A Riquier-like problem for a hyperbolic partial differential equation

A. BORZYMOWSKI

RIASSUNTO — Si studia, per un'equazione differenziale iperbolica di ordine 2p, un problema con condizioni al contorno analoghe a quelle che, per le equazioni ellittiche, originano il problema di Riquier. Estendendo il metodo introdotto da G. Fichera [4] per le equazioni del secondo ordine, si stabiliscono le condizioni necessarie e sufficienti per l'esistenza della soluzione.

ABSTRACT – The paper concerns a boundary value problem for a hyperbolic partial differential equation of order 2p that contains the Riquier problem for the said equation. By using the method of G. Fichera, introduced in paper [4] for a hyperbolic equation of second order, the necessary and sufficient conditions for the existence of the solutions are found

KEY WORDS - Hyperbolic equation - Linear boundary value problem - Improperly posed problem - Banach spaces - Functional equation.

A.M.S. CLASSIFICATION: 35L35 - 35G15 - 35R25

1 - G. FICHERA examined (see [4], [5]) the first boundary value problem for a second order hyperbolic partial differential equation. His papers were related with earlier results of M. PICONE (see [12]). In this paper we apply the method of G. FICHERA to a boundary value problem, containing a countepart of the Riquier problem (see [10]), for a certain hyperbolic partial differential equation of order 2p that is often called the polyvibrating equation of Mangeron. We also use some results of the

papers [1] of A. BIELECKI and J. KISYNSKI, [2], [3] of A. BORZYMOWSKI and [8], [9] of M. MICHALSKI. Let us note that a boundary value problem for an integro-differential equation of Mangeron, with the boundary conditions different from those in the present paper, was examined by D. MANGERON (see [6]).

2 — Let Y be a Banach space with norm $\|.\|$, $p \in \mathbb{N}$ (where \mathbb{N} denotes the set of all positive integers) a fixed number and Ω the rectangle

$$\Omega = \{(x, y) \in \mathbb{R}^2 \colon 0 \le x \le 1; \ 0 \le y \le \sigma\},\,$$

where $0 < \sigma < \infty$.

We consider the system of 2p curves $\Gamma_0, \ldots, \Gamma_{p-1}$ and $\widetilde{\Gamma}_0, \ldots, \widetilde{\Gamma}_{p-1}$, of equations $y = \alpha_j(x)$ and $y = \beta_j(x)$, respectively, where $\alpha_j, \beta_j : \langle 0, 1 \rangle \longrightarrow \langle 0, \sigma \rangle$ for $j = 0, 1, \ldots, p-1$.

We shall examine the following problem (P):

Find a solution of the partial differential equation

$$(1) L^p u = F$$

(where $L = \frac{\partial^2}{\partial x \partial y}$ and F is given) in $\Omega^{(1)}$ satisfying the boundary conditions

(2)
$$L^{j}u[x,\alpha_{j}(x)] = M_{j}(x)$$
$$L^{j}u[x,\beta_{j}(x)] = N_{j}(x)$$

$$(x \in (0,1); j = 0,1,\ldots,p-1).$$

We assume the following

I. The functions α_j and β_j $(j=0,1,\ldots,p-1)$ are strictly increasing, of class C^{p-j} , respectively, and satisfy the conditions

(3)
$$\alpha_{j}(0) = \beta_{j}(0) = 0; \quad \alpha_{j}(1) = \beta_{j}(1) = \sigma$$

⁽¹⁾ That is a function $u: \Omega \longrightarrow Y$ possessing continuous derivatives $\partial^{|\beta|}/\partial x^{\beta_1}\partial y^{\beta_2}$, where $|\beta| = \beta_1 + \beta_2$; $0 \le \beta_1, \beta_2 \le p$, in Ω and satisfying equation (1) at each point of Ω .

$$(j=0,1,\ldots,p-1);$$

(4)
$$\alpha_{\nu-1}(x) \le \alpha_{\nu}(x); \quad \beta_{\nu-1}(x) \le \beta_{\nu}(x); \\ \alpha_{\nu-1}(x) < \beta_{0}(x)$$

$$(x \in (0,1); \nu = 1,2,\ldots,p-1);$$

(5)
$$0 < \min \left(\alpha'_0(0), \beta'_{p-1}(1) \right); \\ \alpha'_{p-1}(0) < \beta'_0(0); \ \beta'_0(1) < \alpha'_{p-1}(1).$$

II. The functions M_j and N_j $(M_j, N_j: (0, 1) \longrightarrow Y; j = 0, 1, ..., p-1)$ are of class C^{p-j} , respectively, and satisfy the conditions

