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A Riquier-like problem for a hyperbolic
partial differential equation

A. BORZYMOWSKI

RIASSUNTO — Si studia, per un’equazione differenziale iperbolica di ordine 2p, un
problema con condizioni al contorno analoghe a quelle che, per le equazioni ellittiche,
originano il problema di Riquier. Estendendo il metodo introdotto da G. Fichera (4]
per le equazioni del secondo ordine, si stabiliscono le condizioni necessarie e sufficienti

per lesistenza della soluzione.

ABSTRACT — The paper concerns a boundary value problem for a hyperbolic partial
differential equation of order 2p that contains the Riguier problem for the said equation.
By using the method of G. Fichera, introduced in paper [4] for a hyperbolic equation of
seco};d order, the necessary and sufficient conditions for the ezistence of the solutions
are found
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1— G. FICHERA examined (see [4], [5]) the first boundary value problem
for a second order hyperbolic partial differential equation. His papers
were related with earlier results of M. PICONE (see [12]). In this pa-
per we apply the method of G. FICHERA to a boundary value problem,
containing a countepart of the Riquier problem (see [10]), for a certain
hyperbolic partial differential equation of order 2p that is often called
the polyvibrating equation of Mangeron. We also use some results of the
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papers [1] of A. BIELECKI and J. KisyNskl, [2], {3] of A. Borzymowsk
and (8], [9] of M. MICHALSKI. Let us note that a boundary value prob-
lem for an integro-differential equation of Mangeron, with the boundary
conditions different from those in the present paper, was examined by D.
MANGERON (see [6]).

2— Let Y be a Banach space with norm |.||, p € IN (where IN denotes
the set of all positive integers) a fixed number and §2 the rectangle

Q= {(z,y) eR*:0<z<1; 0<y <o},

where 0 < o < o0.

We consider the system of 2p curves I'y, ... ,I',_; and f‘o, ceey f‘p_l, of
equations y = o;(z) and y = f;(z), respectively, where o, 8;: (0,1) —
{0,0) for j =0,1,... ,p—1.

We shall examine the following problem (P):

Find a solution of the partial differential equation

(1) LPu=F
(where L = E%y and F is given) in O satisfying the boundary condi-
tions

Lufz, a;(z)] = M;(z)

(2) LDulz, B;(z)] = N;(z)

(z e (0,1); j=0,1,...,p—1).
‘We assume the following

1. The functions o; and B; (j =0,1,...,p—1) are strictly increasing,
of class C?~7, respectively, and satisfy the conditions

3) a;(0) = ;(0) =0; ;1) =p;(1) =0

(That is & function u: Q—Y possessing continuous derivatives 8! /8271 8yP2,
where |8| = 81 + B2; 0 < f1,02 < p, in Q and satisfying equation (1) at each point of
Q.
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(j=011,--- )p—l);

a,_1(z) < a(z);  Bu-a(z) < Bu(z);
ap-l(x) < ﬂO(z)

(4)
(r € (0,1);v=1,2,...,p—1);

(5) 0 < min (0‘3(0)1 ;’—1(1)) 3
a,_1(0) < 55(0); Bo(1) < op,_4(1)-

II. The functions M; and N; (M;,N;: (0,1) —Y;j =0,1,...,p-1)
are of class CP~J, respectively, and satisfy the conditions

(6) M;(0) = N;(0); M;(1) =mny(1)

(G=0,1,...,p—1).
III. The function F': § —Y is continuous.

REMARK 1. Let us note that problem (P) was examined by M.N.
OGUZTORELI (see [11]) and M. MICHALISKI (see, [7], [8]) in the case when
r; =To; I‘J =T =0,1,...,p—1), under the assumption that the curves

Lo a.nd To mtersect only at the point (0,0). Let us also observe that in
the aforesaid case and under the present Assumption I, the problem (P)
consists in finding a solution u of equation (1) that satisfies conditions
(2) on the closed curve I'; U T, and hence this problem is a counterpart
of the Riquier problem known in the theory of elliptic equations (see [10],
p-28).

3 — In this section we give some auxiliary theorems.

