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Moment-preserving approximations:

a monospline approach

L. GORI - E. SANTI®

RIASSUNTO — Si affronta il probleme di approssimare una funzione con splines de-
fettive, che conservino quanti piti possibile momenti della funzione stessa; tale problema
viene risolto utilizzando particolari proprietd delle monosplines a nodi multipli.

ABSTRACT — Some properties of a class of monosplines with multiple knots are
used for the solution of certain problems concerning the approzimation of a function f,
by defective spline functions, which preserve as many moments of f as possible.
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1 — Introduction

In a series of papers [2-5, 18, 19] initially motivated by some com-
putational questions of plasmsa physics, several authors considered the
problem of finding a polynomial spline, approximating a given function
f, and preserving as many moments of f as possible. Among other things,
the approximation of spherically symmetric distribution in R? by linear
combination of Heaviside step functions or Dirac delta functions has been
obtained in [4].

(*)Work supported by Ministero della Pubblica Istruzione of Italy
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The approximation considered in the above papers concerns the cage
of splines with simple knots, or splines with knots having the same odd
multiplicity. The problem was treated from different points of view, de-
pending on the assumptions on f. One of the salient aspects of this
analysis consists in the fact that the existence and uniqueness of the req-
uisite spline can be related to the existence and uniqueness of suitable
quadrature rules.

In a nice recent paper [18] another approach to the problem, arising
from the close connection between quadrature rules and monosplines [21],
is presented. The results of {18] concern the recovery of a function on a
finite interval by splines with simple knots, and provide several extentions
of the original problem mentioned above.

In this paper, the construction of moment-preserving approximations
is obtained by splines with multiple knot (the multiplicity being possibly
different from one knot to another) which satisfy three different types of
conditions.

Following the ideas of {18], the corresponding problems are put into
a unified framework and treated using some properties of monosplines,
with multiple knots, which have recently been obtained in a paper of
ZHENSYKBAEV (26)].

Furthermore, we establish a convergence theorem for Gaussian qua-
drature rules with multiple knots, from which the convergence of the
sequence of approximating splines, when the number of knots tend to
infinity, can be derived. It is possible to apply this theorem also to the
sequences of splines given in (3], where the convergence question is not
addressed. Therefore, in this sense, we complete the results presented
there.

2 — Preliminaries and statement of the problem

A defective spline function on [0,1] of degree m (m > 2), with n
distinct knots zy, Z2, - . . , Tn, respectively of multiplicity k, +1, k2 +1, ...,
k. + 1, has the form

n ki

21  sam(@) =pm@) + 3. aylz—=z)] 7, 0<z <1,

i=1 j=0
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where g;; are real numbers, p,, is & polynomial of degree < m and

0<z1<L,<...<2, <1,
0<ki<m, i=1(1)n,

{ (x ~z5)+: = max((z — z;),0),
(@—ay=[-=)s], i=1Un, jeN.
We shall call k; the defect of z;, i = 1(1)n; the case k; = 0 for each
1, gives rise to ordinary splines.
A monospline M of degree m + 1 with multiple knots z;, i = 1(1)n,
is a function of the form
m+-1

where C is a positive constant, see [22, p.330, p.403]. A more general
definition of monospline, given in [18), is obtained replacing the first
term of (2.2) by F(z), where F € C™*1[0, 1] with nonvanishing (m+ 1)-st
derivative on (0,1).

It is well known that a typical example of monospline is given by the
Peano kernel of a quadrature rule Q(f), which is exact for f € Pn_;.
Indeed, the remainder of such a rule may be expressed, for any f €
cm™0, 1], by

[ R (-7 i @)z,

where R,((z — t)T™?), the Peano kernel, is a polynomial spline (14,21].

More generally, the remainder R(f) of a quadrature rule, exact for
the solutions f € C™[0, 1] of a homogeneous linear differential equation
of order m, can be represented in the form

R() = [ #(@) ™)z,

where ®(z) is a monospline constructed by L-splines [22], as one can
prove by the use of the Green-Lagrange identity (6].

In the sequel, we shall be concerned with the case of knots of odd
multiplicity, that is,

(2.3) k=2, i=1()n,
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where
o= (011021- #e ’dn) .

is a vector of given nonnegative integers.

We will denote by Q. the linear space of defective splines (2.1), with
defects (2.3), and we also set

(2.4) N* = 2[&(0.- +1)].

=1

We consider the following problems:
A - Determine sp;, € Qnm such that

(2.5) /0 N sm(t)dt = /O UEMdt,  § =N +m.

B - Determine s,,, € ), such that

1 o 1 . . .
(2.6) fo 9 S (£)dt = /o Hf(t)dt,  j=O0()N* -1,
(2.7) s = %), k=o01)m.

C - Determine s, € Q. such that

(2.8) /o Vi sam(t)dt = /o ‘Yrwa,  §=o0()r,
(2.9) s®)=f®(@1), k=01), I<m.

withl+7r+1=N*"+m.