(6)
$$M_i(0) = N_i(0); M_i(1) = n_i(1)$$

$$(j=0,1,\ldots,p-1).$$

III. The function $F: \Omega \longrightarrow Y$ is continuous.

REMARK 1. Let us note that problem (P) was examined by M.N. OGUZTÖRELI (see [11]) and M. MICHALISKI (see, [7], [8]) in the case when $\Gamma_j \equiv \Gamma_0$; $\widetilde{\Gamma}_j \equiv \widetilde{\Gamma}_0(j=0,1,\ldots,p-1)$, under the assumption that the curves Γ_0 and $\widetilde{\Gamma}_0$ intersect only at the point (0,0). Let us also observe that in the aforesaid case and under the present Assumption I, the problem (P) consists in finding a solution u of equation (1) that satisfies conditions (2) on the closed curve $\Gamma_0 \cup \widetilde{\Gamma}_0$, and hence this problem is a counterpart of the Riquier problem known in the theory of elliptic equations (see [10], p.28).

3 - In this section we give some auxiliary theorems.

LEMMA 1. (see [2], [3]). If $u: \Omega \longrightarrow Y$ is of the form

(7)
$$u(x,y) = R_p(x,y) + \sum_{m=1}^p \left[(m-1)! \right]^{-1} \cdot \left[y^{m-1} \Phi_m(x) + x^{m-1} \Psi_m(y) \right]$$

 $((x,y)\in\Omega)$, where

(8)
$$R_p(x,y) = [(p-1)!]^{-2} \int_0^x \int_0^y [(x-\xi)(y-\eta)]^{p-1} F(\xi,\eta) d\eta d\xi$$
,

and $\Phi_m: \langle 0, 1 \rangle \longrightarrow Y$ and $\Psi_m: \langle 0, \sigma \rangle \longrightarrow Y$ are arbitrary functions of class C^p , then u is a solution of equation (1) in Ω .

Conversely, if u is a given solution of equation (1) in Ω , then there are functions $\varphi_k : \langle 0, 1 \rangle \longrightarrow Y$ and $\psi_k : \langle 0, \sigma \rangle \longrightarrow Y$ (k = 0, 1, ..., p - 1) of class C^{p-k} , respectively, such that

(9)
$$\Phi_{m}(x) = \delta_{1m}\varphi_{0}(x) + \frac{1 - \delta_{1m}}{(m-2)!} \int_{0}^{x} (x - \xi)^{m-2} \varphi_{m-1}(\xi) d\xi;$$

$$\Psi_{m}(y) = \delta_{1m}\psi_{0}(y) + \frac{1 - \delta_{1m}}{(m-2)!} \int_{0}^{y} (y - \eta)^{m-2} \psi_{m-1}(\eta) d\eta;$$

 $(m = 1, 2, ..., p; \delta_{1m}$ is the Kronecker delta) and that equality (7) is satisfied by Φ_m and $\Psi_m(m = 1, 2, ..., p)$.

Let us observe that if u is a solution of equation (1) in Ω , then, by Lemma 1, we can write

(10)
$$L^{j}u(x,y) = r_{j}(x,y) + \sum_{m=j+2}^{p} G_{m,j}(x,y) + R_{p-j}(x,y)$$

 $((x, y) \in \Omega; j = 0, 1, ..., p - 1)$, where

(11)
$$G_{m,j}(x,y) = \int_0^x \int_0^y \omega_{m,j}(x,y;\xi\eta) r_{m-1}(\xi,\eta) d\eta d\xi$$

with

(12)
$$\omega_{m,j}(x,y;\xi,\eta) = \left[(m-j-2)! \right]^{-2} \left[(x-\xi)(y-\eta) \right]^{m-j-2};$$

(13)
$$r_k(x,y) = \varphi_k(x) + \psi_k(y)$$

(k = 0, 1, ..., p - 1), and $R_{p-j}(x, y)$ is defined by formula (8) with p replaced by p - j.

Now, let us introduce the functions

(14)
$$\tau_i(y) = \alpha_i \circ \beta_i^{-1}(y);$$

(15)
$$\lambda_j(x) = \beta_j^{-1} \circ \alpha_j(x)$$

and

(16)
$$\mu_j(x) = \alpha_j^{-1} \circ \beta_j(x),$$

where $(x, y) \in \Omega, j = 0, 1, ..., p-1$ and \circ is the symbol of composition.

LEMMA 2. The following relations

(17)
$$\tau_i^n \longrightarrow 0 \text{ on } (0,\sigma); \lambda_i^n \longrightarrow 0 \text{ on } (0,1);$$

(17')
$$\mu_i^n \longrightarrow 1 \text{ on } (0,1)$$

hold good, when n tends to infinity, with \longrightarrow denoting the almost-uniform convergence.

