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Some natural operations on vector fields

W.M. MIKULSKI

RIASSUNTO - Per ogni funtore H viene determinata una biiezione tra le fibre di
H su 0 € R e l'insieme delle trasformazioni naturali che trasformano campi vettoriali
in sezioni di H. Vengono descritte esplicitamente tutte le trasformazioni, a rileva-
mento naturale, della base, che trasformano campi vettoriali su varietd n-dimensionali
in campi vettoriali sul funtore lineare fibrato tangente di ordine r sulle varietd n-
dimensionali, purché risultin > 2.

ABSTRACT - For every bundle functor H we determine a bijection between the fibre
of H over 0 € R and the set of all natural transformations transforming vector fields
into sections of H. We describe ezplicitely all natural base-extending transformations
transforming vector fields on n-manifolds into vector fields on the linear tangent bundle
Sfunctor of order r over n-manifolds, provided n > 2.
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base-extending transformation.

A.M.S. CLASSIFICATION: 58A20 - 53A55

— Introduction

A natural bundle was introduced by A. NIJENHUIS [12], as a modern
approach to the classical theory of geometrical objects. According to him
geometrical objects on a manifold M are sections of some natural bundle
FM over M.

Let G be a natural bundle. In differential geometry we studied many
geometric (canonical) constructions transforming geometrical objects on
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M into geometrical objects on GM. Geometrical objects on M are sec-
tions of a natural bundle FM — M and geometrical objects on GM are
sections of a natural bundle H(GM) — GM. If we denote by 'F M the
set of sections of FM — M, then a construction (transformation)

Dy : TFM — TH(GM)

is called "natural” or ”canonical” if for any embedding ¢ : M — N and
sections 0, € 'FM, g, € TFN which are ¢-conjugate (ie. Fpoog, =
o2 0 ) the sections Dyps(o1) and Dy(o7) are Gyp-conjugate, c.f. [8]. The
precise definitions will be recalled in Sections 2 and 3.

~ For example, the construction associating to any metric tensor on M
its curvature tensor is natural. (Here FM is the natural bundle of metric
tensors on M, GM = M and HM is the natural bundle of tensor fields
of type (0,4).) Natural constructions with GM = M have been studied
by many authors, cf. [1],[3],[6],[14] etc.

In the case of a vector fibre bundle GM, J. GANCARZEWICZ (4],
constructed for any o € TGM a canonical vertical vector field 0¥ on GM
called the vertical lift of o by the formula ¢V (y) = ¥,(c(n(y))), where
Yy : GryM — V,GM = Ty (Gr(,)M) is the canonical isomorphism.

Many of "natural” constructions were studied in the case of a Weil
functor G. G is called a Weil functor if G(M, x M) = G(M;) x G(Ma),
cf. [6]. For example, I. KOLAR [7], gives a complete characterization
of natural transformations of vector fields on M (i.e. FM = TM) into
vector fields on GM (i.e. H(GM) = T(GM) ), where G is a Weil functor.

In this paper we describe (completely) how for any vector field X on
M one can construct canonically a vector field Dy (X) on the linear r-th
order tangent bundle 7™M = (J"(M,R)o)* (i.e. we deal with canonical
constructions, where FM = TM, GM =T"™M and H(GM) = T(T" M)).
If G is a natural bundle then for any vector field X on M we can define
a vector field GX on GM (called the complete lift of X to GM) via
prolongations of local flows. If ¢, is a local flow of X, then Gy, is a
local flow of GX. We prove that in the case of GM = T"M of vector
tangent bundle of order r any natural (base-extending) transformation
D of vector fields from M to vector fields on 7™M can be written in the

form

(%) Da(X) = XX + pLas + (Du(X)),
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if dim(M) > 2, where A\, u € R, Ly, is the Liouville vector field on T"M
defined by the fibre homotheties, Dy (X) € TT"M is a canonical (with
respect to X) section and (D (X)) denotes the vertical lift of Dy (X).

(s)
Moreover in Section 2 we define r canonical sections Dy (X) € TT™M,
s = 1,..,r, and we prove that Dp(X) is a linear combination of the

(s)
Dy (X).