LEMMA 1. (see [2], [3]). Ifu: Q—Y is of the form

(1) w(zp) = Ro(z) + 3 [(m =1 " [ 0m(e) + 2™ ()]

m=]
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((z,v) € 22), where

® Ry =[e-0]" [" ["[ec-ow-n]"" P ndna,

and®,,: (0,1) — Y and ¥,,: (0,0) — Y are arbitrary functions of class
C?, then u is a solution of equation (1) in Q.

Conversely, if u is a given solution of equation (1) in £, then there
are functions ¢k : (0,1) — Y and ¥: (0,0) — Y (k= 0,1,... ,p — 1)
of class CP—*, respectively, such that
— im m—
(=) = Bimipo(@) + 2 [(@— O™ o1 (€1t
(9
— b1m
Un(®) = bimto(®) + oy [ W= ™o (m)an;

(m = 1,2,...,p; 8im is the Kronecker delta) and that equality (7) is
satisfied by ®,, and ¥,,(m =1,2,...,p).

Let us observe that if u is a solution of equation (1) in £, then, by
Lemma 1, we can write

(10) Liu(z,y) = ri(z,v) + i Gm,i(z,¥) + Rp_s(z, )

m=j+2
(z,9) € ;5 =0,1,... ,p— 1), where
z oy
(11) Gm,;(z,y) = _/o /0 Wrn i (2, Y €N)Trm-1 (€, )dnde
with

(12)  wmyE@nem =[m-i-21" [@-O@ -],

(13) T.(Z, ¥) = or(x) + Y (y)

(k=0,1,...,p—1), and R,_; (x,y) is defined by formula (8 with
replaced by p-7j. ’ ® d
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Now, let us introduce the functions

(14) 75{y) = @j 0 B (¥);
(15) Ai(z) = B;* o aj(z)
and

(16) p;(z) = a5t o fi(x),

where (z,y) € R,5 =0,1,... ,p—1 and o is the symbol of composition.

LEMMA 2. The following relations

(17) T —0 on (0,0); A7 — 0 on {0,1);
17) p? — 1 on (0,1)

hold good, when n tends to infinity, with — denoting the almost-uniform
convergence.

PROOF. The validity of relation (17) follows from Lemma 3 in [1}.
‘We shall prove relation (17’).

To this end let us observe that

1i(z) > a3l 0 Bi(x) > &), o i (z) = 2,

where z € (0,1).
From the above inequalities and relation (16) it follows that

(18) pi(z) >z for z € (0,1); u;(1) =1

(7=0,1,...,p-1).
Let us also note that we have

(19) pi(z.) < pi(z) <1

for ¢ € (z.,1), where z, is arbitrarily fixed in (0,1).
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Basing on inequality (18) we easily conclude that the sequence
{p3(z.)} is non-decreasing, whence and from (19) it follows that there is
a number lp € {(z.,1) such that

(20) Jim @) = .

Let us suppose that [, € (z.,1).

Using the continuity of x;, resulting from (16) and Assumption I, we
can write the sequence of equalities

O b= lm [~ )] = [t w5~ )] = o)

which contradicts relation (18).

Thus, lp = 1, and as a consequence of this and of (19) relation (17)
is valid.

LEMMA 3. There is a sufficiently small number § € (0, min(1, o))

such that

(22) mjn(/\;-,(:r),fjfl(y)) >0

max(X;(2), 75(¥)) < ¢

for (z,y) € (0,6)*;

(23) 0<pi(z)<q

forz e (1-6,1)(7=0,1,...,p— 1), where q is a number in (0,1).
ProoOF. The proof, being similar in case of inequalities (22), will be

given only for (23).
Let

2 g= (1 + ey max (528 BCLY

B5(0) ’ ap_1(1)
where

(B50) — a1 (0) ayy(1) — A1)
(%) 0<e <min (a?,m) F a5 (0) ah (1) + Bé(l)) ‘




(7 A Riquier-like problem for a hyperbolic etc. 1019

Evidently, q € (0,1).
By assumption I we can write

Bi(1)
a;(1)

B;(1)
<E05i)

pi(z) =

for € (1 — 4, 1), 6 being a sufficiently small positive number, whence

sy

0 < pj(z) < (1+ o) N R

as required.