PROOF. The validity of relation (17) follows from Lemma 3 in [1]. We shall prove relation (17).

To this end let us observe that

$$\mu_j(x) > \alpha_{p-1}^{-1} \circ \beta_j(x) > \alpha_{p-1}^{-1} \circ \alpha_{p-1}(x) = x$$
,

where $x \in (0,1)$.

From the above inequalities and relation (16) it follows that

(18)
$$\mu_j(x) > x \text{ for } x \in (0,1); \mu_j(1) = 1$$

$$(j=0,1,\ldots,p-1).$$

Let us also note that we have

for $x \in \langle x_*, 1 \rangle$, where x_* is arbitrarily fixed in (0,1).

Basing on inequality (18) we easily conclude that the sequence $\{\mu_j^n(x_*)\}$ is non-decreasing, whence and from (19) it follows that there is a number $l_0 \in \langle x_*, 1 \rangle$ such that

(20)
$$\lim_{n \to \infty} \mu_j^n(x_*) = l_0.$$

Let us suppose that $l_0 \in (x_*, 1)$.

Using the continuity of μ_j , resulting from (16) and Assumption I, we can write the sequence of equalities

$$(21) l_0 = \lim_{n \to \infty} \mu_j \left[\mu_j^{n-1}(x_*) \right] = \mu_j \left[\lim_{n \to \infty} \mu_j^{n-1}(x_*) \right] = \mu_j(l_0)$$

which contradicts relation (18).

Thus, $l_0 = 1$, and as a consequence of this and of (19) relation (17') is valid.

LEMMA 3. There is a sufficiently small number $\delta \in (0, \min(1, \sigma))$ such that

(22)
$$\min(\lambda'_j(x), \tau'_j(y)) > 0$$
$$\max(\lambda'_j(x), \tau'_j(y)) \le q$$

for $(x,y) \in (0,\delta)^2$;

$$(23) 0 < \mu_j'(x) \le q$$

for $x \in (1 - \delta, 1)(j = 0, 1, \dots, p - 1)$, where q is a number in (0, 1).

PROOF. The proof, being similar in case of inequalities (22), will be given only for (23).

Let

(24)
$$q = (1 + \epsilon_0) \max \left(\frac{\alpha'_{p-1}(0)}{\beta'_0(0)}, \frac{\beta'_0(1)}{\alpha'_{p-1}(1)} \right),$$

where

(25)
$$0 < \varepsilon_0 < \min \left(\frac{\beta_0'(0) - \alpha_{p-1}'(0)}{\beta_0'(0) + \alpha_{p-1}'(0)}, \frac{\alpha_{p-1}'(1) - \beta_0'(1)}{\alpha_{p-1}'(1) + \beta_0'(1)} \right).$$

Evidently, $q \in (0,1)$.

By assumption I we can write

$$\left|\mu_j'(x) - \frac{\beta_j'(1)}{\alpha_j'(1)}\right| < \varepsilon_0 \frac{\beta_j'(1)}{\alpha_j'(1)}$$

for $x \in (1 - \delta, 1), \delta$ being a sufficiently small positive number, whence

$$0 < \mu'_{j}(x) < (1 + \varepsilon_{0}) \frac{\beta'_{j}(1)}{\alpha'_{j}(1)} \leq (1 + \varepsilon_{0}) \frac{\beta'_{0}(1)}{\alpha'_{p-1}(1)} \leq q,$$

as required.

LEMMA 4. Let $2 \le n \in \mathbb{N}$. The inequalities

(26)
$$\min\left(\frac{d}{dx}\lambda_{j}^{n}(x), \frac{d}{dy}\tau_{j}^{n}(y)\right) > 0$$

$$\max\left(\frac{d}{dx}\lambda_{j}^{n}(x), \frac{d}{dy}\tau_{j}^{n}(y)\right) \leq q^{n}$$

hold good for $(x,y) \in (0,\delta)^2$, and the inequalities

$$0 < \frac{d}{dx}\mu_j^n(x) \le q^n$$

are valid for $x \in (1 - \delta, 1)$ $(j = 0, 1, \dots, p - 1)$.

PROOF. The validity of inequality (27) follows from the formula

(28)
$$\frac{d}{dx}\mu^n(x) = \prod_{i=0}^{n-1} \mu'_j \circ \mu^\nu_j(x),$$

inequality (18) and Lemma 3. The proof of (26) is analogous.