The main difficulty in proving the formula (*) is to show Lemmas 4.1
and 5.1. It seems that our methods also work to prove some form of the
formula (*) for many other bundle functors G.

Section 2 can be read independently. In Section 2 we describe how for
any vector field X on M (i.e. FM = TM) one can construct canonically
a geometrical object Dy (X) € THM on M (i.e. GM = M ), where H is
a bundle functor defined on the category of manifolds with smooth maps.
We determine a bijection between the fibre of H over 0 € IR and the set
of all such constructions.

1 — Bundle functors

All manifolds in this paper are assumed to be paracompact, without
boundary, second countable, finite dimensional and of class C*. Maps
between manifolds will be assumed to be C™. Let M be the category of
all manifolds and all maps, FM be the category of all fibered manifolds
and their morphisms and B : M — M be the base functor. Given
a functor H : M — FM satisfying B o H = id,, we denote by p¥ :
HM — M its value on a manifold M and by H.f : H:M — Hy;)N the
restriction of its value Hf : HM — HN in f : M — N to the fibres of
HM over z and of HN over f(z), x € M.

DEFINITION 1.1. ([9]) A bundle functor is a functor H : M — FM
satisfying B o H = idy and the localization condition: if i : U - M
is the inclusion of an open subset, then Hi : HU — (pi)~'(U) is a
diffeomorphism. We say that a bundle functor H is linear if H : M —
VB, where VB C FM is the category of all vector bundles and their
vector bundle morphisms.
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REMARK. If we replace (in Definition 1.1 ) M by the category M,, of
all n-dimensional manifolds and their embeddings we obtain the concept
of natural bundles over n-manifolds in the sense of A. NIJENHUIS [12].

Hence the restriction of a bundle functor to M, is a natural bundle over
n-manifolds.

ExaMpPLE 1.1. Let r > 1 be an integer. Let T™M = J"(M,R), be
the space of all r-jets of a manifold M into IR with target 0. Since R is a
vector space, T™* M has a canonical structure of a vector bundle over M.
The dual vector bundle T™M := (T"*M)" is called the r-th order tangent
bundle of M. Given a map f : M — N, the jet composition V — VojIf,
V € Tf(,)N, determines a linear map T} )N — T7*M. The dual map
T;M — Tf,yN is denoted by T7 f and called the r-th order tangent map
of f at . This defines a functor T7 : M — VB. Of course, T” is a linear
bundle functor. Functor 77 is naturally isomorphic with the tangent
bundle functor T. (The functor T associates to each manifold M the
tangent bundle TM of M and to each map f : M — N the differential
map df : TM — TN of f) A natural isomorphism I, : TM — T'M,
M € M, is given by Ins(v)(Gly) = vy, ve€ T M, jlye T*M, z e M.

The Weil functors of A-velocities, cf. [11], are also bundle functors.

Let M, N, P be manifolds. A parametrized family of maps f, :
M — N, p € P is said to be smoothly parametrized if the resulting map
f: M x P — N is of class C*. We have the following proposition.

PRroPOSITION 1.1. ([9]) Every bundle functor H : M — FM satis-
fies the regularity condition: if f : M x P — N is a smoothly parametrized
family, then the family H(f,) : HM — HN , p € P, is also smoothly
parametrized.

Let us recall that a natural transformation between two natural bun-
dles H,, Hy : M, — FM is a family of maps Ay : HLM — H.M, M €
M., such that (a) for every embedding ¢ : M — N of two n—mamfolds
Hapo Ay = Ano Hyp, and (D) for every M € M, PM oAy = pj. Since
T™|M,, is a functor in the category VB, for every k € IR the homotheties

(1) k) : T"TM - T™M, X kX

represent natural transformations of 77| M, into itself. In [10], I. KOLAR
and G. VOSMANSKA proved the following proposition.
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PROPOSITION 1.2. Let Ay : T°M — T™M, M € M,,, be a natural
transformation of T"|M,, into itself. Then there ezists k € R such that
Ay = (k)yy for el M € M,,.

From Proposition 1.2 we obtain the following corollary.

COROLLARY 1.1. Ifr > 2, then each natural transformation Ay :
T°"M - TM, M € M,, is given by Am(w) =0.