LEMMA 4. Let 2 < n € N. The inequalities

o) min(%)\;-‘(z), -:;T;'(y)) >0
max()5(@), 27 0)) S 0"

hold good for (z,y) € (0,6)?, and the inequalities
(27) 0<dira@) < g
are valid forz € (1-6,1) (j=0,1,...,p—1).

PROOF. The validity of inequality (27) follows from the formula

n-1

(28) Lun(@) = [ Ko (@),

v=0

inequality (18) and Lemma 3. The proof of (26) is analogous.
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LEMMA 5. The following inequality holds good®

29) max(?‘}‘fldz.,)\; (m)l supid ST (y)l

4 < p(v=1) n
e 51)!dx" (z)l) < constn q

(mneN,v=2,3,...,p—7; 7=0,1,... ,p—2), where const is independent
of n.

PROOF. The validity of Lemma 5 follows from Lemma 3 above and
the formula (see Remark 1 in [9] and cp. equality (49) in [3])

(H o 2)™)(z) =
(30) t r (,)l —1 v .
gr;.z.r:pl,lil (I’I‘ (o )l _r’)z( )(-'E)H()oz(z)

(z: D—R;H: 2(D)— E with D C IR and E denoting a Banach
space; 2, H € C™;, Ty = (T1y.++ ,Th); 7l = ): r, for k =1,s).

We shall end this section with the following rema.rk

REMARK 2. It follows from Lemma 2 that for any numbers ¢’ € (0, o)
and z’,z” € (0, 1) there is a number ny € N such that the relations
(31) 77(y) € (0,8); A7 (=z) € (0, 8); ui(z) € (1-6,1)

(j = 0,1,...,p — 1) hold good for IN > n 2 ng, and all y € (0,y'),
z € (0,7') and = € (z", 1), respectively.

4— We are going to find necessary and sufficient conditions for the
existence of a solution of problem (P).

Imposing on function u (see (7)) the boundary conditions (2) and
using relation (10), we obtain the system of integral-functional equations

©;(x) + V5 0 aj(z) = Vj(z)
@i(x) + ¥; o Bi(z) = Wj(x)

(MHere and in the sequel, const denotes a positive constant.

(32)
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(z € (0,1); 1 =0,1,...,p— 1), where ¢; and ¢; are the unknown func-
tions sought in the classes CP~4, respectively, and the functions V; and
W; are defined by

Vi(z) = V(@) + V(a)

(33) W;(z) = Wi (z) + W2(z)
with

V;'(z) = M;(z) — R,_jlz, a;(z)]
(34) W(z) = Ny(z) ~ Ryslz, B5(c)]
and

ij(.’l)) == i Gm,j[za aj(z)]
(35) e

Wiz) == Y Gmgilz, ()]

m=j+2

G=0,1,...,p-1); ’f am: =0 for my > my).

m=m,

REMARK 3. Evidently, the functions V; and W, depend on rj;,,
. ,Tp (see (13)) for j =0,1,...,p — 2, while V,_; and W,_, are given
by

(36) Voer(z) = V2 1(2); Wpoi(z) = Wi_y ().

We shall examine system (32) by using a method analogous to that
in [4].

Let o9 € (0,0) be a fixed number and denote z; = aj'(0o); ; =
B;(0o) for j =0,1,...,p—1. We introduce the rectangles Q =(0,%;) x
(0, 00) and Q2 = (%;,1) x (do,0), where j =0,1,... ,p—1 (see Fig. 1).

The following proposition is valid

PROPOSITION 1. Let j be a fized integer (0 < j < p—1) and assume
for0 < j < p—2thaty, andy, (v =3j+1,...,p—1) are known functions
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of class CP™ on (0,1) and (0,0), respectively. System (32), considered
in the domain Q}, has a solution given by the formulae

0;(z) = pj(z): = Wj(z) — S; 0 Bi(z);

(37) Ui(w) = V2): = S;)

((z,y) € 2}), where

(38) Sw) =3 Q0 77(w)

n=0

uel

1
S\

Fig. 1

with

(39) Qi) = Q;(v) + Qj(v);
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(40) Qi(z) =W) o 87 (y) = V7 o B (¥)
(v=1,2).

