)$ and $\mathcal{D}_N(\sigma_2)$ are $G\varphi$ -conjugate, c.f. [8]. The precise definitions will be recalled in Sections 2 and 3.

For example, the construction associating to any metric tensor on M its curvature tensor is natural. (Here FM is the natural bundle of metric tensors on M, GM = M and HM is the natural bundle of tensor fields of type (0,4).) Natural constructions with GM = M have been studied by many authors, cf. [1],[3],[6],[14] etc.

In the case of a vector fibre bundle GM, J. Gancarzewicz [4], constructed for any $\sigma \in \Gamma GM$ a canonical vertical vector field σ^V on GM called the vertical lift of σ by the formula $\sigma^V(y) = \psi_y(\sigma(\pi(y)))$, where $\psi_y : G_{\pi(y)}M \to V_yGM = T_y(G_{\pi(y)}M)$ is the canonical isomorphism.

Many of "natural" constructions were studied in the case of a Weil functor G. G is called a Weil functor if $G(M_1 \times M_2) = G(M_1) \times G(M_2)$, cf. [6]. For example, I. Kolar [7], gives a complete characterization of natural transformations of vector fields on M (i.e. FM = TM) into vector fields on GM (i.e. H(GM) = T(GM)), where G is a Weil functor.

In this paper we describe (completely) how for any vector field X on M one can construct canonically a vector field $\mathcal{D}_M(X)$ on the linear r-th order tangent bundle $T^rM=(J^r(M,\mathbb{R})_0)^*$ (i.e. we deal with canonical constructions, where FM=TM, $GM=T^rM$ and $H(GM)=T(T^rM)$). If G is a natural bundle then for any vector field X on M we can define a vector field GX on GM (called the complete lift of X to GM) via prolongations of local flows. If φ_t is a local flow of X, then $G\varphi_t$ is a local flow of GX. We prove that in the case of $GM=T^rM$ of vector tangent bundle of order T any natural (base-extending) transformation D of vector fields from M to vector fields on T^rM can be written in the form

$$\mathcal{D}_{M}(X) = \lambda T^{T}X + \mu L_{M} + (D_{M}(X))^{V},$$

if $\dim(M) \geq 2$, where $\lambda, \mu \in \mathbb{R}$, L_M is the Liouville vector field on T^rM defined by the fibre homotheties, $D_M(X) \in \Gamma T^rM$ is a canonical (with respect to X) section and $(D_M(X))^V$ denotes the vertical lift of $D_M(X)$. Moreover in Section 2 we define r canonical sections $D_M(X) \in \Gamma T^rM$, s = 1,...,r, and we prove that $D_M(X)$ is a linear combination of the $D_M(X)$.

The main difficulty in proving the formula (*) is to show Lemmas 4.1 and 5.1. It seems that our methods also work to prove some form of the formula (*) for many other bundle functors G.

Section 2 can be read independently. In Section 2 we describe how for any vector field X on M (i.e. FM = TM) one can construct canonically a geometrical object $D_M(X) \in \Gamma HM$ on M (i.e. GM = M), where H is a bundle functor defined on the category of manifolds with smooth maps. We determine a bijection between the fibre of H over $0 \in \mathbb{R}$ and the set of all such constructions.

1 - Bundle functors

All manifolds in this paper are assumed to be paracompact, without boundary, second countable, finite dimensional and of class C^{∞} . Maps between manifolds will be assumed to be C^{∞} . Let \mathcal{M} be the category of all manifolds and all maps, $\mathcal{F}\mathcal{M}$ be the category of all fibered manifolds and their morphisms and $B: \mathcal{F}\mathcal{M} \to \mathcal{M}$ be the base functor. Given a functor $H: \mathcal{M} \to \mathcal{F}\mathcal{M}$ satisfying $B \circ H = \mathrm{id}_{\mathcal{M}}$, we denote by $p_M^H: HM \to M$ its value on a manifold M and by $H_x f: H_x M \to H_{f(x)} N$ the restriction of its value $Hf: HM \to HN$ in $f: M \to N$ to the fibres of HM over x and of HN over $f(x), x \in M$.

DEFINITION 1.1. ([9]) A bundle functor is a functor $H: \mathcal{M} \to \mathcal{F}\mathcal{M}$ satisfying $B \circ H = \mathrm{id}_{\mathcal{M}}$ and the localization condition: if $i: U \to M$ is the inclusion of an open subset, then $Hi: HU \to (p_M^H)^{-1}(U)$ is a diffeomorphism. We say that a bundle functor H is linear if $H: \mathcal{M} \to \mathcal{VB}$, where $\mathcal{VB} \subset \mathcal{F}\mathcal{M}$ is the category of all vector bundles and their vector bundle morphisms.

REMARK. If we replace (in Definition 1.1) \mathcal{M} by the category \mathcal{M}_n of all n-dimensional manifolds and their embeddings we obtain the concept of natural bundles over n-manifolds in the sense of A. NIJENHUIS [12]. Hence the restriction of a bundle functor to \mathcal{M}_n is a natural bundle over n-manifolds.

EXAMPLE 1.1. Let $r \geq 1$ be an integer. Let $T^{r*}M = J^r(M, \mathbb{R})_0$ be the space of all r-jets of a manifold M into \mathbb{R} with target 0. Since \mathbb{R} is a vector space, $T^{r*}M$ has a canonical structure of a vector bundle over M. The dual vector bundle $T^rM := (T^{r*}M)^*$ is called the r-th order tangent bundle of M. Given a map $f: M \to N$, the jet composition $V \to V \circ j_x^r f$, $V \in T_{f(x)}^{r*}N$, determines a linear map $T_{f(x)}^{r*}N \to T_x^{r*}M$. The dual map $T_x^rM \to T_{f(x)}^rN$ is denoted by T_x^rf and called the r-th order tangent map of f at x. This defines a functor $T^r: M \to VB$. Of course, T^r is a linear bundle functor. Functor T^1 is naturally isomorphic with the tangent bundle functor T. (The functor T associates to each manifold M the tangent bundle TM of M and to each map $f: M \to N$ the differential map $df: TM \to TN$ of f.) A natural isomorphism $I_M: TM \to T^1M$, $M \in M$, is given by $I_M(v)(j_x^1\gamma) = v\gamma$, $v \in T_xM$, $j_x^1\gamma \in T_x^{1*}M$, $x \in M$.

The Weil functors of A-velocities, cf. [11], are also bundle functors. Let M, N, P be manifolds. A parametrized family of maps f_p : $M \to N$, $p \in P$ is said to be smoothly parametrized if the resulting map $f: M \times P \to N$ is of class C^{∞} . We have the following proposition.

PROPOSITION 1.1. ([9]) Every bundle functor $H: \mathcal{M} \to \mathcal{F}\mathcal{M}$ satisfies the regularity condition: if $f: M \times P \to N$ is a smoothly parametrized family, then the family $H(f_p): HM \to HN$, $p \in P$, is also smoothly parametrized.