PROOF. We have a natural injection ip : T'M — T™M, M € M,
given by iy (w)(jIv) = w(jly), w € TiM, jiy € T:°M, z € M. Let
Iy : TM — T'M, M € M, be the natural isomorphism described in
Example 1.1. Suppose that Ay : T"M — TM, M € M,, is a natural
transformation. Then iy, 0 Iy 0 Ay is a natural transformation of T7|M,,
into itself. If » > 2, then iy o Iy; 0 Ay is not surjective, and then (by
Proposition 1.2) it is equal to (0)},. Therefore Ay(w) = 0 for every
weT M. |

2 — Natural transformations transforming vector fields into sec-
tions of some natural bundles

Let H : M, — FM be a natural bundle. For every M € M,, we
denote by X (M) the vector space of all vector fields on M and by THM
the set of all sections of class C™ of the bundle HM — M. We introduce

the following definition.
DEFINITION 2.1. A family D = {Dun} of functions
Dy : X(M)-THM, MeM,,
is called a natural transformation transforming vector fields into sections
of H iff the following naturality condition is satisfied: for every M,N €

M., X € X(M), Y € X(N) and every embedding ¢ : M — N the
assumption dp o X =Y oy implies Hpo Dy(X) = Dn(Y) 0 .
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REMARK. (a)Every natural transformation D transforming vector
fields into sections of H satisfies the following localization condition: if
X,Y € X(M), M € M,,, are two vector fields such that X|U = Y|U on
an open subset, then Dp(X)|U = Dy (Y)|U (for, there exists Z € X(U)
such that dic Z = X o4 =Y o4, wherei: U —» M is the inclusion, and
then DM(X) ci=Hio Du(Z) = DM(Y) O'I.)

(b) The relationships between Definition 2.1 and the Category The-
ory are following. Given a natural bundle H : M, - FM we de-
fine a functor I';,.H : M, — Sets as follows. For every M € M,,
T H(M) is the set of all locally defined C*-sections of the bundle
HM — M. For every embedding ¢ : M — N of two n-manifolds,
TiocH(p) 1= @. : Tioe H(M) — T'\oH(N), p.(0c) = Hpocoyp™l If
D is a natural transformation transforming vector fields into sections
of H , then there exists one and only one natural transformation (of
functors) D : Tioe(T|Mn) — TiocH such that D|X(M) = Dy for ev-
ery M € M,. ( For every X € [ioeTM Dy(X) : dom(X) — HM
is defined by Dy (X)(y) = Du(X)(y), where X € Xo(M)is such that
germ, (X) = germ, (X).) On the other hand for every natural transfor-
mation (of functors) D: Tioe(T|Mp) — TiocH the family Dy = DlX (M),
M € M,, is a natural transformation transforming vector fields into sec-
tions of H.

‘We have the following lemma.

LEMMA 2.1. Let D, D* be two natural transformations transforming
vector fields into sections of H such that Dgrn(0,)(0) = Dgn(0:)(0), where
8, = 32 is the canonical vector field on R". Then D = D".

PRrROOF. Let X € X(M), M € M, and 2, € M. It is sufficient to
show that Dy (X)(zo) = Dy (X) (o).

Suppose that X(zo) # 0. Then there exists a chart ¢ on M about
zo such that ¢(zo) = 0,imp = R" and dp™' 00, = X o ¢! on some
open neighbourhood of 0. Using the naturality condition we deduce that
DM(X)(zo) = DFW(X)(-TO)-

Now, we do not assume that X(zo) # 0. There exist Y € X(M)
and two open subsets U,V C M such that Y(z) # 0 for any z € V,
X|U = Y|U and z, € cl(U)Ncl(V). Then D3, (X)|U = Dy, (Y)|U,
Du(XWU = Dy(Y)U and Dy(Y)IV = D3, (Y)|V.  Therefore
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Dy (X)(x0) = Diy (X) (o). g

We denote by Trans(H) the set of all natural transformations trans-
forming vector fields into sections of H. (Since every natural transforma-
tion D transforming vector fields into sections of H is uniquely determined
by Dgn, Trans(H) is a set.) If H : M, — VB, then Trans(H) has a
vector space structure defined as follows. For any D,, D, € Trans(H)
and A € R we define D, + Dz, AD, € Trans(H) to be the systems of
functions

(D1 + Dz)M H X(M) — I‘HM,
(D1 + D2)u(X) = (D1)m(X) + (D2)m(X)

(ADy)u : X(M) - THM,
(AD1)m(X) = M(D1)m (X)) .