LEMMA 5. The following inequality holds good (2)

(29)
$$\max \left(\sup_{(0,\delta)} \left| \frac{d^{\nu}}{dx^{\nu}} \lambda_{j}^{n}(x) \right|, \sup_{(0,\delta)} \left| \frac{d^{\nu}}{dy^{\nu}} \tau_{j}^{\nu}(y) \right|, \\ \sup_{(1-\delta,1)} \left| \frac{d^{\nu}}{dx^{\nu}} \mu_{j}^{n}(x) \right| \right) \leq \operatorname{const} n^{p(\nu-1)}.q^{n}$$

 $(n \in \mathbb{N}, \nu = 2, 3, \dots, p-j; \ j = 0, 1, \dots, p-2)$, where const is independent of n.

PROOF. The validity of Lemma 5 follows from Lemma 3 above and the formula (see Remark 1 in [9] and cp. equality (49) in [3])

(30)
$$(H \circ z)^{(m)}(x) =$$

$$= \sum_{i=1}^{m} \sum_{r_1, \dots, r_i \geq 1} \prod_{s=1}^{i} \begin{pmatrix} |\overrightarrow{r}_{(s)}| & -1 \\ |\overrightarrow{r}_{(s)}| & -r_s \end{pmatrix} z^{(r_s)}(x) H^{(i)} \circ z(x)$$

 $(z: D \longrightarrow \mathbb{R}; H: z(D) \longrightarrow E \text{ with } D \subset \mathbb{R} \text{ and } E \text{ denoting a Banach space}; z, H \in C^m; \overrightarrow{r}_{(k)} = (r_1, \ldots, r_k); |\overrightarrow{r}_{(k)}| = \sum_{\nu=1}^k r_{\nu} \text{ for } k = i, s).$

We shall end this section with the following remark

REMARK 2. It follows from Lemma 2 that for any numbers $y' \in (0, \sigma)$ and $x', x'' \in (0, 1)$ there is a number $n_0 \in N$ such that the relations

(31)
$$\tau_j^n(y) \in \langle 0, \delta \rangle; \lambda_j^n(x) \in \langle 0, \delta \rangle; \mu_j^n(x) \in (1 - \delta, 1)$$

 $(j = 0, 1, \dots, p-1)$ hold good for $\mathbb{N} \ni n \ge n_0$, and all $y \in (0, y')$, $x \in (0, x')$ and $x \in (x'', 1)$, respectively.

4 - We are going to find necessary and sufficient conditions for the existence of a solution of problem (P).

Imposing on function u (see (7)) the boundary conditions (2) and using relation (10), we obtain the system of integral-functional equations

(32)
$$\varphi_{j}(x) + \psi_{j} \circ \alpha_{j}(x) = V_{j}(x)$$
$$\varphi_{j}(x) + \psi_{j} \circ \beta_{j}(x) = W_{j}(x)$$

⁽²⁾ Here and in the sequel, const denotes a positive constant.

 $(x \in \langle 0, 1 \rangle; j = 0, 1, \dots, p-1)$, where φ_j and ψ_j are the unknown functions sought in the classes C^{p-j} , respectively, and the functions V_j and W_j are defined by

(33)
$$V_j(x) = V_j^1(x) + V_j^2(x) \ W_j(x) = W_j^1(x) + W_j^2(x)$$

with

(34)
$$V_{j}^{1}(x) = M_{j}(x) - R_{p-j}[x, \alpha_{j}(x)]$$

$$W_{i}^{1}(x) = N_{i}(x) - R_{p-j}[x, \beta_{i}(x)]$$

and

(35)
$$V_{j}^{2}(x) = -\sum_{m=j+2}^{p} G_{m,j}[x,\alpha_{j}(x)]$$

$$W_{j}^{2}(x) = -\sum_{m=j+2}^{p} G_{m,j}[x,\beta_{j}(x)]$$

$$(j=0,1,\ldots,p-1); \sum_{m=m_1}^{m_2} a_m : = 0 \text{ for } m_1 > m_2).$$

REMARK 3. Evidently, the functions V_j and W_j depend on r_{j+1} , ..., r_p (see (13)) for $j=0,1,\ldots,p-2$, while V_{p-1} and W_{p-1} are given by

(36)
$$V_{p-1}(x) = V_{p-1}^1(x); W_{p-1}(x) = W_{p-1}^1(x).$$

We shall examine system (32) by using a method analogous to that in [4].

