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RIASSUNTO — In questo articolo si dimostra come le funzioni di Bessel generaliz-
zate possano essere proficuamente impiegate nella ricerca di soluzioni esatte di alcune
equazioni differenziali alle dertvate parziali. In particolare, le funzioni di Bessel genera-
lizzate con le rispettive estensioni a pit variabili costituiscono soluzioni dell’equazione
della diffusione in pit dimensioni, dell’equazione di Schréodinger, di quella di Klein-
Gordon, nonché di alire equazioni differenziali di interesse in applicazioni fisiche.

ABSTRACT - In this paper we show that the generalized Bessel functions can be suc-
cesfully ezploited in the search of exact solutions of some partial differential equations.
In particular, we will prove that the generalized Bessel functions and their multivariable
extension are the natural solutions of the multidimensional diffusion equation, of the
Schrodinger and Klein-Gordon equations as well as of other equations of interest for
physical applications.

KEY WORDS — Generalized Bessel functions - Partial differential equations - Dif-
fusion equation - Schrodinger equation - Klein-Gordon egquation.

A.M.S. CLassIFICATION: 33C10 - 33C99 - 35C05 ~ 35D05

1 — Introduction

The theory of generalized Bessel functions (G.B.F) has been initially
motivated by their usefulness to treat physical problems related, e.g.,
to Compton scattering by intense laser waves, to undulator brightness
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and to Free Electron Laser {1-7}. The intrinsic mathematical importance
of these functions has also been recognized mainly in connection with
their relations to the exponentials of trigonometric series and because
they provide the natural solutions of some partial differential equations
(PDE) (see [8-13] and references therein). It has been, indeed, shown
that two-variable G.B.F. satisfy PDE of the Schrédinger and Helmholtz
type.

This paper is addressed to a more systematic study of the link be-
tween G.B.F. and PDE and we will show that they provide the nat-
ural solutions of a large body of the most interesting PDE of mathe-
matical physics (wave propagation, multidimensional diffusion equation,
Schrédinger, Klein-Gordon as well many others). Furthermore, we will
see that, using the wealth of recurrence properties associated to the
G.B.F., an almost infinite set of exactly solvable PDE can be constructed.

The paper is organized in four Sections. In Sec. 2 we introduce
G.B.F., fix the notation and review their main properties. Sec. 3 deals
with the specific topic of the paper and Sec. 4 is devoted to the concluding
remarks.

2 — The generalized Bessel functions

In previous works [6-8], we have presented various types of General-
ized Bessel Functions. The starting point of our investigation has been
presented by the two-variable, one-index G.B.F. defined by the series

O e = Y em@iEm), (Enm) €R

|=~o00

whose relevance for scattering problems was stressed, several years ago,
by RElss, BROWN and KIBBLE (see [3-5]) in the case m = 2.

It is worth noticing that the series in eq. (1) has the same form of
the series appearing in the addition theorem for ordinary Bessel func-
tions; this fact assures the convergence of the series and, therefore, the
correctness of the definition (1).

The functions defined by eq. (1) can be considered as a particular
case of the following two-variable, one-index and one-parameter G.B.F.
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specified by the series

(2) ™) Jo(1,21; 8) = Y dTnm(mi)di(z:), s€C

{=—00

whose convergence properties will be discussed in the following.
It is worth pointing out that functions (2) reduce to the ordinary

Bessel functions when z; = 0 or 2, = 0. In fact, considering that J,(0) =
0n,0, One gets the results

Y™ im(x2), for n=km
(m) .q) = n/m\L2)}, ’
(33) Jn(ov 22,8) { 0, otherwi i
(3b) ™7 (y,0;8) = Jo (1),
(30) (m)Jn(o) 0; 3) = 61:.01
where §; i is the Kronecker symbol.
Since
4 ™ (21, 223 8)] < Y |8" Tncme(21) Ji(2)|
l=—00
(5) < Y I8tz
{=—o00

and series in eq. (5) is known to be convergent [14] (see also [9]), then it
follows the convergence of the series in eq. (2).

In the following, we shall make use of a result previously derived in
[8,9], that we recast in the following form.