The purpose of this section is to determine the set Trans(H|M,),
where H : M — FM is a bundle functor.

ExAMPLE 2.1 We denote by Ap(M) the set of all vector fields on M
with compact supports. Let H : M — FM be a bundle functor. For
any v € HyR and M € M, we define D}, : Xo(M) —» THM by

Dy (X)(y) = Ho(®))(w),

y € M, where &) : R — M is defined by & (t) = Exp(tX)(y). It follows
from Proposition 1.1 that D¥,(X) is of class C* for every X € Xo(M).
If X € %(M),Y € X(N) are two vector fields on n-manifolds and
¢ : M — N is an embedding such that dpoX = Yoy, then &Y, = po®)X
for any y € M, and then D¥(Y)op = Hpo Dy,(X). By the localization
condition of Definition 1.1 for any f : R — M, Hyf depends only on
germ, f. Then the family D® = {D3},} satisfies the following localization
condition: if X,Y € X (M), M € M, are two vector fields such that
X|U = Y|U on an open subset, then D}, (X)JU = Dy (Y)|U. We can
therefore define a family D}, : X(M) — THM, M € M, ss follows. For
any X € X(M) and y € M we put

D3y (X)(y) = D (X)(w),
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where X € Xo(M) is such that germy(f( ) = germ (X). It is clear that
the family D” = {D%,} is an element from Trans(H|M,).

The main result in this section is the following theorem.
THEOREM 2.1. The function
P: HyR — Trans(H|M,), P(v) = D*,

is a bijection. The inverse bijection is given by S(D) = Hq(Dr~(8,)(0)),
where ¢ : R™ — IR is the projection onto first factor. In particular, if H
is linear, then P is a linear isomorphism.

PROOF. If H is linear, then S is a linear map. We see that
So P(v) = Hg(D4n(6,)(0)) = Hgo Hy(R 3t — (t,0) e R"}(v) = v

for every v € HolR. Therefore S o P = id and Hgq(D}{n(61)(0)) = v
for every v € HplR. It remains to show that P oS = id. Consider
D € Trans(H|M,). Let v := S(D). We have to show that D = Po
S(D) = P(v) = D*. We see that

Hq(Dxn(8,)(0)) = v = $(D) = Hg(Drn(8:)(0))-

It is obvious that for all t € R — {0}, ¢, : R" — R", ¢(z?,...,z") =
(z*,t?, ...,tz") is a diffeomorphism preserving 8;. Therefore using the
naturality condition and Proposition 1.1 we get

Dgn(8)(0) = Hyp(Drn(81)(0)) — Hi o Hq(Dr»(8:)(0))
ast— 0, wherei: R - R" is given by i(y) = (y,0). Hence
Dgs(81)(0) = Hi o Hg(Dgn(81)(0))
= Hio H(D}n(8:)(0)) = D (8:)(0).

Then D = D¢, because of Lemma 2.1. g
From Theorem 2.1 we have the following simple corollary.

COROLLARY 2.1. Let D € Trans(T|M.,). Then there ezists A € R
such that Dy(X) = AX for any M € M, and X € X(M).
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PROOF. By Theorem 2.1, dimg (Trans(T|M,)) = dimg To)lR = 1. On
the other hand, for every A € R, the family Dy = Aidx(a), M € M, is
an element of Trans(T|M,,). 0

EEXAMPLE 2.2 For every s = 1,...,7, M € M,, X € X(M) and
y € M we have a linear map

(s)

Du(X)(y): T;"M =R,  j5(1) = X(y),
where X®) = Xo0Xo..0X (s —times). Hence for every s = 1,...,7,

O]
M € M, and X € X(M) we have a section Dy(X) € IT"M, y —
(2)
Dy (X)(y). It is easy to verify that for every s = 1,...,r the family

() (2)
DMX(M)—’FTFM, X—*DM(X), Me M,,

is an element of Trans(T"|M,). It is easy to verify that the natural
$)) (0]
transformations D, ..., D are linearly independent in Trans(7T7|M,,). On

the other hand dim(TyIR) = r. Therefore we have the following corollary
of Theorem 2.1.