Let $\sigma_0 \in (0, \sigma)$ be a fixed number and denote $x_j = \alpha_j^{-1}(\sigma_0)$; $\tilde{x}_j = \beta_j^{-1}(\sigma_0)$ for $j = 0, 1, \ldots, p-1$. We introduce the rectangles $\Omega_j^1 = \langle 0, \tilde{x}_j \rangle \times \langle 0, \sigma_0 \rangle$ and $\Omega_j^2 = \langle \tilde{x}_j, 1 \rangle \times \langle \sigma_0, \sigma \rangle$, where $j = 0, 1, \ldots, p-1$ (see Fig. 1). The following proposition is valid

PROPOSITION 1. Let j be a fixed integer $(0 \le j \le p-1)$ and assume for $0 \le j \le p-2$ that φ_{ν} and ψ_{ν} $(\nu = j+1, \dots, p-1)$ are known functions

of class $C^{p-\nu}$ on (0,1) and $(0,\sigma)$, respectively. System (32), considered in the domain Ω_j^1 , has a solution given by the formulae

(37)
$$\varphi_{j}(x) = \varphi_{j}^{0}(x) : = W_{j}(x) - S_{j} \circ \beta_{j}(x) ;$$

$$\psi_{j}(y) = \psi_{j}^{0}(y) : = S_{j}(y)$$

 $((x,y)\in\Omega^1_i)$, where

(38)
$$S_j(y) = \sum_{n=0}^{\infty} Q_j \circ \tau_j^n(y)$$

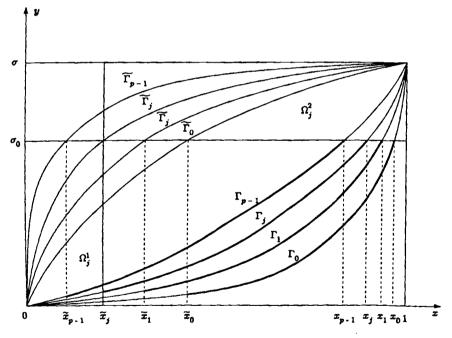


Fig. 1

with

(39)
$$Q_j(y) = Q_j^1(y) + Q_j^2(y);$$

(40)
$$Q_{i}^{\nu}(x) = W_{i}^{\nu} \circ \beta_{i}^{-1}(y) - V_{i}^{\nu} \circ \beta_{i}^{-1}(y)$$

$$(\nu = 1, 2).$$

It is the unique solution of the system (32) in the class \mathcal{K}_j of all systems of continuous functions $\varphi_j := \langle 0, \tilde{x}_j \rangle \longrightarrow Y$ and $\psi_j : \langle 0, \sigma_0 \rangle \longrightarrow Y$, such that $\varphi_j(0) = \psi_j(0) = 0$.

Moreover, the functions φ_j^0 and ψ_j^0 given by formulae (37) are of class C^{p-j} .

PROOF. We shall prove the uniform convergence of the series (38). Of course it is sufficient to consider the case when $N \ni n \ge n_0$ (see Remark 2 with $y' = \sigma_0$ and $x' = x'' = \tilde{x}_i$).

Let us observe (see (6), (34), and (40)) that the equality

$$Q_i^1(0) = 0$$

is valid, whence and by (26) we have

$$||Q_j^1 \circ \tau_j^n(y)|| \le \operatorname{const} \ q^n.$$

Furthermore, it is clear (cp. (10)-(12), (35) and (40)) that as r_m are continuous in Ω_j^1 for $m = j + 1, \ldots, p - 1$; $0 \le j \le p - 2$, and $Q_{p-1}^2 \equiv 0$, we have the equality

$$Q_i^2(0) = 0,$$

which, together with (26) yields

Thus, by (43) and (44), the series $S_j(y)$ is uniformly convergent for $y \in (0, \sigma_0)$ and the functions φ_j^0 and ψ_j^0 given by (37) are continuous for $x \in (0, \tilde{x}_j)$ and $y \in (0, \sigma_0)$, respectively.

A similar argument can be also used for the series $\sum_{n=0}^{\infty} \frac{d^{\nu}}{dy^{\nu}} [Q_j \circ \tau_j^n(y))]$, where $\nu = 1, 2, \dots, p-j$,

To this end we base on formula (30) and we apply inequalities (26), (27) and (29), getting the estimate

(45)
$$||(Q_j \circ \tau_j^n)^{(\nu)}(y)|| \le \operatorname{const} n^{p^2} q^n$$

$$(\mathbb{N}\ni n\geq n_0; \nu=1,2,\ldots,p-j).$$

Hence, we can assert that the functions φ_j^0 and ψ_j^0 are of class C^{p-j} for $x \in \langle 0, \tilde{x}_j \rangle$; $y \in \langle 0, \sigma_0 \rangle$ and (cp. (41) and (43)) that the system φ_j^0, ψ_j^0 belongs to the class \mathcal{K}_j .

As the remaining parts of the thesis of Proposition 1 are easily verified, the proof of this Proposition is completed.

Now, let us consider system (32) (for fixed j) in Ω_j^2 , with $x = \alpha_j^{-1}(y)$ in the first equation and $x = \beta_j^{-1}(y)$ in the second one:

(46)
$$\varphi_{j} \circ \alpha_{j}^{-1}(y) + \psi_{j}(y) = V_{j} \circ \alpha_{j}^{-1}(y)$$
$$\varphi_{j} \circ \beta_{j}^{-1}(y) + \psi_{j}(y) = W_{j} \circ \beta_{j}^{-1}(y)$$

We can formulate the following proposition.