Let us recall that a natural transformation between two natural bundles H_1 , $H_2: \mathcal{M}_n \to \mathcal{F}\mathcal{M}$ is a family of maps $A_M: H_1M \to H_2M$, $M \in \mathcal{M}_n$, such that (a) for every embedding $\varphi: M \to N$ of two n-manifolds $H_2\varphi \circ A_M = A_N \circ H_1\varphi$, and (b) for every $M \in \mathcal{M}_n$ $p_M^{H_2} \circ A_M = p_M^{H_1}$. Since $T^r|_{\mathcal{M}_n}$ is a functor in the category \mathcal{VB} , for every $k \in \mathbb{R}$ the homotheties

$$(1.1) (k)_M^r: T^rM \to T^rM, X \to kX$$

represent natural transformations of $T^r|\mathcal{M}_n$ into itself. In [10], I. KOLAR and G. VOSMANSKA proved the following proposition.

PROPOSITION 1.2. Let $A_M : T^rM \to T^rM$, $M \in \mathcal{M}_n$, be a natural transformation of $T^r|\mathcal{M}_n$ into itself. Then there exists $k \in \mathbb{R}$ such that $A_M = (k)_M^r$ for all $M \in \mathcal{M}_n$.

From Proposition 1.2 we obtain the following corollary.

COROLLARY 1.1. If $r \geq 2$, then each natural transformation A_M : $T^rM \to TM$, $M \in \mathcal{M}_n$, is given by $A_M(w) = 0$.

PROOF. We have a natural injection $i_M: T^1M \to T^rM$, $M \in \mathcal{M}_n$ given by $i_M(w)(j_x^r\gamma) = w(j_x^1\gamma)$, $w \in T_x^1M$, $j_x^r\gamma \in T_x^{r*}M$, $x \in M$. Let $I_M: TM \to T^1M$, $M \in \mathcal{M}_n$ be the natural isomorphism described in Example 1.1. Suppose that $A_M: T^rM \to TM$, $M \in \mathcal{M}_n$, is a natural transformation. Then $i_M \circ I_M \circ A_M$ is a natural transformation of $T^r|\mathcal{M}_n$ into itself. If $r \geq 2$, then $i_M \circ I_M \circ A_M$ is not surjective, and then (by Proposition 1.2) it is equal to $(0)_M^r$. Therefore $A_M(w) = 0$ for every $w \in T^rM$.

2 - Natural transformations transforming vector fields into sections of some natural bundles

Let $H: \mathcal{M}_n \to \mathcal{FM}$ be a natural bundle. For every $M \in \mathcal{M}_n$ we denote by $\mathcal{X}(M)$ the vector space of all vector fields on M and by ΓHM the set of all sections of class C^{∞} of the bundle $HM \to M$. We introduce the following definition.

DEFINITION 2.1. A family $D = \{D_M\}$ of functions

$$D_M: \mathcal{X}(M) \to \Gamma H M, \quad M \in \mathcal{M}_n,$$

is called a natural transformation transforming vector fields into sections of H iff the following naturality condition is satisfied: for every $M, N \in \mathcal{M}_n$, $X \in \mathcal{X}(M)$, $Y \in \mathcal{X}(N)$ and every embedding $\varphi : M \to N$ the assumption $d\varphi \circ X = Y \circ \varphi$ implies $H\varphi \circ D_M(X) = D_N(Y) \circ \varphi$.

REMARK. (a) Every natural transformation D transforming vector fields into sections of H satisfies the following localization condition: if $X, Y \in \mathcal{X}(M)$, $M \in \mathcal{M}_n$, are two vector fields such that X|U = Y|U on an open subset, then $D_M(X)|U = D_M(Y)|U$ (for, there exists $Z \in \mathcal{X}(U)$ such that $di \circ Z = X \circ i = Y \circ i$, where $i: U \to M$ is the inclusion, and then $D_M(X) \circ i = Hi \circ D_U(Z) = D_M(Y) \circ i$).

(b) The relationships between Definition 2.1 and the Category Theory are following. Given a natural bundle $H:\mathcal{M}_n\to\mathcal{F}\mathcal{M}$ we define a functor $\Gamma_{loc}H:\mathcal{M}_n\to Sets$ as follows. For every $M\in\mathcal{M}_n$, $\Gamma_{loc}H(M)$ is the set of all locally defined C^∞ -sections of the bundle $HM\to M$. For every embedding $\varphi:M\to N$ of two n-manifolds, $\Gamma_{loc}H(\varphi):=\varphi_*:\Gamma_{loc}H(M)\to\Gamma_{loc}H(N),\ \varphi_*(\sigma)=H\varphi\circ\sigma\circ\varphi^{-1}.$ If D is a natural transformation transforming vector fields into sections of H, then there exists one and only one natural transformation (of functors) $\tilde{D}:\Gamma_{loc}(T|\mathcal{M}_n)\to\Gamma_{loc}H$ such that $\tilde{D}|\mathcal{X}(M)=D_M$ for every $M\in\mathcal{M}_n$. (For every $X\in\Gamma_{loc}TM\ \tilde{D}_M(X):\mathrm{dom}(X)\to HM$ is defined by $\tilde{D}_M(X)(y)=D_M(\tilde{X})(y)$, where $\tilde{X}\in\mathcal{X}_0(M)$ is such that $\mathrm{germ}_y(X)=\mathrm{germ}_y(\tilde{X})$.) On the other hand for every natural transformation (of functors) $\tilde{D}:\Gamma_{loc}(T|\mathcal{M}_n)\to\Gamma_{loc}H$ the family $D_M=\tilde{D}|\mathcal{X}(M),$ $M\in\mathcal{M}_n$, is a natural transformation transforming vector fields into sections of H.

We have the following lemma.

LEMMA 2.1. Let D, D^* be two natural transformations transforming vector fields into sections of H such that $D_{\mathbb{R}^n}(\partial_1)(0) = D^*_{\mathbb{R}^n}(\partial_1)(0)$, where $\partial_1 = \frac{\partial}{\partial x^1}$ is the canonical vector field on \mathbb{R}^n . Then $D = D^*$.

PROOF. Let $X \in \mathcal{X}(M)$, $M \in \mathcal{M}_n$ and $x_0 \in M$. It is sufficient to show that $D_M(X)(x_0) = D_M^*(X)(x_0)$.

Suppose that $X(x_0) \neq 0$. Then there exists a chart φ on M about x_0 such that $\varphi(x_0) = 0$, im $\varphi = \mathbb{R}^n$ and $d\varphi^{-1} \circ \partial_1 = X \circ \varphi^{-1}$ on some open neighbourhood of 0. Using the naturality condition we deduce that $D_M(X)(x_0) = D_M^*(X)(x_0)$.