It is the unique solution of the system (32) in the class K; of all sys-
tems of continuous functions @;: = (0,%;) — Y and ¥;: (0,00) —Y,
such that ¢;(0) = ;(0) =0.

Moreover, the functions ¢J and ¢ given by formulae (37) are of class
Ccri,

PRrROOF. We shall prove the uniform convergence of the series (38). Of
course it is sufficient to consider the case when N 3 n > no (see Remark
2 with y = 09 and &’ = 2" = ;).

Let us observe (see (6), (34), and (40)) that the equality

(41) Qj(0) =0
is valid, whence and by (26) we have
(42) 1Q} o 77 ()|l < const ¢".

* Furthermore, it is clear (cp. (10)-(12), (35) and (40)) that as r,, are
continuous in @} form=j+1,...,p~10<j<p-2, and Q3., =0,
we have the equality

which, together with (26) yields
(44) Q% o 7 ()|l < const ¢".

Thus, by (43) and (44), the series S;(y) is uniformly convergent for
¥ € (0, 00) and the functions ¢} and ¢ given by (37) are continuous for
z € (0,%;) and y € (0, o), respectively. >

o0

A similar argument can be also used for the series );o d—y,[Q,-orJ'-‘ )],
where v =1,2,... ,p— 7,

To this end we base on formula (30) and we apply inequalities (26),
(27) and (29), getting the estimate

(45) 1(Qs 0 ¥ ()]l < constn®' g
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(N3n2>ngv=1,2,...,p—j).
Hence, we can assert that the functions ¢J and ¥ are of class CP—i

for z € (0,%;); y € (0,00) and (cp. (41) and (43)) that the system 03, 99
belongs to the class ;.

As the remaining parts of the thesis of Proposition 1 are easily veri-
fied, the proof of this Proposition is completed.

Now, let us consider system (32) (for fixed j) in O, with z = a7 (y)
in the first equation and z = §;'(y) in the second one:

(46) ®; 0 a5 (y) +¥;(y) = Vo5 (v)
@5 0 B7 ' (y) + ¥;(y) = W; 0 57 (v)

We can formulate the following proposition.

PROPOSITION 2.  Under the assumptions of Proposition 1, system
(46), considered in the domain QZ, has a solution given by the formulge

0;i(z) = §;(z): = §;(z) +Cj;

7 B8) = B =W 0 B1) — § 0 672(w) - C

((z,y) € Q3), where

(48) %@=2%wﬂ@
with

(49) P;(z) = PXz) + PX(z);
(50) Py (z) = W (z) - V) o uy(z)

(v =1,2), and C; is an arbitrary constant.
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The functions @; and &,- given by formulae (47) are of class CP~7,
Proof is analogous to that of Proposition 1 and bases on the relations
(cp- (3), (5), (34), (35) and (50))

(51) PX(1) =0;
(52) P}1) =0,

by which and (27) we have

(53) 1Py o u3(@)ll < const g”

(N 2 n > ng), and on the inequality

(54) By o 1)@)]| < constn” -

(N>3n>ng v=1,2,...,p—3) that is a consequence of estimates (27)

and (29), and formula (30).
Thus, in virtue of Propositions 1 and 2, we have

@(z) for 0 <z < &;
(55) pi(@) =1 " - ’

@i(x) forT; <z <1;

Y(y) for 0 <y < g
(56) viy) =4 7

wJ(y) for Oo S Yy S o,
and hence ¢; and 1; are continuous if and only if
(57) ©)(E;) = ¢;(%5); ¥](00) = $;(00) -

Using the first of equalities (57)¢® together with (37) and (47), we

get
(58) C; = Wj(Z;) — S;(00) — 8;(3;) -

()The second of these equalities yields the same result.
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We still have to require the first of equations (32) to be satisfied for
x € (%;,z;) (i.e. the first of conditions (2) to be fulfilled on the part of
I'; marked on Fig. 1).