Problem C is a generalization of problems A and B, the latter be-
ing obtained by letting l = —1,r = N*+m and | = m,r = N* -],
respectively.

The case o; = 0, ¢ = 1(1)n, has been considered in {2, 18] and some
results concerning the case o; = 8,i = 1(1)n, were obtained in [3].
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3 — Solution of the problems

The solution of the above problems can be analyzed in terms of cer-
tain properties of monosplines. The properties we need are contained in
some recent results of ZHENSYKBAEV, [26], which we summarize in the
following theorem.

THEOREM Z. Let the points 0 < t; <... < t, <1 and the integers

pi, 1 = 1(1)k, be given where :
k

1<p <p+1,Y pi=p+N,p < p+sgnty,pr < p+sga(l—te).

i=1

There ezists a unique monospline of degree yu with zeros at the points t;

of multiplicities p;,i = 1(1)k, if and only if the conditions

] Pi i
(3.1) 23 (0;+1)-1 <Y p; S p—(20:41)+2) (0;+1), i=1()n,
j=1 j=1 j=1

hold for some indices py < p2 < ... < pn, where 20; +1, i = 1(1)n, are
the multiplicities of monospline knots.

Now, assume that the function f satisfies the conditions
(3.2) fecmo,1], fmV#£0, ae in[0,1],
and denote by u the following integer depending on N,
(3.3) p=N+m+1,
and by Ki(z,£) the kernels

£\
(3.4) K,,(z,g)=(_"f_mi)t, h=0,1,...,N-1.

THEOREM 1. Under assumptions (3.2) on f, problem A has a
unique solution.
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PROOF. For every spline spm, of the form (2.1), we introduce the
monospline M

(3.5) M(z) = /: Ky_i(z,1) [f(t) - s,.,,.(t)]dt.
Assuming
(3.6) N=N*"+m+1,

M is a monospline of degree 1 having a zero of multiplicity N at z = 0.
Moreover, it is easy to derive from (3.5) the following relations

S R (i P = iy L FTEe
k=1(1)N.

Formula (3.7) allows us to translate condition (2.5) into the following
equivalent conditions on M:

(3.8) M®P(1) =0, j=O0@1)N-1.

{ MU(0)=0, j=O0()N -1,

Now, existence and uniqueness of a monospline M, fulfilling (3.8), can
be derived from Theorem Z. In fact, putting p = max p;, 7 = max(2c; +
1),i = 1(1)n, yields
pH+T S p+2,

This condition, as remarked in {26}, is sufficient in order that (3.1)
holds. 0

Concerning the remaining problems, we can prove the following The-

orem.

THEOREM 2. Under assumptions (3.2) on f, problems B and C
have a unique solution.
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PRrROOF. We need consider only problem C, since problem B reduces
to C assuming r = N* — 1, = m. For problem C we introduce the
monospline

(3.9) L(z) = /0 'K.(z,t) [£(2) = sam(®)] .

L is a monospline of degree r + m + 2 and conditions (2.8), (2.9) yield

(3.10)

LOW0)=0, j=01)N-1-2,
LO1)=0, j=01)I+r+1,

where N is given by (3.6). For [l = m and r = N* —1 (3.10) are equivalent
to conditions (2.6), (2.7) of problem B.

As for condition (3.1), we remark that here we have
k
S pi=N+r+1, k=2,4=0,t,=1.
i=1
Moreover for every i = 1(1)n,p; =1 and

k 3
23 (0;+1)—1SN-1-1<r+m+2-(20;+1)+2> (0; +1),

j=1 =1

thus (3.1) holds, which implies the claim. 0

Now, we turn to the evaluation of the splines, which solve our prob-
lems. For this purpose, it is convenient to stress the connection between
monosplines and quadrature rules.

Concerning the case A, we first note that from (3.5) it follows

(3.11) MW (z) = f™(z),

and so successive integration by parts yields, recalling formula (3.3),
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I8}

-1

[ 9@ 50 @)z = (-1 MO ©0)g0D(0)+
[+] J=0

p—1

+ E(—1)““’"1MU)(l)g(“*j'l)(1)+
(3.12) 3=0
n ki
+3° 3 (-1y [ M@=3=D(gr) - ME=3-D(g+) gz 4
3=13=0

1
+ / M(z)dg®=V(z).
0
Therefore, letting

Ay = (F)mIEMII0), By = (I MNE),
Cy; = (-1) [M Wi D(zr) — MU= (g} )] ,

and using (3.8), we obtain the following Lobatto quadrature rule with
multiple knots

[ @m0 @)im = 3 angtm o)+

0

(3.13) _ .
+Y " Bug™ M)+ YN G99 (x)
h=0 i=]) j=0

It is possible to give a more precise evalutation of the knots and the
coefficients of snm in terms of the quadrature rule (3.13). In fact, taking
into account (2.1), one gets

Y o

a;; = Wy t=1(1)n, J=0(1)k,

~ (m—j)
and
pER0) = FR(0) + (-1)* Amek, k=0(1)m.