Now, we do not assume that $X(x_0) \neq 0$. There exist $Y \in \mathcal{X}(M)$ and two open subsets $U, V \subset M$ such that $Y(z) \neq 0$ for any $z \in V$, X|U = Y|U and $x_0 \in \operatorname{cl}(U) \cap \operatorname{cl}(V)$. Then $D_M^{\bullet}(X)|U = D_M^{\bullet}(Y)|U$, $D_M(X)|U = D_M(Y)|U$ and $D_M(Y)|V = D_M^{\bullet}(Y)|V$. Therefore

$$D_M(X)(x_0) = D_M^*(X)(x_0).$$

We denote by $\operatorname{Trans}(H)$ the set of all natural transformations transforming vector fields into sections of H. (Since every natural transformation D transforming vector fields into sections of H is uniquely determined by $D_{\mathbb{R}^n}$, $\operatorname{Trans}(H)$ is a set.) If $H:\mathcal{M}_n\to \mathcal{VB}$, then $\operatorname{Trans}(H)$ has a vector space structure defined as follows. For any $D_1,D_2\in\operatorname{Trans}(H)$ and $\lambda\in\mathbb{R}$ we define $D_1+D_2,\ \lambda D_1\in\operatorname{Trans}(H)$ to be the systems of functions

$$(D_1 + D_2)_M : \mathcal{X}(M) \to \Gamma H M,$$

$$(D_1 + D_2)_M(X) = (D_1)_M(X) + (D_2)_M(X)$$

$$(\lambda D_1)_M : \mathcal{X}(M) \to \Gamma H M,$$

$$(\lambda D_1)_M(X) = \lambda((D_1)_M(X)).$$

The purpose of this section is to determine the set $Trans(H|\mathcal{M}_n)$, where $H: \mathcal{M} \to \mathcal{F}\mathcal{M}$ is a bundle functor.

EXAMPLE 2.1 We denote by $\mathcal{X}_0(M)$ the set of all vector fields on M with compact supports. Let $H: \mathcal{M} \to \mathcal{F}\mathcal{M}$ be a bundle functor. For any $v \in H_0\mathbb{R}$ and $M \in \mathcal{M}_n$ we define $\tilde{D}_M^v: \mathcal{X}_0(M) \to \Gamma HM$ by

$$\tilde{D}_{M}^{v}(X)(y) = H_{0}(\Phi_{v}^{X})(v),$$

 $y \in M$, where $\Phi_y^X : \mathbb{R} \to M$ is defined by $\Phi_y^X(t) = \operatorname{Exp}(tX)(y)$. It follows from Proposition 1.1 that $\tilde{D}_M^v(X)$ is of class C^∞ for every $X \in \mathcal{X}_0(M)$. If $X \in \mathcal{X}_0(M)$, $Y \in \mathcal{X}_0(N)$ are two vector fields on n-manifolds and $\varphi : M \to N$ is an embedding such that $d\varphi \circ X = Y \circ \varphi$, then $\Phi_{\varphi(y)}^Y = \varphi \circ \Phi_y^X$ for any $y \in M$, and then $\tilde{D}_N^v(Y) \circ \varphi = H\varphi \circ \tilde{D}_M^v(X)$. By the localization condition of Definition 1.1 for any $f : \mathbb{R} \to M$, H_0f depends only on $\operatorname{germ}_0 f$. Then the family $\tilde{D}^v = \{\tilde{D}_M^v\}$ satisfies the following localization condition: if $X, Y \in \mathcal{X}_0(M)$, $M \in \mathcal{M}_n$ are two vector fields such that X|U = Y|U on an open subset, then $\tilde{D}_M^v(X)|U = \tilde{D}_M^v(Y)|U$. We can therefore define a family $D_M^v : \mathcal{X}(M) \to \Gamma HM$, $M \in \mathcal{M}_n$ as follows. For any $X \in \mathcal{X}(M)$ and $y \in M$ we put

$$D_M^v(X)(y) = \tilde{D}_M^v(\tilde{X})(y),$$

where $\tilde{X} \in \mathcal{X}_0(M)$ is such that $\operatorname{germ}_y(\tilde{X}) = \operatorname{germ}_y(X)$. It is clear that the family $D^v = \{D_M^v\}$ is an element from $\operatorname{Trans}(H|\mathcal{M}_n)$.

The main result in this section is the following theorem.

THEOREM 2.1. The function

$$P: H_0\mathbb{R} \to \operatorname{Trans}(H|\mathcal{M}_n), \qquad P(v) = D^v,$$

is a bijection. The inverse bijection is given by $S(D) = Hq(D_{\mathbb{R}^n}(\partial_1)(0))$, where $q: \mathbb{R}^n \to \mathbb{R}$ is the projection onto first factor. In particular, if H is linear, then P is a linear isomorphism.

PROOF. If H is linear, then S is a linear map. We see that

$$S \circ P(v) = Hq(D^{v}_{\mathbb{R}^n}(\partial_1)(0)) = Hq \circ H_0(\mathbb{R} \ni t \to (t,0) \in \mathbb{R}^n)(v) = v$$

for every $v \in H_0\mathbb{R}$. Therefore $S \circ P = \operatorname{id}$ and $Hq(D^v_{\mathbb{R}^n}(\partial_1)(0)) = v$ for every $v \in H_0\mathbb{R}$. It remains to show that $P \circ S = \operatorname{id}$. Consider $D \in \operatorname{Trans}(H|\mathcal{M}_n)$. Let v := S(D). We have to show that $D = P \circ S(D) = P(v) = D^v$. We see that

$$Hq(D^{v}_{\mathbb{R}^n}(\partial_1)(0)) = v = S(D) = Hq(D_{\mathbb{R}^n}(\partial_1)(0)).$$

It is obvious that for all $t \in \mathbb{R} - \{0\}$, $\varphi_t : \mathbb{R}^n \to \mathbb{R}^n$, $\varphi_t(x^1, ..., x^n) = (x^1, tx^2, ..., tx^n)$ is a diffeomorphism preserving ∂_1 . Therefore using the naturality condition and Proposition 1.1 we get

$$D_{\mathbb{R}^n}(\partial_1)(0) = H\varphi_t(D_{\mathbb{R}^n}(\partial_1)(0)) \to Hi \circ Hq(D_{\mathbb{R}^n}(\partial_1)(0))$$

as $t \to 0$, where $i: \mathbb{R} \to \mathbb{R}^n$ is given by i(y) = (y, 0). Hence

$$D_{\mathbf{R}^n}(\partial_1)(0) = Hi \circ Hq(D_{\mathbf{R}^n}(\partial_1)(0))$$

= $Hi \circ Hq(D_{\mathbf{R}^n}^{\upsilon}(\partial_1)(0)) = D_{\mathbf{R}^n}^{\upsilon}(\partial_1)(0)$.

Then $D = D^{\nu}$, because of Lemma 2.1.

From Theorem 2.1 we have the following simple corollary.

COROLLARY 2.1. Let $D \in \text{Trans}(T|\mathcal{M}_n)$. Then there exists $\lambda \in \mathbb{R}$ such that $D_M(X) = \lambda X$ for any $M \in \mathcal{M}_n$ and $X \in \mathcal{X}(M)$.