(1) (r)
COROLLARY 2.2.  The natural transformations D,...,D described

above form a basis (over R) of Trans(T"|M,).

3 — Natural base-extending transformations transforming vec-
tor fields on n-manifolds into vector fields on T"|M,

We introduce the following definition.
DEeFINITION 3.1. A family D of functions
Dy : X(M) = X(T™M), M eM,,

is called a natural base-extending transformation transforming vector
fields on n-manifolds into vector fields on T"|M, iff the following two
conditions are satisfied:
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(a) (Naturality condition) for any M,N € M,, X € X(M), Y € X(N)
and any embedding p : M — N the assumption dpo X =Y oy implies
dT"p o Dpy{X) =Dn(Y) 0T, and
(b) (Regularity condition) if U is a manifold and X :UxM - TM is a
C*® map such that for everyt €U X,: M - TM, X,(y) = X(t,y) is a
vector field on M, then the mapping

UxT'M>3 (t,w) = Dy(X,)(w) eTT'M
is of class C*™.

Using similar arguments to these as in the proof of Lemma 2.1 we
obtain the following lemmas.

LEMMA 3.1.  Let D,D! be two natural base-ertending transfor-

mations transforming vector fields on n-manifolds into vector fields on
T"|M,, such that Drn(8;) = Dyn(0,) over 0 € R". Then D =D’

LEMMA 3.2.  Let D be a natural base-eztending transformation
transforming vector fields on n-manifolds into vector fields on T"| M,
such that

dpgn © Dra(6,)|TTR™ = 0.

Then for any M € My, € M and X € X(M) we have dpl; oDy (X) =0

over I.

Denote by Transg.(T7|M,) the set of all natural base-extending
transformations transforming vector fields on n-manifolds into vector
fields on T"|M,. For any D, D! € Transg,(T"|M,) and A € R define
D+ D!, AD € Transg,(T"|M,) to be the systems of functions

(D+DY)u : X(M) — X(T™M), (D+DY)u(X) = Du(X) + Dpy(X),

(AD)u : X(M) = X(T™M),  (AD)u(X) = A(Du(X)).

Then Transg.(T"|M,) is a vector space over R.
We have the following examples of natural base-extending transfor-

mations transforming vector fields on n-manifolds into vector fields on
T\ M,.
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ExampLE 3.1 (Complete lifting) Let X € X (M), M € M, Let us
recall that the complete lift 7"X € X(T™M) of X to T™M is the vector
field on T™ M satisfying the following condition: if {,} is a local flow of
X defined near y € M, then {T7¢,} is a local flow defining 77X over y. It
is easy to see that the family T given by X(M) 3> X — T"X € X(T™ M),
M € M,, is an element from Transg, (T7|M,). The family is called the
complete lifting of vector fields to T"|M,, cf. [5] .

Let us recall that the natural bundle VT"|M,, is defined as follows.
For every M € M, VT™M — M is the vertical bundleof pZ; : T"M — M
ie. VT"M := ker(dp};) C TT"M. For every embedding ¢ : M — N,
VI"p : VI"M — VT"N is the restriction of dT7y. Since T™ is linear,
we have the natural bundle isomorphism

d
(31) Ju:TTMouT™ M—VIM, Im(u,w) = E(u-{- tw)|e=0,

where M € M,,.

ExAMPLE 3.2 (Liouville vector field) For any M € M, we have
the Liouville vector field Ly € X(T"M) given by Ly(w) = Ju(w,w),
w € T"M. Of course, the family L given by

X(M)3 X — Ly € X(T"M), M e M,,

is an element from Transg.(T7|M.,).

ExAMPLE 3.3 Let D = {Dy} € Trans(T7|M,) be a natural trans-
formation transforming vector fields into sections of T7| M, (see Section
2). Then we define the family D}, : X(M) — X(T"M), M € M,, by

DY {(X)(w) = Ju(w, D (X) (P} (w))), weT™M.

It is easy to verify that DV = {D¥,} € Transg.(T"|M,). (The regularity
of DV is a consequence of Corollary 2.2.)

