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The general inverse quartic interaction

H. EXTON

RIASSUNTO - Si vogliono ottenere espressioni analitiche degli autovalori e delle
autofunzioni dell’equazione di Schrodinger con un potenziale che é Uinverse di un poli-
nomio del quarto ordine. A tale scopo si utilizza la soluzione esplicita di una equazione
differenziale lineare del secondo ordine le cui due singolaritd sono entrambe irregolari
del secondo tipo.

ABSTRACT — The ezplicit solution of a second order linear differential equation the
only two singularities of which are both irregular of the second type, is used to obtain
analytic expressions for the eigenvalues and eigenfunctions of the Schradinger equation
in which the potential consists of the general inverse quartic polynomial.
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1 — Introduction

The Schrédinger equation with a special inverse fourth-power poten-
tial has been studied by BUHRING [1], where it was shown to be related
to Mathieu’s equation. This present study is concerned with the same
type of differential equation with the general inverse quartic potential for
a particle of mass y, namely

(1.1) v+ 2un~3W - V(z)ju = 0.
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The potential V(z) is given by
K2 3 4
(1.2) V(z) = —2—’:(,41::“ + Aoz + AT + Az ™) , Al #0,

and which may be associated with a type of double-well potential infinite
at the origin. From the form of this potential we consider 0 < z < co.
On putting

(1.3) u = %% explaz/2 — c/(22)}y,

(1.1) takes the form

(1.4) z’y" + (az® + bz +c)y’ + (dz + fly =0,
where

15 a ==+ 2/(—2uW)/h, b=2+2As3/c,c=+2\/A,,
(1.5) d=ab/2— A, and f=ab/2+b/2(b/2—1)— A,.

Since, in a physical context, (1.1) is in the real domain, it follows that
a and c are either real or purely imaginary, although the parameters b, 4
and f may be complex. If A4 = 0, the following analysis is not applicable
and a separate discussion is necessary.

The differential equation (1.4) is the doubly confluent Heun equation
characterised by the Ince symbol [0,0,1,] having only two singularities
both of which are irregular of the second type. From the point of view of
the Frobenius method of tacking linear differential equations, such a case
would present considerable difficulty. It would normally be expected that
convergent series representations could not be obtained by that method.

LEAVER [4] has indicated the rather suprising existence of convergent
series representations of solutions of the doubly confluent Heun equation
in a slightly different form in a cosmological context. In the course of
a systematic investigation of all the confluent forms of Heun'’s equation,
ExTON (3] has obtained explicit forms of such solutions.
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2 — Solutions of (1.4)
The Laplace transform of (1.4) may easily be shown to be

(21) sl —shu"+[2-dfa— (4—b)s|u' = [2+ f ~b~aesfu =0,

where s = —t/a and
(2.2) y= / e*tu(t)dt.
r

The form of the contour of integration I' will be indicated below. This
differential equation is a generalised Mathieu equation with Ince symbol
(0,2,1,]. EXTON [2] has be given the following explicit solution of (2.1):

CH(A,B;C;K;s) =
(2.3) o K¢
B g 43q(C/2+1/2,9)

Y " Amgy-.. ymg(A, B;C)smOF Mgt

The symbol Ap,,..,m,(A, B;C) denotes the coefficient
24
( ) A,mq)(B, C+1,mq)(2, A+2,mg+my ) (B+2,mo+m1)(C+3,mg+my)(4,mg+m
(A+2|m0)(B+2-m0)(cim0)(ltmo)(A+4vm0+ml)(B+4vm0+ml)(c+2tm0+ml)(3lm0+ml)
X.ooo X
(A+29—2,mo+-+mg_1)(B+29-2,mo++mg_1)(C+2q—1,mo+ +mg_1 }(2¢. Mo+ +mg-1)
(A+2q,mo+-+mg_1)(B+2q,mo+-+mg_1)(C+2¢—2,mo++mq_1)(29~1,mo+-+mq—1)

(A+2q,mo+-+mg)(B+2g,mo+ +mg)
(C+2qvm0+'+m¢)(1+2QIm0+'+m¢)

X

and the Pochhammer symbol (a,m) denotes the product
(2.5) ala+1)(a+2)...(a+m-1)

Here and in what follows, the summation sign }_ without further
qualification applies for each of the indices of summation mo, my,... ,m,
for all non-negative integer values. The parameters A, B,C and K are
givenby A+ B=3-bAB=2+f-bC=2-d/a and K = —ac.

By means of a simple transformation of the generalised Mathieu equa-
tion, the function

(2.6) $C(1-s)°4-BCH(1- A,1- B;2-C;K;s)
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is also seen to be a solution of (2.1), and this is more convenient than
(2.3) for the present purposes. The required solution of (1.4) then fol-
lows if (2.6) is inserted into (2.2), the contour of integration I' being a
Pochhammer double-loop slung around the points 0 and 1 in the s-plane.
This solution is

DC(a,b,c,d, f;z) =

=2 42¢/(3/2— C/2,q) Y Amgs--- sMe(l — 4,1 - B;2-C)-

q=0

@7 (2-C,mo+...+my+2q)

| (3—A—B,mo+...+mq+2q).

F 2-C+mo+...+my+2q; —-ax)
151 3-A-B+mp+...+my+2q;

See EXTON |2].
If y is replaced by exp(c/z)y in (1.4), it follows that

(2.8)  exp(c/z)z>°DC(a,4 - b,~c,d+2a —ab, f —ac— b+ 2;z)

is an independent solution of the doubly confluent Heun equation.