PROOF. By Theorem 2.1, $\dim_{\mathbb{R}}(\operatorname{Trans}(T|\mathcal{M}_n)) = \dim_{\mathbb{R}} T_0\mathbb{R} = 1$. On the other hand, for every $\lambda \in \mathbb{R}$, the family $D_M = \lambda \operatorname{id}_{\mathcal{X}(M)}$, $M \in \mathcal{M}_n$, is an element of $\operatorname{Trans}(T|\mathcal{M}_n)$.

EEXAMPLE 2.2 For every $s=1,...,r,\ M\in\mathcal{M}_n,\ X\in\mathcal{X}(M)$ and $y\in M$ we have a linear map

$$\stackrel{(s)}{D}_{M}(X)(y): T_{y}^{r*}M \to \mathbb{R}, \qquad j_{y}^{r}(\gamma) \to X^{(s)}\gamma(y),$$

where $X^{(s)} = X \circ X \circ ... \circ X$ (s-times). Hence for every s = 1, ..., r, $M \in \mathcal{M}_n$ and $X \in \mathcal{X}(M)$ we have a section $D_M(X) \in \Gamma T^r M$, $y \to D_M(X)(y)$. It is easy to verify that for every s = 1, ..., r the family

$$D_M: \mathcal{X}(M) \to \Gamma T^r M, \qquad X \to D_M(X), \qquad M \in \mathcal{M}_n,$$

is an element of $\operatorname{Trans}(T^r|\mathcal{M}_n)$. It is easy to verify that the natural transformations D, ..., D are linearly independent in $\operatorname{Trans}(T^r|\mathcal{M}_n)$. On the other hand $\dim(T_0^r\mathbb{R}) = r$. Therefore we have the following corollary of Theorem 2.1.

COROLLARY 2.2. The natural transformations D, ..., D described above form a basis (over \mathbb{R}) of Trans $(T^r|\mathcal{M}_n)$.

3 – Natural base-extending transformations transforming vector fields on n-manifolds into vector fields on $T^r|\mathcal{M}_n$

We introduce the following definition.

DEFINITION 3.1. A family \mathcal{D} of functions

$$\mathcal{D}_M: \mathcal{X}(M) \to \mathcal{X}(T^r M), \qquad M \in \mathcal{M}_n,$$

is called a natural base-extending transformation transforming vector fields on n-manifolds into vector fields on $T^r|\mathcal{M}_n$ iff the following two conditions are satisfied:

- (a) (Naturality condition) for any $M, N \in \mathcal{M}_n$, $X \in \mathcal{X}(M)$, $Y \in \mathcal{X}(N)$ and any embedding $\varphi : M \to N$ the assumption $d\varphi \circ X = Y \circ \varphi$ implies $dT^r \varphi \circ \mathcal{D}_M(X) = \mathcal{D}_N(Y) \circ T^r \varphi$, and
- (b) (Regularity condition) if U is a manifold and $X: U \times M \to TM$ is a C^{∞} map such that for every $t \in U$ $X_t: M \to TM$, $X_t(y) = X(t, y)$ is a vector field on M, then the mapping

$$U \times T^r M \ni (t, w) \to \mathcal{D}_M(X_t)(w) \in TT^r M$$

is of class C^{∞} .

Using similar arguments to these as in the proof of Lemma 2.1 we obtain the following lemmas.

- LEMMA 3.1. Let $\mathcal{D}, \mathcal{D}^1$ be two natural base-extending transformations transforming vector fields on n-manifolds into vector fields on $T^r|\mathcal{M}_n$ such that $\mathcal{D}_{\mathbb{R}^n}(\partial_1) = \mathcal{D}^1_{\mathbb{R}^n}(\partial_1)$ over $0 \in \mathbb{R}^n$. Then $\mathcal{D} = \mathcal{D}^1$.
- Lemma 3.2. Let $\mathcal D$ be a natural base-extending transformation transforming vector fields on n-manifolds into vector fields on $T^r|\mathcal M_n$ such that

$$dp_{\mathbb{R}^n}^{T^r} \circ \mathcal{D}_{\mathbb{R}^n}(\partial_1) | T_0^r \mathbb{R}^n = 0.$$

Then for any $M \in \mathcal{M}_n$, $x \in M$ and $X \in \mathcal{X}(M)$ we have $dp_M^{T^r} \circ \mathcal{D}_M(X) = 0$ over x.

Denote by $\operatorname{Trans}_{Ex}(T^r|\mathcal{M}_n)$ the set of all natural base-extending transformations transforming vector fields on n-manifolds into vector fields on $T^r|\mathcal{M}_n$. For any $\mathcal{D}, \mathcal{D}^1 \in \operatorname{Trans}_{Ex}(T^r|\mathcal{M}_n)$ and $\lambda \in \mathbb{R}$ define $\mathcal{D} + \mathcal{D}^1$, $\lambda \mathcal{D} \in \operatorname{Trans}_{Ex}(T^r|\mathcal{M}_n)$ to be the systems of functions

$$(\mathcal{D}+\mathcal{D}^1)_M: \mathcal{X}(M) \to \mathcal{X}(T^rM), \qquad (\mathcal{D}+\mathcal{D}^1)_M(X) = \mathcal{D}_M(X) + \mathcal{D}^1_M(X),$$

$$(\lambda \mathcal{D})_M : \mathcal{X}(M) \to \mathcal{X}(T^*M), \qquad (\lambda \mathcal{D})_M(X) = \lambda(\mathcal{D}_M(X)).$$

Then $\operatorname{Trans}_{Ex}(T^r|\mathcal{M}_n)$ is a vector space over \mathbb{R} .

We have the following examples of natural base-extending transformations transforming vector fields on n-manifolds into vector fields on $T^r|_{\mathcal{M}_n}$.

EXAMPLE 3.1 (Complete lifting) Let $X \in \mathcal{X}(M), M \in \mathcal{M}_n$. Let us recall that the complete lift $T^rX \in \mathcal{X}(T^rM)$ of X to T^rM is the vector field on T^rM satisfying the following condition: if $\{\varphi_t\}$ is a local flow of X defined near $y \in M$, then $\{T^r\varphi_t\}$ is a local flow defining T^rX over y. It is easy to see that the family T^r given by $\mathcal{X}(M) \ni X \to T^rX \in \mathcal{X}(T^rM)$, $M \in \mathcal{M}_n$, is an element from $\operatorname{Trans}_{Ex}(T^r|\mathcal{M}_n)$. The family is called the complete lifting of vector fields to $T^r|\mathcal{M}_n$, cf. [5].

Let us recall that the natural bundle $VT^r|\mathcal{M}_n$ is defined as follows. For every $M\in\mathcal{M}_n$ $VT^rM\to M$ is the vertical bundle of $p_M^{T^r}:T^rM\to M$ i.e. $VT^rM:=\ker(dp_M^{T^r})\subset TT^rM$. For every embedding $\varphi:M\to N$, $VT^r\varphi:VT^rM\to VT^rN$ is the restriction of $dT^r\varphi$. Since T^r is linear, we have the natural bundle isomorphism

$$(3.1) \quad J_M: T^{\tau}M \oplus_M T^{\tau}M \to VT^{\tau}M, \qquad J_M(u,w) = \frac{d}{dt}(u+tw)_{|t=0},$$

where $M \in \mathcal{M}_n$.