Moreover the knots z; are the zeros of the polynomial of degree n,
o-orthogonal in [0, 1] with respect to the weight function

w(z) =7z (1 — )™ ()



9] Moment-preserving approximations: etc. 1039

(7 is 2 constant such that w(z) > 0 a.e. on [0,1]).

An useful method for the calculation of such zeros is treated, for
instance, in (8], while the connection between the coefficients of (3.13)
and a related Turan-type quadrature rule is developed in [9] and [10].

In the case of problems B and C, a reasoning similar to that given
above, now using the monospline L(z) introduced in Theorem 2, estab-
lishes a connection between the splines of these cases and certain quadra-
ture rules,

Specifically, putting v = r + m + 2, one has
L) = £™*9(@),

and, since L(z) fulfils (3.10), the quadrature rule in this case is

[ s @in = 3 Bugm 0+
h=0

(3.14)

m—{-1

+ Z Fg™t-r-1(1) + ZZG.,g( ) () -
i=1 j=0
The degree of precision of (3.14) is v, and one has
E; = (-1HI9(0), F=(-1"7IOW),
Gy = (-1 LI (ag) - L (at)]

where F, =0fork>m—-1—1.
Here, one has

ag; = zrsl—il-ji iy 1=1(1n, 7 =0)k;,

and
P8 (0) = f™9(0) + (-1)*Em-k, k=0(1)m,

The knots x; are the zeros of the polynomial of degree n, g-orthogonal
in [0, 1) with respect to the weight function

x(z) = yz™ (1 - z)™ ()
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(v is a constant such that w(z) > 0 a.e. on [0,1]).

We remark that in the case B, quadrature rule (3.14) reduces to a
Radau formula, while for ! < m, (3.14) is a quadrature formula with
multiple knots of STANCU type [25].

4—- A convergence result

In this section, we wonder whether or not the sequences of the splines
Snm Obtained above converge to f when n tends to infinity. The answer
to this question is affirmative and its proof will be based on Theorem 3
below.

For this purpose, we recall that

f(z) = 8am(x) = Rum(pzidom),

where Rpm(pz;doym) is the remainder term of quadrature formulas (3.13)
(or (3.14)) and

pet)=@—8T,  telo1],
dom = w(z)dz, (or dop, = x(z)dx).

The above quadrature rules have the preassigned nodes y; = 0 with
multiplicity a; and y. = 1 with multiplicity az. They are particular cases
of the class of quadrature rules with preassigned nodes y; with multiplicity
a@j,j = 1(1)h, considered in {9,11], where a; is even if y; € (0,1). To state
our result we find the following notation more convenient

h
[I@ = (0= [1(z - v)>;
i=1
t; =aj-—1, j=1(1)h,
{T =mﬂx(k11bh-'-’kn:tl)tm‘---’th); T=iai'

=1

Let da(z) be a (positive) Stieltjes measure, with a(z) having infinite
number of points of increase and da(z) having all finite moments.
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Moreover if f is sufficiently smooth, we can define the following linear
functional

h

n ki
Fn(f) = ZZ Bk,f(k)(yj) + z Z Ahif(k)(zin) y

such that )
R = [ fe)da@) =: 109),

for every f € Pg, where Q = N*+T-1 and Py, is the space of polynomials
of degree < Q.

The nodes z;, coincide with the zeros of polynomials P,(dg, z) of n
degree, o-orthogonal in [0, 1] with respect to the measure

dB(z) = [[(z)da(z).
Let g be the function
9(z) = [f(z) - H; @)}/ [](=)-

where Hf(z) is the interpolating Lagrange-Hermite polynomial of the
function f, related to the preassigned nodes y;, j = 1(1)h.
We prove the following Theorem 3 below.

THEOREM 3. Let f € CT[0,1). We have
(41) lim Fo(f) = I(f).
and, furthermore, the operator

R.(f) =I(f) - Fu(f),

is such that
R.(f) =0[(1/n)"],

if the Gaussian nodes satisfy the conditions

where C is independent of n and i.
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ProOF. The proof follows the same line of the reasoning of Theorem
1in [11]. Specifically, we write

1) = I +1(7 — H) = 1(H) + [ ' 4(2)dB(z).

and remark that it is possible to prove, as in above mentioned Theorem
1, that g € C*[0, 1], where v = max(k;, k2, ... ,kn). By Theorem 2 in [11]
the convergence (4.1) is assured. o

We remark that Theorem 3 holds even if f € C7~1[0, 1], f")(z) exists
and is continuous at least in a neighborhood of the points where it is
required.

An approach to the solution of problems A and B in terms of func-
tional moments is contained in [12].
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