By (32), (37), (47), (55) and (56) we can write

(9) 5;(z) + 85 © ay(z) + C; = Vs(=)
whence and from (58) we obtain
(60)  5(z) + 8; 0 a;(z) — Sj(00) — 5;(%;) = Vi(z) - W;(&))
(z € (&, z;))-
On substituting (38) and (48) into (60), and using (34), (39), (40),

(49) and (50), we obtain after some rearrangements (cp. [4], p. 362) the
following equality

- ¢ ST® w3t @)
61)  E@)+Y { / E(t)dt + / E;(t)dt} ~0
"0 Nt w3+

(z € (:ij,zj)) in which

(62)

E;(z) = N;(z) — M;(x) + Rp—j[, @;(2)] - Rp— sz, Bi(@)]+ W} (2) - V()
where the functions V> and W} are given by (35) and (11) - (13), with
(cp- (37) and (47))

ak(€1 77) for 6 € (01 5Ic)»"’ € (0) Uo)

be(€,m) for £ € (0, Zx),n € (00,0)

cx(€,n) for £ € (Zk,1),1 € (0, 00)

dk(fﬂ?) for f € (j-:k) 1)!77 € (0’0,0‘) ]

ax, by, cx and di being defined by (cp. (37), (47), (55) and (56))

ar(€,n) = Wi(€) — Sk 0 Be(§) + Sk(n) _

bi(€, 1) = Wi(€) + Wi 0 B '(n) — Sk o Be(€) — Sk © B (m) — Ch
cx(&,m) = Sk(€) + Se(n) tCk _

di(€,1) = Wi 0 871 (n) + Sk(€) — Sk o B ()

(63) (€1 =

(64)
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(for the meaning of C;. see (58)).
Equality (61), obtained on the basis of (57), is a necessary condition
for the existence of a continuous solution ¢;,; of system (32).
However, ¢; and 9; schould belong to C?~7 and hence we have to
add the conditions

(65) 03(&5) = &7 (&5); 97 (00) = 95" (00)

v=12,...,p-3%.
Basing on the second of relations (65), and using (37), (46) and (47),
we obtain

(66) S()] [ (V0052 3) ~ B 005 ) ~ C)]

y=09 y=00

dll
Set z = aj(y), i (ag-(z))“”dzy
Equality (66) together with (33), (34), (38)-(40), (48)-(50) and (58)
yields, after repeating the argument used in the derivation of (61), the
following relation

E(V) (371) + Z {[

n=0

(v=1,2,...,p—3).
By a similar argument, based on the first of relations (65), and on
(32), (47)-(50) and (58), we get

sout @), 1 =0

BV@E)+ Y {[= B o X" @) - B0 “3"“(‘”))]==s,-} =0

n=0
v=12,...,p—3).
Thus, we have obtained the following relation
6 EP)+ 3 { [ (B0 @) - Bow @), | =0

n=0

(zj =$j,ij; V=1,2,--v )p_j)'
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Equalities (61) and (67) should be considered for j = p — 1, p—
2,...,1,0, successively (cp. Remark 3 and Propositions 1 and 2).

1t is clear (cp. (11)-(13), (33), (35), (37)-(40), (47)-(50), (62) and
(63)) that the said equalities establish relations between the functions
Mj, Mj+1, e )Mp—l) Nj)Nj+1) s 1Np-1)F) and M;k)a M}.t)u ree ,M,E’i)l,
N® N®, ... ,N®, F (where k =1,2,... ,p~j), respectively,®) which
are necessary for the existence of a solution ¢;,4; € C?~7(j =0,1,... ,p—
1) of the system of integral-functional equations (32) and hence (cp.
Lemma 1 and relations (1), (2) and (10)) of a solution % of problem
P). :

It is also easily seen (cp. Lemma 1 and Propositions 1 and 2) that
the said equalities are sufficient for the existence of these solutions.

Thus, we can formulate the following theorem

THEOREM. If Assumptions I-III are satisfied, then conditions (61)
and (67) are necessary and sufficient for the erisience of a solution of
problem (P).

REMARK 4. If p = 1 and F = 0, then conditions (61) and (67) are
identical with relations (25) and (26,) (s = 1,2), respectively, in paper

[4]-
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