EXAMPLE 3.2 (Liouville vector field) For any $M \in \mathcal{M}_n$ we have the Liouville vector field $L_M \in \mathcal{X}(T^rM)$ given by $L_M(w) = J_M(w, w)$, $w \in T^rM$. Of course, the family L given by

$$\mathcal{X}(M) \ni X \to L_M \in \mathcal{X}(T^r M), \qquad M \in \mathcal{M}_n,$$

is an element from $\operatorname{Trans}_{Ex}(T^r|\mathcal{M}_n)$.

EXAMPLE 3.3 Let $D = \{D_M\} \in \text{Trans}(T^r | \mathcal{M}_n)$ be a natural transformation transforming vector fields into sections of $T^r | \mathcal{M}_n$ (see Section 2). Then we define the family $D_M^V : \mathcal{X}(M) \to \mathcal{X}(T^r M)$, $M \in \mathcal{M}_n$, by

$$D_M^V(X)(w) = J_M(w, D_M(X)(p_M^{T^r}(w))), \qquad w \in T^r M.$$

It is easy to verify that $D^{\mathcal{V}} = \{D_M^{\mathcal{V}}\} \in \operatorname{Trans}_{Ex}(T^r|\mathcal{M}_n)$. (The regularity of $D^{\mathcal{V}}$ is a consequence of Corollary 2.2.)

We have the following simple corollary.

COROLLARY 3.1. The transformations $D^V, ..., D^V, L, T^r$ (D is as in Example 2.2.) are linearly independent in $Trans_{Ex}(T^r|\mathcal{M}_n)$.

Now, we formulate the following classification theorem.

THEROM 3.1. Assume that $n \geq 2$. Then the natural base-extending transformations $T^r, L, D^V, ..., D^V$ form a basis of $\text{Trans}_{Ex}(T^r | \mathcal{M}_n)$.

REMARK. In [13], M. SEKIZAWA proved this theorem for r=1. The proof of the theorem for r=2 is given by M. DOUPOVEC, cf. [2].

The proof of Theorem 3.1 is given in Section 6.

4 - Decomposition lemma

The purpose of this section is to prove the following lemma.

LEMMA 4.1 (DECOMPOSITION LEMMA). Let $\mathcal{D} \in \operatorname{Trans}_{Ex}(T^r|\mathcal{M}_n)$, $r \geq 2$. Then there exist $\lambda, \mu \in \mathbb{R}$ and $D \in \operatorname{Trans}(T^r|\mathcal{M}_n)$ such that:

$$(4.1) dp_{\mathbb{R}^n}^{T^r} \circ \mathcal{D}_{\mathbb{R}^n}^*(\partial_1) | T_0^r \mathbb{R}^n = 0,$$

(4.2)
$$\mathcal{D}_{\mathbb{R}^n}^*(\partial_1)(0) = 0, \qquad (0 \in T_0^r \mathbb{R}^n)$$

$$\mathcal{D}_{\mathbb{R}^n}^{\bullet}(0)|T_0^r\mathbb{R}^n=0,$$

where $\mathcal{D}^* = \mathcal{D} - \lambda T^r - \mu L - D^V$ (T^r, L, D^V are described in Section 3).

PROOF. Consider the map

$$g: \mathbb{R} \times T_0^r \mathbb{R}^n \to T_0 \mathbb{R}^n, \qquad g(t, w) = dp_{\mathbb{R}^n}^{r^r} \circ \mathcal{D}_{\mathbb{R}^n}(t\partial_1)(w),$$

 $t \in \mathbb{R}$, $w \in T_0^{\tau} \mathbb{R}^n$. Using the regularity condition we see that g is of class C^{∞} . It follows from the naturality condition that for all $\tau \in \mathbb{R} - \{0\}$ we have

$$g(\tau t, B(\tau)(w)) = \tau g(t, w),$$

where $B(\tau) = T_0^r(\tau \operatorname{id}) \in \operatorname{End}(T_0^r\mathbb{R}^n)$. Therefore

$$g(t,w) = \frac{d}{d\tau}g(\tau t, B(\tau)(w))_{|\tau=0} = d_{(0,0)}g(t, B'(0)(w))$$

i.e. g is linear.

It is obvious that the family

$$C_M: \mathcal{X}(M) \to \mathcal{X}(M), \qquad C_M(X) = dp_M^{T^r} \circ \mathcal{D}_M(X) \circ 0_M, \qquad M \in \mathcal{M}_n,$$

 $(0_M: M \to T^r M)$ is the 0-section) is an element of $\operatorname{Trans}(T|\mathcal{M}_n)$, and then it follows from Corollary 2.1 that there exists $\lambda \in \mathbb{R}$ such that $C_M = \lambda \operatorname{id}_{X(M)}$ for any $M \in \mathcal{M}_n$. In particular, $g(1,0) = \lambda \partial_1(0)$.

On the other hand the family

$$A_M: T^rM \to TM, \qquad A_M(w) = dp_M^{T^r} \circ \mathcal{D}_M(0)(w), \qquad M \in \mathcal{M}_n,$$

is a natural transformation of $T^r|\mathcal{M}_n$ into $T|\mathcal{M}_n$ i.e. $A_M(w)=0$ for any $M\in\mathcal{M}_n$ and $w\in T^rM$, because of Corollary 1.1. Then g(0,.)=0.

Therefore $\mathcal{D} - \lambda T^r \in \operatorname{Trans}_{Ex}(T^r | \mathcal{M}_n)$ satisfies the equalities

$$(4.4) dp_{\mathbf{R}^n}^{T^r} \circ (\mathcal{D} - \lambda T^r)_{\mathbf{R}^n}(\partial_1)(w) = g(1, w) - \lambda \partial_1(0) = 0$$

for any $w \in T_0^r \mathbb{R}^n$.

It follows from (4.4) and Lemma 3.2 that

$$\operatorname{im}(\mathcal{D} - \lambda T^r)_M(X) \subset V T^r M$$

for any $X \in \mathcal{X}(M)$ and $M \in \mathcal{M}_n$. We can therefore define a natural transformation of $T^r | \mathcal{M}_n$ into itself by

$$B_M: T^rM \to T^rM, \qquad B_M(w) = q_M \circ J_M^{-1} \circ (\mathcal{D} - \lambda T^r)_M(0)(w),$$

where $q_M: T^rM \oplus_M T^rM \to T^rM$ is the projection onto second factor and $J_M: T^rM \oplus_M T^rM \to VT^rM$ is defined in (3.1). We can also define $D \in \text{Trans}(T^r|\mathcal{M}_n)$ by

$$D_M: \mathcal{X}(M) \to \Gamma T^r M, \qquad D_M(X) = q_M \circ J_M^{-1} \circ (\mathcal{D} - \lambda T^r)_M(X) \circ 0_M.$$

By Proposition 1.2 there exists $\mu \in \mathbb{R}$ such that

$$B_M(w) = \mu w$$

for every $w \in T^{\tau}M$ and $M \in \mathcal{M}_n$.