We have the following simple corollary.

W, ® (o)
COROLLARY 3.1. The transformations DY,...,DV, L,T" (D is as
in Ezample 2.2.) are linearly independent in Transg. (T"|M,).
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Now, we formulate the following classification theorem.
THEROM 3.1. Assume that n > 2. Then the natural base-exstending
(1) (r)
transformations T, L, DV, ..., DV form a basis of Transg.(T"|M,).

REMARK. In [13], M. SEKIZAWA proved this theorem for r = 1. The
proof of the theorem for 7 = 2 is given by M. DOUPOVEC, cf. [2].
The proof of Theorem 3.1 is given in Section 6.

4 — Decomposition lemma

The purpose of this section is to prove the following lemma.

LEMMA 4.1 (DECOMPOSITION LEMMA). Let D € Transg. (T7|M,),
T 2 2. Then there exist A\, € R and D € Trans(T"|M,,) such that:

(4.1) dpgn © D (81| TR™ =0,
(42) Dpa(8)(0)=0, (0 € TyR")
(4.3) Dan (O)ITYR" = 0,

where D* =D — AT" — uL — DV (T",L,DV are described in Section 3).

Proor. Consider the map
9: R xT7R" - T,R", 9(t,w) = dpfn 0 Dy (t01)(w),

t € IR, w € T{IR". Using the regularity condition we see that g is of class
C=. 1t follows from the naturality condition that for all 7 € R — {0} we
have

9(rt, B(r)(w)) = 7g(t, w),
where B(7) = Tg(7id) € End(TjIR"). Therefore

ot w) = -g(rt, Br)w))rm0 = dooya(t, B(0)(w)
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i.e. g is linear.
It is obvious that the family

Cu:X(M)— X(M), Cu(X)=dp} oDy(X)o0x, MEM,,
(Oar : M — T M is the O-section) is an element of Trans(T|M,), and
then it follows from Corollary 2.1 that there exists A € IR such that
Cum = Aidx(a) for any M € M, In particular, g(1,0) = A8,(0).
On the other hand the family
Ay :TTM - TM,  Ay(w)=dp% o Dy(0)(w), MeM,,
is a natural transformation of T"|M,, into T|M,, i.e. Ap(w) =0 for any
M € M, and w € T™ M, because of Corollary 1.1. Then g(0,.) = 0.
Therefore D — AT" € Transg,(T7|M,,) satisfies the equalities
(4.9) dpgn © (D = AT g (61)(w) = g(1,w) — A81(0) =0

for any w € TJIR".
It follows from (4.4) and Lemma 3.2 that

im(D — XT")(X) C VT™M

for any X € X(M) and M € M,. We can therefore define a natural
transformation of T"| M, into itself by

By :TTM - T™M, By (w) = gu 0 Jif* 0 (D = AT")ar(0)(w),
where gy : T"M &y T"M — T7M is the projection onto second factor
and Jy : T"TM @&y T™M — VTT™M is defined in (3.1). We can also define
D € Trans(T"|M,) by

DM:X(M)—'FT'M, DM(X)=qM0J;,10('D—-z\T’)M(X)00M.

By Proposition 1.2 there exists 4 € IR such that

Bu(w) = pw
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for every w € T"M and M € M,,.

We prove that A, u, D satisfy the conditions of the lemma. It follows
from the definitions of L and DV (see Examples 3.2 and 3.3) and from
(4.4) that

dpZn 0 Djn (81 )(w) =0

for every w € TfIR", i.e. D* satisfies the condition (4.1). From the
definitions of D, DY and L it follows that

DK" (8:1)(0) = (D — AT")r~(61)(0)
and Lgn(8;)(0) = 0, and hence Dga(8,)(0) = 0, i.e. D~ satisfies the
condition (4.2). From the condition (4.1) and Lemma 3.2 we deduce that
Dy (0)(w) € VITIR™ for any w € TjIR". From Corollary 2.2 we get that
Dgn(0)(0) = 0. Hence
grn © Jan © Dpn(0)(w) = Bra(w) — pw =0

for any w € T7IR". Therefore D" satisfies Condition (4.3). 0

5 — An algebraic lemma

From now on we use the following notation. We fix three positive
integers n,7,m. Let

(5.1) §={a=(a1,-m) €MNU{O})*:1< =1+ ...+ an <7}
and

(5.2) g = card(S).