3 — The asymptotic behaviour of DC(a,b,c,d, f; z) for large real
values of z

Before discussing the eigenvalues of the system under consideration,
the behaviour of the doubly confluent Heun function must be investigated
for large real values of z. This is carried out by noting that the inner
confluent hypergeometric function of (2.7) may be written asymptotically
as

I'(3-A—B+mg:+mg+2q)
T2-C+mo+-+mg+2—gq)

exp(—az)(—az)**P-C-14
(3.1)
F(3 —-A-B+ my+ -+ my + 2Q) (az)c—2-mo—,mr—2q
I(C—-A-B-1) |

See SLATER (5] page 60 for example.
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If this expression is inserted into (2.7), we have, after a little reduc-
tion,

DC(a,b,¢c,d, f;z) ~

I'(d) exp(—aa:)(—a:z:)d/“_bCH(b —1=/[(b-1)*- 4f]’

~ T(d/a) 2
b—1—/[(b-1)?-4f T(b) .
\/[(2 ) ];d/a; —ag; 1) +1‘(b d/ )( )d/

for large real values of z. \ , )
The function (L=t VIb=17—4f] b-1-vIb-1] -4/,

2
d/a; —ac;1)/T(d/a) is defined for all values of its parameters provided
that Re(d/a —b+1) < 0 when its series representation does not converge.

4 — The eigenvalues of the system

Various cases need to be considered separately, beginning with the
behaviour of the wave function at the origin. If Re(c) > 0, we take

(4.1) u(z) = 2% exp(az/2 — ¢/(2z)) DC(a, b, ¢, 4, f; 2),

using (2.7). The function u(z) is then finite at the origin.
By means of (3.2), for large values of =
(4.2)

u(z) ~ I'(b)/T'(d/a) exp(—az [2)(—a)¥/e-bgd/e-b12,
-CH(”‘ 1+ w/l(’;- 1)?-4f] b-1- \/[(l;— 1y _4f];d/a;—ac;1>+

+ I'(b)/T(b — d/a) exp(az/2)z~gb*=/=.

The generalised Mathieu function of unit argument converges if Re(d/a —
b) > —1, or As\/A > hA,/(—2W), which must be taken into account if
the associated term of (4.2) is not recessive.

On putting Re(a) > 0, the first term of (4.2) is recessive, and the
second term vanishes if

(4.3) b—d/a=-N,
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where N is a non-negative integer. In terms of the original parameters of
the system, (4.3) becomes
_ —h?A?

8u[N + 1 + As/(2v/Ad))]

(4.4) W=

thereby furnishing one set of eigenvalues.

On the other hand, if Re(a) > 0, the second term of (4.2) is recessive,
so that the eigenvalues are given by the negative real zeros of the function

b= LA 4f) b= 1= V(B IPA) ygi0),

(4.5) CH(

For convenience, the original parameters of the system are not re-
stored to (4.5) or to similar expression below, while it is recalled that a, f
and d are functions of the eigenvalues.

When the eigenvalues are non-negative, Re(a) = 0. Neither term of
(4.2) is then recessive, and if the eigenfunctions are to be finite at infinity,
Re(b/2—d/a) must vanish, since b—d/a is now complex. The convergence
condition Re(d/a—b) > —1 in this case implies that b < 2 or that A3 <0.
If this condition is met, then a continuous positive spectrum results as
would would be expected on grounds of intuition.

From (2.8), eigenvalues of the type

u(z) =z*~*/2 exp(az/2 + ¢/(2z))-

(4.6)
-DC(a,4—b,—c,d+Za—ab,f—a.c—b+2;:c),

arise which are appropriate of Re(c) < 0. From (3.2), for large values
of z,

u(z) ~ T(4 — b)/T(2 — b+ d/a) exp(—az/2)(—a)¥/*~2z4/=b/2,

2-b+4 /([b— 12 —4f +4ac)
-C’H( ) )

2-b~-+/([b=1]% — 4f + 4ac)
2

+ T'(4 — b)/TY(2 — d/a) exp(azx/2)ab=/*~2gb/2-d/a

(4.7)

i2+d/a - b;ac; 1)+
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The generalised Mathieu function converges of Re(d/a) > 0.
When Re(a) > 0, the first term of (4.7) is recessive, and the corre-
sponding. eigenvalues are given by

(4.8) dfa=N-2.

If Re(a) < 0, the second term of (4.7) is recessive, and the eigenvalues
are given by the zeros of

CH(z —b+ V(b —21]2 —4f +4ac)
(4.9) 2
2-b-— \/([b—21] —4f + dac) ;2+d/a—b;ac;1)

as a function of the eigenvalues.
As before, if positive eigenvalues are considered, & continuous spec-
trum arises if Re(d/a) =1 — A3/+/A4 > 0.

5 — Appendix: Computational Aspects

Difficulties arise in directly computing the generalised Mathieu func-
tion of unit argument. This is tackled by considering an analytic contin-
uation formula which may be deduced from solutions of the associated
differential equation (4.1) valid near the point z = 1. Such solutions are
given in EXTON [2] and the result in question may be written as

(5.1)
CH(AvB;C; K;z) =
=HICH(A+B+\/(2[AB]2 —4K) A+B_\/([,;_B] —4K).

A+B+1—C’;—K;1—z)+

9C — A— B+ /([A - B]? —4K)
2 ?

+Hp(1 — :v)c““BCH(

2C — A- B - /(|A - B — 4K)
)

;1+C’-—A—-B;—K;1—z).
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The constants H, and H,, which are functions of A, B,C and K
but independent of z can be determined by computing the functions of
(5.1) for two convenient values of z, for example 0.45 and 0.55. Such an
approach is necessary because the series representation of the generalised
Mathieu function converges very slowly on its circle of convergence and
is, in fact, equal to H,(A4, B; C; K).
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