We prove that λ, μ, D satisfy the conditions of the lemma. It follows from the definitions of L and D^V (see Examples 3.2 and 3.3) and from (4.4) that

$$dp_{\mathbb{R}^n}^{T^r} \circ \mathcal{D}_{\mathbb{R}^n}^{\bullet}(\partial_1)(w) = 0$$

for every $w \in T_0^r \mathbb{R}^n$, i.e. \mathcal{D}^* satisfies the condition (4.1). From the definitions of D, D^V and L it follows that

$$D_{\mathbb{R}^n}^V(\partial_1)(0) = (\mathcal{D} - \lambda T^r)_{\mathbb{R}^n}(\partial_1)(0)$$

and $L_{\mathbb{R}^n}(\partial_1)(0) = 0$, and hence $\mathcal{D}_{\mathbb{R}^n}^{\bullet}(\partial_1)(0) = 0$, i.e. \mathcal{D}^{\bullet} satisfies the condition (4.2). From the condition (4.1) and Lemma 3.2 we deduce that $\mathcal{D}_{\mathbb{R}^n}^{\bullet}(0)(w) \in VT^r\mathbb{R}^n$ for any $w \in T_0^r\mathbb{R}^n$. From Corollary 2.2 we get that $\mathcal{D}_{\mathbb{R}^n}(0)(0) = 0$. Hence

$$q_{\mathbb{R}^n} \circ J_{\mathbb{R}^n}^{-1} \circ \mathcal{D}_{\mathbb{R}^n}^*(0)(w) = B_{\mathbb{R}^n}(w) - \mu w = 0$$

for any $w \in T_0^r \mathbb{R}^n$. Therefore \mathcal{D}^* satisfies Condition (4.3).

5 - An algebraic lemma

From now on we use the following notation. We fix three positive integers n, r, m. Let

(5.1)
$$S = \{\alpha = (\alpha_1, ..., \alpha_n) \in (\mathbb{N} \cup \{0\})^n : 1 \le |\alpha| = \alpha_1 + ... + \alpha_n \le r\}$$

and

$$(5.2) q = \operatorname{card}(S).$$

Let $x^i: \mathbb{R}^n \to \mathbb{R}$ (i = 1, ..., n) be the projection onto i-th factor. Similarly, let $X^{\alpha}: \mathbb{R}^q \to \mathbb{R}$, $(\alpha \in S)$ be the projection onto $\alpha - th$ factor. For every $\alpha \in S$ we define the map

$$(5.3) x^{\alpha}: \mathbb{R}^n \to \mathbb{R}, x^{\alpha} = (x^1)^{\alpha_1}...(x^n)^{\alpha_n}.$$

Similarly, for every $\Psi = (\Psi_{\alpha}; \alpha \in S) \in (\mathbb{N} \cup \{0\})^q$ we define the map

(5.4)
$$X^{\Psi}: \mathbb{R}^{q} \to \mathbb{R}, \qquad X^{\Psi} = \prod_{\alpha \in S} (X^{\alpha})^{\Psi_{\alpha}}.$$

Let Ω be the linear isomorphism

(5.5)
$$\Omega: T_0^r \mathbb{R}^n \to \mathbb{R}^q, \qquad \Omega(w) = (w(j_0^r x^\alpha); \alpha \in S).$$

Given $l \in \mathbb{N}$ and $i \in \{1, ..., n\}$ let $\varphi_l^i : \mathbb{R}^n \to \mathbb{R}^n$ be the map defined by

(5.6)
$$\varphi_l^i(x) = x + (x^n)^l e_i,$$

where $x = (x^1, ..., x^n) \in \mathbb{R}^n$ and $e_j = (0, ..., 1, ..., 0) \in \mathbb{R}^n$, 1 in j - th position.

The purpose of this section is to prove the following algebraic lemma.

LEMMA 5.1. Let $h: \mathbb{R}^q \to \mathbb{R}^m$ be a polynomial map such that

$$\frac{\partial}{\partial X^{\beta}}h = 0 \quad and \quad \frac{\partial}{\partial X^{\beta}}(h \circ \Omega \circ T_0^r \varphi_l^i \circ \Omega^{-1}) = 0$$

for all $\beta \in S$ with $|\beta| = r$ and all integers $l \geq 2$, $i \in \{1, ..., n\}$. Then h = const.

PROOF. Suppose that $h \neq const$. Then there exists $i_0 \in \{1, ..., n\}$ such that

(5.7)
$$B = \{\alpha \in S : \frac{\partial}{\partial X^{\alpha}} h \neq 0 \quad \text{and} \quad \alpha_{i_0} \neq 0\} \neq \emptyset.$$

Let

$$(5.8) l_0 = \max\{r+1-|\alpha|: \alpha \in B\}$$

and

(5.9)
$$C = \{\alpha \in B : r+1-|\alpha| = l_0\}.$$

It is clear that $l_0 \geq 2$. Let

$$(5.10) \quad E = \{ \Psi = (\Psi_{\alpha}; \alpha \in S) \in (\mathbb{N} \cup \{0\})^q : \Psi_{\alpha} = 0, \quad \text{if} \quad \frac{\partial}{\partial X^{\alpha}} h = 0 \}$$

and

$$(5.11) H = \{ \Psi \in E : \Psi_{\alpha} = 0, \quad if \quad \alpha \in C \}.$$

It is obvious that for every $\Psi = (\Psi_{\alpha} : \alpha \in S) \in (\mathbb{N} \cup \{0\})^q$ there exists one and only one $\Psi^* \in (\mathbb{N} \cup \{0\})^q$ such that

(5.12)
$$X^{\Psi^*} = \prod_{\alpha \in C} (X^{\alpha - e_{i_0} + l_0 e_n})^{\Psi_\alpha} \prod_{\alpha \in S - C} (X^{\alpha})^{\Psi_\alpha}.$$

Now, we need the following two lemmas.

LEMMA 5.2. The function

$$E\ni\Psi\to\Psi^*\in(\mathbb{N}\cup\{0\})^q$$

is injective.

LEMMA 5.3. Let $\alpha \in S$ be such that $\frac{\partial}{\partial X^{\alpha}} h \neq 0$. Then

$$X^{\alpha}\circ\Omega\circ T_0^{\tau}\varphi_{l_0}^{i_0}\circ\Omega^{-1}=\left\{\begin{array}{ll}X^{\alpha}, & \text{if }\alpha\in S-C\\ X^{\alpha}+\alpha_{i_0}X^{\alpha-e_{i_0}+l_0e_n}, & \text{if }\alpha\in C\end{array}\right.$$

We continue the proof of Lemma 5.1. It follows from Lemma 5.3 that

$$(5.13) X^{\Psi} \circ \Omega \circ T_0^r \varphi_{l_0}^{i_0} \circ \Omega^{-1} =$$

$$\begin{cases} X^{\Psi}, & \text{if } \Psi \in H \\ X^{\Psi} + \prod_{\alpha \in C, \Psi_{\alpha} \neq 0} (\alpha_{i_0})^{\Psi_{\alpha}} X^{\Psi^*} + ..., & \text{if } \Psi \in E - H, \end{cases}$$

where the dots denote a polynomial, each term of which contains at last one of the X^{α} with $\alpha \in C$.

Of course,

$$h = \sum_{\Psi \in E} X^{\Psi} a_{\Psi},$$

where $a_{\Psi} \in \mathbb{R}^m$ are vectors. It is clear that $a_{\Psi} \neq 0$ for some $\Psi \in E - H$. It follows from the condition (5.13) that

$$h\circ\Omega\circ T_0^r\varphi_{l_0}^{i_0}\circ\Omega^{-1}=h+\sum_{\Psi\in E-H}\prod_{\alpha\in C,\Psi_\alpha\neq 0}(\alpha_{i_0})^{\Psi_\alpha}X^{\Psi^\bullet}a_\Psi+...,$$

where the dots denote a polynomial, each term of which contains at last one of the X^{α} with $\alpha \in C$. We see that for every $\Psi \in E - H$, $X^{\Psi^{\sigma}}$ is independent of X^{α} for all $\alpha \in C$ and it contains at last one of the X^{γ} with $\gamma \in S$, $|\gamma| = r$, for if $\alpha \in C$, then $|\alpha| \leq r - 1$ and $|\alpha - e_{i_0} + l_0 e_n| = r$. Then (owing to the assumptions of the lemma) we have

$$\sum_{\Psi \in E-H} \prod_{\alpha \in C. \Psi_{\alpha} \neq 0} (\alpha_{i_0})^{\Psi_{\alpha}} X^{\Psi^{\bullet}} a_{\Psi} = 0.$$

Hence $a_{\Psi} = 0$ for all $\Psi \in E - H$, because of Lemma 5.2. This is a contradiction. Therefore h = const.

It remains to prove Lemmas 5.2 and 5.3.

PROOF OF LEMMA 5.2 Let $\Psi \in E$. We see that if $\alpha \in C$, then $|\alpha| \leq r-1$ and $|\alpha-e_{i_0}+l_0e_n|=r$, and then $\alpha-e_{i_0}+l_0e_n \in S-C$. Therefore

$$\Psi_{\beta}^{\star} = \left\{ \begin{array}{ll} \Psi_{\beta}, & \text{if } \beta \in S - C, \ |\beta| \leq r - 1 \\ \Psi_{\alpha} + \Psi_{\beta}, & \text{if } \beta = \alpha - e_{i_0} + l_0 e_n \text{ for some } \alpha \in C \end{array} \right.$$

because of (5.12). On the other hand, if $\beta \in S$, $|\beta| = r$, then $\Psi_{\beta} = 0$, because of (5.10). Hence $\Psi \in E$ is uniquely determined by Ψ^* .

PROOF OF LEMMA 5.3 Let $(j_0^r x^{\beta})^*$, $\beta \in S$ be the basis of $T_0^r \mathbb{R}^n$ dual to $j_0^r x^{\beta}$, $\beta \in S$. Then for every $(Y^{\beta}; \beta \in S) \in \mathbb{R}^q$ we have

$$\begin{split} X^{\alpha} \circ \Omega \circ T_0^r \varphi_{l_0}^{i_0} \circ \Omega^{-1}(Y^{\beta}; \beta \in S) \\ &= T_0^r \varphi_{l_0}^{i_0}(\Omega^{-1}(Y^{\beta}; \beta \in S))(j_0^r x^{\alpha}) \\ &= \Omega^{-1}(Y^{\beta}; \beta \in S)(j_0^r (x^{\alpha} \circ \varphi_{l_0}^{i_0})) \\ &= \sum_{\beta \in S} Y^{\beta}(j_0^r x^{\beta})^* (j_0^r (x^{\alpha} \circ \varphi_{l_0}^{i_0})) \\ &= \left\{ \begin{array}{ll} Y^{\alpha}, & \text{if } \alpha \in S - C \\ Y^{\alpha} + \alpha_{i_0} Y^{\alpha - e_{i_0} + l_0 e_n}, & \text{if } \alpha \in C \end{array} \right. \end{split}$$

as

$$(5.14) j_0^r(x^{\alpha} \circ \varphi_{i_0}^{i_0}) = \begin{cases} j_0^r x^{\alpha}, & \text{if } \alpha \in S - C \\ j_0^r x^{\alpha} + \alpha_{i_0} j_0^r (x^{\alpha - e_{i_0} + l_0 e_n}), & \text{if } \alpha \in C \end{cases}$$

It remains to prove the formula (5.14). If $\alpha_{i_0} = 0$, then $x^{\alpha} \circ \varphi_{i_0}^{i_0} = x^{\alpha}$ and $\alpha \in S - C$. So, we assume that $\alpha_{i_0} \neq 0$. Then

$$x^{\alpha} \circ \varphi_{l_0}^{i_0} = x^{\alpha} + \alpha_{i_0} x^{\alpha - e_{i_0} + l_0 e_n} + \sum_{k=2}^{\alpha_{i_0}} C_k^{\alpha_{i_0}} x^{\alpha - k e_{i_0} + k l_0 e_n}$$

because of the Newton formula. If $\alpha \in S - C$, then $\alpha \in B - C$ i.e. $l_0 > r + 1 - |\alpha|$, and then

$$|\alpha - ke_{i_0} + l_0ke_n| = |\alpha| - k + kl_0 > r + (l_0 - 1)(k - 1) \ge r$$

for $k=1,...,\alpha_{i_0}$, because of $l_0 \geq 2$. If $\alpha \in C$, then $l_0=r+1-|\alpha|$, and then $|\alpha-ke_{i_0}+kl_0e_n|>r$ for $k=2,...,\alpha_{i_0}$ and $|\alpha-e_{i_0}+l_0e_n|=r$. These facts complete the proof of Lemma 5.3.

6 - Proof of Theorem 3.1

From Corollary 3.1 and Lemma 4.1 it follows that Theorem 3.1 will be demonstrated after proving the following proposition.

PROPOSITION 6.1. Let $\mathcal{D}^{\bullet} \in \operatorname{Trans}_{Ex}(T^r|\mathcal{M}_n)$ be a natural base-extending transformation satisfying the conditions (4.1), (4.2) and (4.3). Then $\mathcal{D}^{\bullet} = 0$.

PROOF. Let $S, q, x^i, X^{\alpha}, \Omega$ be as in Section 5. Using the condition (4.1) and Lemma 3.2 one can define

(6.1)
$$H: \mathbb{R} \times \mathbb{R}^q \to \mathbb{R}^q, \qquad H(t, X) := \Omega \circ q_{\mathbb{R}^n} \circ J_{\mathbb{R}^n}^{-1} \circ \mathcal{D}_{\mathbb{R}^n}^*(t\partial_1) \circ \Omega^{-1}(X),$$

where $J_M: T^rM \oplus_M T^rM \to VT^rM$ is the natural isomorphism given in (3.1) and $q_M: T^rM \oplus_M T^rM \to T^rM$ is the projection onto the second factor. It follows from the regularity condition that H is of class C^∞ . Using the naturality condition with respect to the homotheties $\tau \operatorname{id}_{\mathbb{R}^n}$, $\tau \in \mathbb{R}^n - \{0\}$, we see that for every $\tau \in \mathbb{R}^n - \{0\}$, $\alpha \in S$, $t \in \mathbb{R}$ and $(Y^\beta; \beta \in S) \in \mathbb{R}^q$ we have

(6.2)
$$\tau^{|\alpha|}H^{\alpha}(t,Y^{\beta};\beta\in S) = H^{\alpha}(\tau t,\tau^{|\beta|}Y^{\beta};\beta\in S),$$

where H^{α} is defined by $H = (H^{\alpha}; \alpha \in S)$. On the other hand it follows from the condition (4.3) that

(6.3)
$$H^{\alpha}(0,.)=0, \qquad \alpha \in S.$$

To discuss (6.2), we need the following simple property of globally defined smooth homogeneous functions, a proof of which can be found e.g. in [8].

LEMMA 6.1. Let $g(x^i, y^p, ..., z^t)$ be a smooth function defined on $\mathbb{R}^m \times \mathbb{R}^n \times ... \times \mathbb{R}^p$, and let a > 0, b > 0, ..., c > 0, d be real numbers such that

(6.4)
$$k^{d}g(x^{i}, y^{p}, ..., z^{t}) = g(k^{a}x^{i}, k^{b}y^{p}, ..., k^{c}z^{t})$$

for every real k > 0. Then g is a sum of polynomials of degrees ζ in x^i , η in $y^p, ..., \xi$ in z^t satisfying

(6.5)
$$a\zeta + b\eta + ... + c\xi = d.$$

If there are no non-negative integers $\zeta, \eta, ..., \xi$ with the property (6.5), then g is the zero function.

According to (6.3) and to this lemma we see that H^{α} is a polynomial in t and X^{β} , where $\beta \in S$ and $|\beta| \leq |\alpha| - 1$. (H^{α} is independent of the X^{β} , $\beta \in S$, $|\beta| \geq |\alpha|$.) Therefore the map

$$(6.6) h := H(1,.) : \mathbb{R}^q \to \mathbb{R}^q$$

is a polynomial such that $\frac{\partial}{\partial X^{\alpha}}h = 0$ for every $\alpha \in S$ with $|\alpha| = r$.

Let $\varphi_i^i: \mathbb{R}^n \to \mathbb{R}^n$ be given by (5.6). Then φ_i^i is a diffeomorphism of an open neighbourhood V_l^i at $0 \in \mathbb{R}^n$. Since $n \geq 2$, $\varphi_l^i | V_l^i$ preserves $\operatorname{germ}_0(\partial_1)$, and then

$$\Omega \circ T_0^r \varphi_i^i \circ \Omega^{-1} \circ h = h \circ \Omega \circ T_0^r \varphi_i^i \circ \Omega^{-1}$$

because of the naturality condition. Hence

$$\frac{\partial}{\partial X^{\alpha}}(h\circ\Omega\circ T_{0}^{r}\varphi_{l}^{i}\circ\Omega^{-1})=0$$

for all $\alpha \in S$ with $|\alpha| = r$ and all integers $l \geq 2$, $i \in \{1, ..., n\}$. It follows from Lemma 5.1 that h = const.

It follows from the condition (4.2) that h(0) = 0. Then h = 0, i.e. $\mathcal{D}^*(\partial_1)|T_0^r\mathbb{R}^n = 0$. Therefore $\mathcal{D}^* = 0$, because of Lemma 3.1.

Acknowledgements

I would like to express my deep gratitude to Prof. I. Kolar who got me interested in the classification of natural transformations, with whom I discussed the problem and whose written remarks helped me improve this paper.

I am also very grateful to Prof. J. Gancarzewicz who helped me prepare the paper.

REFERENCES

- [1] M.F. ATIYACH R. BOTT V.K. PATODI: On the heat equation and the index theorem, Invent. Math. 19 (1973), 279-330.
- [2] M. DOUPOVEC: Natural operators transforming vector fields to the second order tangent bundle, Cas. pest. mat. 115 (1990), 64-72.
- [3] D.B.A. EPSTEIN: Natural tensors on Riemannian manifolds, J. Differential Geometry 10 (1975), 631-645.
- [4] J. GANCARZEWICZ: Horizontal lifts of linear connections to the natural vector bundle, In: Proc. Inter. Coll. Diff. Geometry, Santiago de Compostela (Spain). Research Notes in Math. 121, 318-334, Boston: Pitman. 1985.
- [5] J. GANCARZEWICZ: Liftings of functions and vector fields to natural bundles, Warszawa 1983, Dissertationes Mathematicae CCXII.
- [6] G. KAINZ P.W. MICHOR: Natural transformations in differential geometry, Czechoslovak Math. J. (37) 112 (1987), 584-607.
- [7] I. KOLAR: On the natural operators on vector fields, Annals of Global Anal. and Geom. 6 (1988), 109-117.
- [8] I. KOLAR P.W. MICHOR J. SLOVAK: Natural Operations in Differential Geometry, in press.
- [9] I. KOLAR J. SLOVAK: On the geometric functors on manifolds, Proceedings of the Winter School on Geometry and Physics, Srni 1988, Suppl. Rendiconti Circolo Mat. Palermo, Serie II 21 (1989), 223-233.
- [10] I. KOLAR G. VOSMANSKA: Natural transformations of higher order tangent bundles and jet spaces, Cas. pest. mat. 114 (1989), 181-186.
- [11] A. MORIMOTO: Prolongations of connections to bundles of infinitely near points, J. Diff. Geometry 11 (1976), 479-498.
- [12] A. NIJENHUIS: Natural bundles and their general properties, in Differential Geometry in Honor of K. Yano, Kinokuniya, Tokio, (1972), 317-343.
- [13] M. Sekizawa: Natural transformations of vector fields on manifolds to vector fields on tangent bundles, Tsukuba J. Math. 12 (1988), 115-128.
- [14] A. Zajtz: Foundations of differential geometry of natural bundles, Caracas, 1984.

Lavoro pervenuto alla redazione il 31 gennaio 1992 ed accettato per la pubblicazione il 6 febbraio 1992 su parere favorevole di P. Benvenuti e di M. Modugno

INDIRIZZO DELL'AUTORE:

Włodzimierz M. Mikulski - Institute of Mathematics - Jagellonian University - Kraków, Reymonta 4 - (Poland)