PROPOSITION 2. Under the assumptions of Proposition 1, system (46), considered in the domain Ω_j^2 , has a solution given by the formulae

(47)
$$\varphi_{j}(x) = \tilde{\varphi}_{j}(x) : = \tilde{S}_{j}(x) + C_{j};$$

$$\psi_{j}(y) = \tilde{\psi}_{j}(y) : = W_{j} \circ \beta_{j}^{1}(y) - \tilde{S}_{j} \circ \beta_{j}^{-1}(y) - C_{j}$$

 $((x,y)\in\Omega_i^2)$, where

(48)
$$\widetilde{S}_{j}(x) = \sum_{n=0}^{\infty} P_{j} \circ \mu_{j}^{n}(x)$$

with

(49)
$$P_j(x) = P_j^1(x) + P_j^2(x);$$

(50)
$$P_{j}^{\nu}(x) = W_{j}^{\nu}(x) - V_{j}^{\nu} \circ \mu_{j}(x)$$

 $(\nu = 1, 2)$, and C_j is an arbitrary constant.

The functions $\tilde{\varphi}_j$ and $\tilde{\psi}_j$ given by formulae (47) are of class C^{p-j} . Proof is analogous to that of Proposition 1 and bases on the relations (cp. (3), (5), (34), (35) and (50))

(51)
$$P_i^1(1) = 0;$$

(52)
$$P_i^2(1) = 0,$$

by which and (27) we have

(53)
$$||P_j \circ \mu_j^n(x)|| \le \operatorname{const} q^n$$

 $(N \ni n \ge n_0)$, and on the inequality

(54)
$$\left\| (P_j \circ \mu_j^n)^{(\nu)}(x) \right\| \le \operatorname{const} n^{p^2} \cdot q^n$$

 $(N \ni n \ge n_0; \ \nu = 1, 2, \dots, p - j)$ that is a consequence of estimates (27) and (29), and formula (30).

Thus, in virtue of Propositions 1 and 2, we have

(55)
$$\varphi_{j}(x) = \begin{cases} \varphi_{j}^{0}(x) \text{ for } 0 \leq x \leq \tilde{x}_{j} \\ \tilde{\varphi}_{j}(x) \text{ for } \tilde{x}_{j} \leq x \leq 1; \end{cases}$$

(56)
$$\psi_{j}(y) = \begin{cases} \psi_{j}^{0}(y) \text{ for } 0 \leq y \leq \sigma_{0} \\ \tilde{\psi}_{j}(y) \text{ for } \sigma_{0} \leq y \leq \sigma, \end{cases}$$

and hence φ_j and ψ_j are continuous if and only if

(57)
$$\varphi_i^0(\tilde{x}_i) = \tilde{\varphi}_i(\tilde{x}_i); \ \psi_i^0(\sigma_0) = \tilde{\psi}_i(\sigma_0).$$

Using the first of equalities (57)(3) together with (37) and (47), we get

(58)
$$C_j = W_j(\tilde{x}_j) - S_j(\sigma_0) - \tilde{S}_j(\tilde{x}_j).$$

⁽³⁾ The second of these equalities yields the same result.

We still have to require the first of equations (32) to be satisfied for $x \in \langle \tilde{x}_j, x_j \rangle$ (i.e. the first of conditions (2) to be fulfilled on the part of Γ_i marked on Fig. 1).

By (32), (37), (47), (55) and (56) we can write

(59)
$$\tilde{S}_j(x) + S_j \circ \alpha_j(x) + C_j = V_j(x),$$

whence and from (58) we obtain

(60)
$$\widetilde{S}_j(x) + S_j \circ \alpha_j(x) - S_j(\sigma_0) - \widetilde{S}_j(\tilde{x}_j) = V_j(x) - W_j(\tilde{x}_j)$$

$$(x \in \langle \tilde{x}, x_i \rangle).$$

On substituting (38) and (48) into (60), and using (34), (39), (40), (49) and (50), we obtain after some rearrangements (cp. [4], p. 362) the following equality

(61)
$$E_{j}(x) + \sum_{n=0}^{\infty} \left\{ \int_{\lambda_{j}^{n+1}(x_{j})}^{\lambda_{j}^{n+1}(x)} E'_{j}(t)dt + \int_{\mu_{j}^{n+1}(\bar{x}_{j})}^{\mu_{j}^{n+1}(x)} E'_{j}(t)dt \right\} = 0$$