Let £ : R* — R (i = 1,...,n) be the projection onto i-th factor. Sim-
ilarly, let X : R? — IR, (a € S) be the projection onto a — th factor.

For every a € S we define the map

(5.3) =:R* >R, z%=(z")..(z")".
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Similarly, for every ¥ = (¥4; € S) € (INU {0})¢ we define the map

(5.4) X¥:R'>R, X¥=][(x=%.

a€S

Let  be the linear isomorphism
(5.5) QTR - R,  Qw) = (w(iz®); x €9).
Given ! € N and i € {1,...,n} let ¢} : R™ — IR" be the map defined by
(5.6) ¢i(z) =z + (z")'es,
where z = (z!,...,z") € R" and ¢; = (0,..,,1,...,0) € R", 1 in j — th
position.

The purpose of this section is to prove the following algebraic lemma.

LEMMA 5.1. Let h:IR* — IR™ be a polynomial map such that

0

Wh=0 and a—)a{ﬁ(thoT’ggpfoQ'l =0

for all B € S with |B| = r and all integers | > 2, i € {1,...,n}. Then
h = const.

PROOF. Suppose that h # const. Then there exists iy € {1,...,n}
such that

(57)  B={a€S:5oh#0 and  ay#0}£0.
Let

(5.8) lo = maz{r+1- o] : @ € B}

and

(5.9) C={a€B:r+1—|a| =}.
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It is clear that [, > 2. Let
8

(5.10) E={¥=(Yp0€8) e (NU{0})?:¥,=0, if 67’1=0}
and
(5.11) H={VeE:¥,=0, if a€C}.

It is obvious that for every ¥ = (¥, : @ € S) € (INU {0})7 there exists
one and only one ¥* € (INU {0})? such that

(5.12) XV = H(Xa—qo+loen)w° H (X2)¥e.

aeC a€S—C
Now, we need the following two lemmas.
LEMMA 5.2. The function

E>¥ - ¥ e (INU{0})

is injective.

LEMMA 5.3. Let a € S be such that 52=h # 0. Then

. Xe, faeS-C
a 0 -1 _
X OQOH‘F{OOQ _{Xa+aioxa_q°+locn) if&EC

We continue the proof of Lemma 5.1. It follows from Lemma 5.3 that

X¥oQoTyploQt =

(5.13) XY, el
X + Toccyarol@o) XY +.., f¥e€E—H,

where the dots denote a polynomial , each term of which contains at last
one of the X* with a € C.
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Of course,
h=3" X%ay,

VEE

where ay € R™ are vectors. It is clear that ay # 0 for some ¥ € E — H.
It follows from the condition (5.13) that

hoQoTipl ol =h+ Y J] (a)**X¥ay+..,
YEE-H a€C ¥a#0

where the dots denote a polynomial , each term of which contains at last
one of the X with @ € C. We see that for every ¥ € E - H, X¥" is
independent of X for all & € C and it contains at last one of the X7
with y € S,|y| =r, for if « € C, then |o| <7 —1 and |a —e;, + lpeq| =T
Then (owing to the assumptions of the lemma) we have

Z H (a,-o)""’X"’.a.p =0.

VYeEE~-H acC,¥a#0

Hence ay = 0 for all ¥ € E — H, because of Lemma 5.2. This is a
contradiction. Therefore h = const.

It remains to prove Lemmas 5.2 and 5.3.

PrROOF OF LEMMA 5.2 Let ¥ € E. We see that if a € C, then
o] £ 7—1 and | — e;, + lpen| = 7, and then a — €, +loe, € S —C.
Therefore

{wﬁ, fBeS—C, |8l <r—1
U, =

= U, + Vs, if f=a—ep+len for some a € C

because of (5.12). On the other hand, if B € S, 18| = r, then Vg = 0,
because of (5.10). Hence ¥ € E is uniquely determined by ¥*. 0

PROOF OF LEMMA 5.3 Let (j52°)*, 8 € S be the basis of TJIR" dual
to jiz®, B € S. Then for every (Y?; 8 € S) € R? we have
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X*oQoTyp o Q' (Y5 B € S)
= Top2(Q (Y7 B € S)) (452°)
= Q71 (Y*; 8 € 8)(d5(z* o 9}3))
=Y YP(5:2f) (G5 (a0 ¥12))
peSs
Ye, faeS~-C
Yo + a‘_oya—qoﬂoen, if c C

as

, i jama’ faeS-C
5.14 (% o ?) =
(G.14) oz o) { P53 + 0y j (20t ifa e C

It remains to prove the formula (5.14). If o, = 0, then 2% 0 <pfg =z°
and o € S — C. So, we assume that a;;, # 0. Then

a,-o
%o (p;.g =+ aioza—cioﬂoen + Z C:ioxa—ke,~°+kzoen
k=2
because of the Newton formula. If c € S - C, then a € B — C i.e.
lo>r+1—|al, and then

la — ke, + loken| = |a) —k+klp >r+ (o —1)(k—1) >r

for k = 1,...,a;, because of lp > 2. If @ € C, then ly =7+ 1 — |a|, and
then |a— ke, +klpen| > T for k =2,..., a; and |o—e;, +lgen| = r. These
facts complete the proof of Lemma 5.3. 0

6 — Proof of Theorem 3.1

From Corollary 3.1 and Lemma 4.1 it follows that Theorem 3.1 will
be demonstrated after proving the following proposition.

PROPOSITION 6.1. Let D* € Transg,(T"|M,) be a natural base-
eztending transformation satisfying the conditions (4.1), (4.2) and (4.3).
Then D* =0.
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PROOF. Let §,q,2*, X*,9 be as in Section 5. Using the condition
(4.1) and Lemma 3.2 one can define

(6.1)
H:RxR'> R,  H(tX):=Qoggrn o Jgs 0 Din(td;) o 271(X),

where Jy : T"M @y T"M — VT7 M is the natural isomorphism given in
(3.1) and gqp : T"M ©p T™M — T™M is the projection onto the second
factor. It follows from the regularity condition that H is of class C*°,
Using the naturality condition with respect to the homotheties 7idgn»,
7 € R" - {0}, we see that for every 1 €¢ R* — {0}, € S, t € R and
(Y?;,8 € 8) € R we have

(6.2) rlelge(t,Y?, 8 € S) = H*(rt,TP'Y?; 8 € §),

where H* is defined by H = (H*; & € S). On the other hand it follows
from the condition (4.3) that

(6:3) H*(0,)=0, €S

To discuss (6.2), we need the following simple property of globally defined
smooth homogeneous functions, a proof of which can be found e.g. in [8].

LEMMA 6.1.  Let g(z*,y",...,2') be a smooth function defined on
R™xR"x...xIR?, and leta > 0,b > 0,...,¢ > 0, d be real numbers such
that

(6.4) kg(z, 4, ..., 2*) = g(k°z', k%P, ..., k°2")

for every real k > 0. Then g is a sum of polynomials of degrees ¢ in z,
7 inyP, ..., £ in 2t satisfying

(6.5) al + b+ ..+ cf =d.

If there are no non-negative integers ¢, 0,...,§ with the property (6.5), then
g 1s the zero function.
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According to (8.3) and to this lemma we see that H® is a polynomial
in t and X, where 8 € S and |8| < |a] — 1. (H® is independent of the
X?, B €8, |8| > |a].) Therefore the map

(6.6) h:=H(1,):R?— R

is a polynomial such that 32:h = 0 for every a € § with |a] =1.
Let ¢} : R" — IR" be given by (5.6). Then ¢j is a diffeomorphism
of an open neighbourhood V| at 0 € R". Since n > 2, ¢j|V/’ preserves

germ,(0,), and then

Qo Ty} o0 loh=hoQoT ypioN™?
because of the naturality condition. Hence

2 (hoRoTip00™) =0
for all @ € S with |a] = 7 and all integers I > 2, i € {1,...,n}. It follows
from Lemma 5.1 that h = const.

It follows from the condition (4.2) that h(0) = 0. Then h =0, i.e.
D*(8,)|TsIR" = 0. Therefore D* = 0, because of Lemma 3.1. 0
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