LEMMA 1. Let a G.B.F. be of the form (2), then

my, 1
aam = 5 [(m)Jn-l - (m)JvH-l] )
(©) 8("').1] 1 1(m)
n_ 2 |g(m) —=(m
6372 = 2 [8 Jn—m s Jn+m] )

where (M, = (M, (z,,24; 3).
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This Lemma is simply proved by the use of the recurrences valid for
the ordinary Bessel functions, namely

o1,
o

] 2

= Jp—1 = Jn41,

The definition (2) can be easily extended to the N-variable case.
More precisely, for N = 3 one has the following G.B.F.

o0
(8) (muma)j (z,,%,,T3;81,92) = Z s Mg _ (21, 25 81)i(Z3)

{=—00

which, for z; = 0 (j = 2, 3) reduces to G.B.F. of type (2), as can be easily
verified. By iteration, a N-variable G.B.F. is defined as follows

o0
(m1,m2,... .mN-x)J(xh Zoyeer yTN;S81,82y00+ s SN-1) = 2 3;,__1.
(9) l==—00
. (m1,ma,... ,mN—z)Jn_mN_I,(zl’ T2yeer yTN=1;81,82,--- ’SN—Z)JI(-’Dn) ,

which, for zy = 0 becomes a (N — 1)-dimensional G.B.F.
At this point, one needs the following N-dimensional analogous of

Lemma 1.

LeMMA 2. Let a G.B.F. be of the form (8), then

b (m1,m2,... .mN-—-l)Jn — (m1ma,... ,mn_l)Jn_l _(my1,ma,... '""'N—I)J

2 oz, ntl,
(m1,ma,....mN-1)]
(10) 23 o n_ sj_l(ml.mz.... 'mn-!)‘]ﬂ—m,_1+
7

- ___1 (ml'mz""'mN_l)Jn—mj.,.; ,

85i—1

where

(m1ma, mN-1) ], = (M1m2e NI (T1y T2y .-+ yTN; 51382+ SN-1).
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In order to prove the above statement, one starts from the case N = 3
and obtain, by application of Lemma 1, the recurrences occuring in the
three-dimensional case. Then, considering the further case N = 4 and
making use of the previously obtained recurrences, by iteration, up to a
generic N, Lemma 2 is verified.

The G.B.F. depending on complex variables can be defined as in the
real case:

00
(’T\ll"‘?u-.-.ﬂlN-l)Jn(zl’zz, cee s ZN3 81,82y .- ’3N—l) - Z siv_l.
(11) I=—00
. (m1ma.. 'mN-Z)Jn—mN_ll(zly 229004 9 ZN-17381, 82+ .+, 3N—2)Jl(zn) ’

It is easily verified that Lemma 2 holds also for G.B.F. of type (11).

Finally, it is worth mentioning that, in addition to G.B.F. of the
forms (8) and (11), one can also define their modified versions, involving
the modified Bessel functions, I;(£). Moreover, a variety of G.B.F. of
mixed type, obtained by combining together Ji(£) and Ii(§) functions
can be defined. These topics will be treated in detail in a forecoming
paper.

3 — Analytical solutions of some PDE’s in terms of generalized
Bessel functions

In this section, we present some statements showing that particular
cases of multi-variable G.B.F. satisfy exactly some special cases of the
following (N + 1)-dimensional equation

of o &f
12 -y =0
( ) Af+ki+ 763N+1 O0zNn41? '
for particular values of the constants (k,6) € R and v which can assume
real or purely imaginary values. In eq. (12) f is a function of real or
purely imaginary variables and the symbol A denotes the N-dimensional
Laplace operator expressed by

(13) ar=3 24
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In the following, we denote by a4,k = 1,2,... N + 1, real constants. We
start from the following theorem, which refers to the special case of eq.
(12) when v = ig3.

It is worth remarking that the proof of the statement, as well as those
of the other theorems, is omitted since they are straightforward, as based
on simple applications of the Lemmas of Section 2.

THEOREM 1. A function f(z1,Z2,...,ZN,ZN+1), N = 3, of the
form f(z1,z2,... , TN, ZTN41) =
(14a)
N-2
(2’ 2.t ’2).]"(0131, Q2T2y... yONTN, aN+1$N+1;i, 1, 1, ceny 1, i)-

.- exp(—iwPan1ZNe1),
(14b)
N
=3

2 __ 2
0‘2—20‘;»

7

is a solution of the equation

of
Af+1i =—kf,
(15) f+iB Fr— f
where
af - 0‘? 2 2
(16) f= g k=1~ +a}.

We notice that, when ay41 > 0 and zn41 = t,t being the time vari-
able, eq. (15) corresponds to the N-dimensional Schrddinger equation
with a constant potential. Moreover, in the particular case N = 1, The-
orem 1 is valid assuming in the second of conditions (16) @, = 0. In this
case, when w? = 1 and an41 = a2 > 0, eq. (15) is also found in many
problems, such as that relevant to Fourier optics, already treated in {15].

It is worth analyzing that, taking in the G.B.F. of eq. (14a) the coor-
dinates ic;z, and ian 412+ instead of oy and an41ZN 41, YESpectively,
and w = 0, one easily obtains from Theorem 1 the corresponding P.D.E.
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and related conditions. More precisely, one has the following result where

we put v = S for the sake of analogy with the cases of Theorem 1, and
k=-kK.

COROLLARY. A function f(z,22,...,25,2841), N 2 3, which is a
G.B.F. of the form

(178') f(zl’zm"' ’lezN-i-l) =
N N-2
22... '2)Jn(i01$1, Q2T2,... ,ANTN, ian+12}~+1 ;i, 1, 1, ey 1, 2) ,
with
N
(17b) ol = Za?, o? > 2a3,
F=3

%8 a solution of the equation

of

—~k2f=0
(182) Af+pg, ——Kf=0,
where
_ 0‘? 2 _ l 2 2

We notice that when zy,; =t, and ay4; > 0, eq. (18) has the form
of the N-dimensional time-dependent diffusion equation.
Moreover, it is worth pointing out that still in the case Zy4y = ¢, and

a? =202 = —2ay, eq. (18a) becomes
_of of _
(19) Af_b—t’ Af+6t— )

according as ay4y > 0 or ay4y < 0 (see eq. (18b)).
We remark that egs. (19) have the form of the heat conduction
equation and of a wave equation, respectively.
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We now present the following Theorem concerning the solution of eq.
(12) when k = k? and v = 0.

THI'?OREM 2. A function f(iz,z3,... ,ZN,Zn41), N = 3, of the
form f(izy, Zay ... ,TN,ZN41) =

N

N-2
(20) 22,... .2)J,.(iaxml,a2:z:2, e yONIN, AN1EN413 8, 1, 1,000, 1,4)e
- exp(iaN11ZN+1) s

with
N 2
(21) Sal=aj-%,  aizgl,
= 4 8
satisfies the equation
*f
(22) Af -8 = -k,
0z 41 1f
where
(23) P ool
40%14.1 ) 1 2 8 1°

It is to be noticed that when N = 3, {z:},k = 1,2,3, are spatial
coordinates and z4 = t, eq. (22) has the form of the three-dimensional
Klein-Gordon equation for a free particle.

Moreover, it is worth stressing that when zy41 =t and a3 = %a’;’,
one has that k? = 0 and, hence, eq. (22) becomes

s _

oz = 0.

(24) Af ¢
which corresponds to the well-known N-dimensional wave propagation
equation.

We bave thus specified a set of G.B.F. occuring in the solution of
subcases of eq. (12), of interest for applications. With reference to these
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functions, it is worth noticing that they are of the same form in the sense
that they have all the N indices {m;} = 2 and the same parameters
{s;} which are equal to the unity (real or imaginary). This result is in
agreement with the fact that the considered G.B.F. are related to the
solution of particular subcases of the same equation, namely, eq. (12).

The above multi-index and multi-variable G.B.F. have been consid-
ered as the more interesting ones, on the basis of simplicity and homogene-
ity considerations. In fact, it is worth mentioning that the conclusions
of Theorem 1. and 2. remain still valid, with different conditions for
the involved coefficients, when the relevant G.B.F. have the first (N —2)
indices {m;} =1, ! integer and l # 2 and N > 4.

As for the particular case [ = 1, it has not been considered here since
the relevant G.B.F. reduce to lower-dimension Bessel functions as can be
easily seen making use of the following results

(25) (I)Jn(zl; z2;1) = Ju(z1 + 22)
@) Os,ed) =), =

Analogously, the choice of the set of unitary parameters, {3;}, is not
unique and involves different conditions for the coefficients.

Before concluding this Section, we point out that in the case zy41 =
t, all the functions f = gn, which are solutions of the quoted equations,
_satisfy initial conditions

(27) gnli=0 =P, P=p(z1, %2 ... YIN) s
0gy
(28) %t=0 =4q, q=q(z1,x2,... :xN)'

Finally, for the sake of illustration, we show in figs. (1-10) the behaviour
of the functions Re® J,(z,,2,;1) and Im® Ju(zy,2258),n = 0,1,2,3,4
with the relevant contour lines showing the symmetry properties of these
functions which, in addition, posses reflection properties with respect to
the index n and to the parameter ¢ according to the results

(29) mJn(xh -’Bz;i) = (—1)" (2)']—"(31’32;7:)’
(30) @, (21, €33 ~1) = (1) @, (21, 24;4) .
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The above results have been obtained by means of a procedure al-
ready described in {7,9,10], where numerical aspects and results concern-
ing J,(z1, ;%) have been extensively discussed.

Fig. 1 Behaviour and contour lines of Re Jo(z1, Z2;%) versus I,
and za.
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Fig. 2 Behaviour and contour lines of Im Jo(z1,%2;1) versus z;
and z32.
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Fig. 3 Behaviour and contour lines of Re Jy(z1,%2;1) versus 1
and 2.
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Fig. 4 Behaviour and contour lines of Im Jy (21, 23;1) versus 1y
and 3.
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Fig. 5 Behaviour and contour lines of Re J2(x3,x3;¢) versus 3

and 3.
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Fig. 6 Behaviour and contour lines of Im Jz(z1, z2;{) versus =z,

and z2.
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Fig. 7 Behaviour and contour lines of Re J3(z1,Z2;4) versus zy
and za2.
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Fig. 8 Behaviour and contour lines of Im Js(z1,za;¢) versus 2,
and 3.
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Fig. 9 Bebaviour and contour lines of Re Jy(z),z32;1) versus z;

and z3.
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Fig. 10 Behaviour and contour lines of Im J¢(z1, x2; i) versus x,

and z2.
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4 — Concluding remarks

The considerations, developed in the previous Sections have shown
that G.B.F. can be exploited in a context much wider than that originally
proposed. We can furthermore state that they are not auxiliary functions
only, useful just for applications, but they play, together with and within
the yet unexplored field of multivariable special functions, a role which
should be thouroughly investigated.

We have stated, in the introductory Section, that G.B.F. may be
the solutions of an infinite set of PDE, this is not surprising, since, as
already shown, there is a striking amount of G.B.F., each one exhibiting a
plaethora of recurrence relations. Therefore, it is worth presenting further
examples which may offer additional feeling on the relevance of G.B.F.
to P.D.E.

In [11-12] we have introduced the function

(31) a(z,y Z I_a(z)Li(y),

I=~00

where the subscript “0” stands for odd and, more in general,

(32) (o n(x) v z) i g;In-El(z’ y)L(z)

l==00

Function (31) has derivatives which, as easily recognized, satisfy the re-
lations

Oy (z, 1
R

(33) Oz 2
Py
Oon(z,y) _ -1 [53) w-3(2,9) = (@, y)] ,

and, therefore, the following PDE

Oal(z, ) A
A OE AT RN

(34) 5 82



1068 S. LORENZUTTA et alia {16)

In [12] it has also been discussed the relevance of G.B.F. to identify a class
of generalized Hermite polynomials. Within that framework, G.B.F. of

the type

(35) OF (o /e, g) = 3 Tnct(m 9)IE,0)

l==00

play a central role. It can be easily verified that

aa a )I,;(:C y/z y) (l)I l(zv y/za y)v

(36) _
50;( )In(zv y/zr y) = (I)I""‘Q(z’ y/z’ y) )

Therefore, getting

o
31) L ACSERE L AESVERE

thus providing another particular solution to the monodimensional heat
conduction equation (see remarks on Corollary), with different initial
conditions.

These last examples confirm the statement that G.B.F. can be ex-
ploited within the context of PDE with great flexibility. Moreover, it has
to be mentioned that G.B.F. could be a useful tool in solving non-linear
differential equations, of interest in radiation problems associated with
non-linear oscillations. In fact, we have recently shown {11} that G.B.F.,
of I-type are solutions of Duffing’s equation for the anharmonic oscilla-
tor. In a forecoming note we will discuss the role of G.B.F. in the field of
ordinary differential equations as well as of non-linear PDE’s.
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