 $(x \in \langle \tilde{x}_j, x_j \rangle)$ in which

(62)
$$E_{j}(x) = N_{j}(x) - M_{j}(x) + R_{p-j}[x, \alpha_{j}(x)] - R_{p-j}[x, \beta_{j}(x)] + W_{j}^{2}(x) - V_{j}^{2}(x),$$

where the functions V_j^2 and W_j^2 are given by (35) and (11) - (13), with (cp. (37) and (47))

(63)
$$r_{k}(\xi,\eta) = \begin{cases} a_{k}(\xi,\eta) \text{ for } \xi \in \langle 0, \tilde{x}_{k} \rangle, \eta \in \langle 0, \sigma_{0} \rangle \\ b_{k}(\xi,\eta) \text{ for } \xi \in \langle 0, \tilde{x}_{k} \rangle, \eta \in \langle \sigma_{0}, \sigma \rangle \\ c_{k}(\xi,\eta) \text{ for } \xi \in \langle \tilde{x}_{k}, 1 \rangle, \eta \in \langle 0, \sigma_{0} \rangle \\ d_{k}(\xi,\eta) \text{ for } \xi \in \langle \tilde{x}_{k}, 1 \rangle, \eta \in \langle \sigma_{0}, \sigma \rangle, \end{cases}$$

 a_k, b_k, c_k and d_k being defined by (cp. (37), (47), (55) and (56))

$$a_{k}(\xi, \eta) = W_{k}(\xi) - S_{k} \circ \beta_{k}(\xi) + S_{k}(\eta)$$

$$b_{k}(\xi, \eta) = W_{k}(\xi) + W_{k} \circ \beta_{k}^{-1}(\eta) - S_{k} \circ \beta_{k}(\xi) - \widetilde{S}_{k} \circ \beta_{k}^{-1}(\eta) - C_{k}$$

$$c_{k}(\xi, \eta) = \widetilde{S}_{k}(\xi) + S_{k}(\eta) + C_{k}$$

$$d_{k}(\xi, \eta) = W_{k} \circ \beta_{k}^{-1}(\eta) + \widetilde{S}_{k}(\xi) - \widetilde{S}_{k} \circ \beta_{k}^{-1}(\eta)$$

(for the meaning of C_k see (58)).

Equality (61), obtained on the basis of (57), is a necessary condition for the existence of a continuous solution φ_i, ψ_i of system (32).

However, φ_j and ψ_j schould belong to C^{p-j} and hence we have to add the conditions

(65)
$$\varphi_{j}^{0(\nu)}(\tilde{x}_{j}) = \tilde{\varphi}_{j}^{(\nu)}(\tilde{x}_{j}); \; \psi_{j}^{0(\nu)}(\sigma_{0}) = \tilde{\psi}_{j}^{(\nu)}(\sigma_{0})$$

$$(\nu=1,2,\ldots,p-j).$$

Basing on the second of relations (65), and using (37), (46) and (47), we obtain

(66)
$$\left[\frac{d^{\nu}}{dy^{\nu}} S_j(y) \right]_{y=\sigma_0} = \left[\frac{d^{\nu}}{dy^{\nu}} (V_j \circ \alpha_j^{-1}(y) - \widetilde{S}_j \circ \alpha_j^{-1}(y) - C_j) \right]_{y=\sigma_0}$$

Set
$$x = \alpha_j^{-1}(y)$$
, whence $\frac{d^{\nu}}{dy^{\nu}} = (\alpha_j'(x))^{-\nu} \frac{d^{\nu}}{dx^{\nu}}$.

Equality (66) together with (33), (34), (38)-(40), (48)-(50) and (58) yields, after repeating the argument used in the derivation of (61), the following relation

$$E_{j}^{(\nu)}(x_{j}) + \sum_{n=0}^{\infty} \left\{ \left[\frac{d^{\nu}}{dx^{\nu}} (E_{j} \circ \lambda_{j}^{n+1}(x) - E_{j} \circ \mu_{j}^{n+1}(x)) \right]_{x=x_{j}} \right\} = 0$$

$$(\nu=1,2,\ldots,p-j).$$

By a similar argument, based on the first of relations (65), and on (32), (47)-(50) and (58), we get

$$E_{j}^{(\nu)}(\tilde{x}_{j}) + \sum_{n=0}^{\infty} \left\{ \left[\frac{d^{\nu}}{dx^{\nu}} (E_{j} \circ \lambda_{j}^{n+1}(x) - E_{j} \circ \mu_{j}^{n+1}(x)) \right]_{x = \tilde{x}_{j}} \right\} = 0$$

$$(\nu=1,2,\ldots,p-j).$$

Thus, we have obtained the following relation

(67)
$$E_j^{(\nu)}(z_j) + \sum_{i=1}^{\infty} \left\{ \left[\frac{d^{\nu}}{dx^{\nu}} (E_j \circ \lambda_j^{n+1}(x) - E_j \circ \mu_j^{n+1}(x)) \right]_{x=x_j} \right\} = 0$$

$$(z_j = x_j, \tilde{x}_j; \ \nu = 1, 2, \ldots, p - j).$$

Equalities (61) and (67) should be considered for j = p - 1, $p - 2, \ldots, 1, 0$, successively (cp. Remark 3 and Propositions 1 and 2).

It is clear (cp. (11)-(13), (33), (35), (37)-(40), (47)-(50), (62) and (63)) that the said equalities establish relations between the functions $M_j, M_{j+1}, \ldots, M_{p-1}, N_j, N_{j+1}, \ldots, N_{p-1}, F$, and $M_j^{(k)}, M_{j+1}^{(k)}, \ldots, M_{p-1}^{(k)}, N_{j+1}^{(k)}, \ldots, N_{p-1}^{(k)}, F$ (where $k = 1, 2, \ldots, p-j$), respectively, which are necessary for the existence of a solution $\varphi_j, \psi_j \in C^{p-j}(j=0,1,\ldots,p-1)$ of the system of integral-functional equations (32) and hence (cp. Lemma 1 and relations (1), (2) and (10)) of a solution u of problem (P).

It is also easily seen (cp. Lemma 1 and Propositions 1 and 2) that the said equalities are sufficient for the existence of these solutions.

Thus, we can formulate the following theorem

THEOREM. If Assumptions I-III are satisfied, then conditions (61) and (67) are necessary and sufficient for the existence of a solution of problem (P).

REMARK 4. If p=1 and $F\equiv 0$, then conditions (61) and (67) are identical with relations (25) and (26_s) (s=1,2), respectively, in paper [4].

REFERENCES

- [1] A. BIELECKI J. KISYNSKI: Sur le problème de E. Goursat relatif à l'équation $\frac{\partial^2 z}{\partial x \partial y} = f(x, y)$, Ann. Univ. Mariae Curie-Sklodowska, A.10 (1956), 99-126.
- A. Borzymowski: A Goursat Problem for a Polyvibrating Equation of D. Mangeron, Funkcial. Ekvac. 23(1980), 1-16.
- [3] A. BORZYMOWSKI: Concerning a Goursat problem for some partial differential equation of order 2p, Demonstratio Math. 18(1985), 253-277.

$$M_j(x) = N_j(x) + R_{p-j}[x, \alpha_j(x)] - R_{p-j}[x, \beta_j(x)] + W_j^2(x) - V_j^2(x)$$
.

⁽⁴⁾ Let us note that (61) and (67) are satisfied if

- [4] G. FICHERA: Su un problema di Dirichlet per l'equazione uzy = 0, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 105 (1970-71), 355-366.
- [5] G. FICHERA: Studio della singolarità della soluzione di un problema di Dirichlet per l'equazione uzy = 0, Atti Accad. Naz. Lincei Rend. Cl.Sci.Fis.Mat. Natur. (8), 50(1971), 6-17.
- [6] D. MANGERON: Risolubilità e struttura delle soluzioni dei problemi al contorno non omogenei di Goursat e di Dirichlet per le equazioni integro-differenziali lineari a derivate totali d'ordine superiore, Atti Accad.Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 34(1963), 118-122.
- [7] M. MICHALSKI: The global solution of a Goursat problem for the polyvibrating equation of order 2p, Acad. Roy. Belg. Bull. Cl. Sci. (5), 71 (1985), 337-344.
- [8] M. MICHALSKI: A Goursat problem for a polyvibrating equation of Mangeron, Demonstratio Math. 21 (1988), 215-229.
- [9] M. MICHALSKI: Remark on the formula for m-th derivative of the composition of two Banach-valued functions, Acta Math. Univ. Comenian 52-53 (1987), 155-157.
- [10] M. NICOLESCO: Les functions polyharmoniques, Hermann, Paris 1936.
- [11] M.N. OGUZTÖRELI: Sur le problème de Goursat pour une équation de Mangeron d'orde superieur I, II, Acad. Roy. Belg. Bull. Cl. Sci. (5) 58(1972), 464-471, 577-582.
- [12] M. PICONE: Sulle equazioni alle derivate parziali del second'ordine del tipo iperbolico in due variablili indipendenti, Rend. Circ. Mat. Palermo 30(1910), 349-376.

Lavoro pervenuto alla redazione il 8 aprile 1992 ed accettato per la pubblicazione il 14 luglio 1992 su parere favorevole di G. Fichera e di F. Rosati

INDIRIZZO DELL'AUTORE: