Radon-Nikodym theorems for vector-valued finitely additive measures

D. CANDELORO - A. MARTELLOTTI(*)

RIASSUNTO – Fissata una misura finitamente additiva ed esaustiva m, definita su una σ -algebra A e a valori in uno spazio localmente convesso X, si danno condizioni per l'esistenza di una derivata alla Dunford-Radon-Nikodym di m rispetto ad una misura (finitamente additiva) di controllo λ . Se ne deducono teoremi di esistenza, per un analogo tipo di derivata, nel caso in cui X sia uno spazio di Banach con duale separabile.

ABSTRACT – Given an s-bounded finitely additive measure m, defined on a σ -algebra $\mathcal A$ and taking values in a locally convex linear space $\mathcal X$, we find conditions ensuring the existence of a Dunford-Radon-Nikodym derivative of m with respect to a (finitely additive) control λ . We then deduce existence theorems for such a derivative when $\mathcal X$ is a Banach space with separable dual.

KEY WORDS - Dunford-type integral - Radon-Nikodym derivatives - Finitely additive measures.

A.M.S. CLASSIFICATION: 28B05

1 - Introduction

In the finitely additive case it is impossible to obtain exact Radon-Nikodym theorems without some further assumption. Some necessary and sufficient conditions have been given by Greco ([7]) and by Maynard ([11]) in the scalar case, and by Hagood ([8]) and by Martellotti and

^(*)Lavoro svolto nell'ambito del G.N.A.F.A. del C.N.R.

Sambucini ([9], [10]) in the vector case: nevertheless, those conditions seem not to have an easy geometrical meaning.

However it is possible to get a Radon-Nikodym theorem when the range of the pair of the involved finitely additive measures (f.a.m.'s) is closed ([4], [2]); the closedness hypothesis is in general just a sufficient one, but it can be weakened in such a way that it turns out to be even necessary.

In this paper we investigate the existence of a density function for a vector-valued finitely additive measure in the Dunford sense.

More precisely, given a f.a.m. $m: \mathcal{A} \to \mathcal{X}$, where \mathcal{A} is a σ -algebra on a space Ω and \mathcal{X} is a locally convex vector space with separable dual, and $\lambda: \mathcal{A} \longrightarrow \mathbb{R}_0^+$ is a control for m, we seek a "measurable" function f, ranging on \mathcal{X}'' , such that

$$< y, m > (A) = \int_A < f, y > d\lambda$$

for all $A \in \mathcal{A}$ and $y \in \mathcal{X}'$.

Here, by "measurability" for f we mean that $\langle f, y \rangle$ is measurable for all $y \in \mathcal{X}'$ and that the property f is bounded is λ -exhaustive. The following condition:

there exists a λ -exhaustion $(\Omega_n)_n$ such that

$$S(\Omega_n) = \left\{ \frac{m(F)}{\lambda(F)}, F \subseteq \Omega_n, \lambda(F) > 0 \right\}$$

is bounded for every n

characterizes those f.a.m.'s admitting a Dunford-density among those admitting weak Radon-Nikodym derivatives w.r.t. λ .

We remark here that, contrary to what intuition suggests, the existence of "weak" derivatives $\frac{d < y, m >}{d\lambda}$ for all $y \in \mathcal{X}'$ does not yield an "easy" construction of a Dunford derivative, even if the whole of $S(\Omega)$ is bounded.

The general result enables us to investigate the case of Banach-valued f.a.m.'s by making use of the geometry of the range, and in the finite-dimensional case the strictly connected condition of the existence of Hahn decompositions.

2 - Preliminaries

We begin with some notations and assumptions, and keep them valid till the end of this chapter.

Let (Ω, \mathcal{A}) be any measurable space, and λ any positive finitely additive measure (f.a.m.) on \mathcal{A} . Let \mathcal{M} denote the linear space of all bounded f.a.m.'s $\mu: \mathcal{A} \to \mathbb{R}$ such that $\mu \ll \lambda$, and such that there exists $\frac{d\mu}{d\lambda}$: i.e. we assume that a measurable, λ -integrable function $f: \Omega \to \mathbb{R}$ exists, satisfying

$$\mu(A) = \int_A f d\lambda$$

for all $A \in \mathcal{A}$.

Next, let Y be any real, separable normed space.

THEOREM 2.1. Assume that $T: Y \to \mathcal{M}$ is a linear operator, satisfying the following condition:

$$|T(y)| \le ||y|| \lambda$$
 for every $y \in Y$,

where |T(y)| is the total variation of the f.a.m. T(y). Then there exists a function $f: \Omega \to Y'$ satisfying:

dT(u)

$$(2.1.1) \langle f(\cdot), y \rangle = \frac{dT(y)}{d\lambda}$$

 λ -almost everywhere for all $y \in Y$.

PROOF. Pick any linearly independent total sequence $(e_n)_n$ in Y, such that $||e_n|| = 1$ for every n. For each n, let's set $Z_n = span\{e_1, \ldots, e_n\}$, and $Z = \bigcup Z_n$. Thus, Z is dense in Y.

For n = 1, we write

$$g_1(\omega) = h(\omega, e_1) = \frac{dT(e_1)}{d\lambda}(\omega)$$

for all $\omega \in \Omega$. Without loss of generality, we can suppose

$$|h(\omega,e_1)|\leq 2$$

for each ω : this is because $|T(e_1)| \leq \lambda$ by assumption.

It's easy now to define $h(\omega, y)$ for every y in Z_1 , in such a way that $h(\omega,\cdot)$ is linear on Z_1 , and $h(\cdot,y)=\frac{dT(y)}{d\lambda}$, and finally $|h(\omega,y)|\leq 2\|y\|$ for every $y \in Z_1$ and $\omega \in \Omega$.

From now on we shall assume that a Radon-Nikodym derivative $g_n =$ $\frac{dT(e_n)}{d\lambda}$ has been fixed, for every $n \in \mathbb{N}$, and that $|g_n(\omega)| \leq 2$ for all ω .

Assume now that $h(\omega, y)$ has been defined for every $\omega \in \Omega$ and for every $y \in Z_n$ in such a way that

a)
$$h(\cdot,y) = \frac{dT(y)}{d\lambda}$$
 for every $y \in Z_n$;
b) $h(\omega,\cdot) \in Z'_n$ and $||h(\omega,\cdot)|| \le 2$ for every ω .

We shall define $h(\omega, y)$ for all ω and for $y \in Z_{n+1}$, in such a way that a) and b) above are still valid with n replaced by n+1; this is much harder than one might think because the natural linear extension by means of g_{n+1} may fail to satisfy the norm condition in b).

As Z_{n+1} has finite dimension, we can choose a compact set $H \subseteq Z_n$ and a positive number k > 1 in such a way that

$$(1) \{z \in Z_{n+1}, ||z|| \le 1\} \subset \{y + se_{n+1} : y \in H, |s| \le k\}.$$

Fix $\varepsilon > 0$, $\varepsilon < \frac{1}{A + k}$, and choose t_1, \ldots, t_s in H, satisfying

$$H\subset \bigcup_{1\leq
ho\leq s} B(t_
ho,rac{arepsilon}{2}).$$

As g_{n+1} is bounded, there exists a decomposition $\{A_1,...,A_N\}$ of Ω , consisting of pairwise disjoint, measurable sets, and N corresponding numbers $\eta_1, ..., \eta_N$ in [-2, 2] satisfying

$$|g_{n+1}(\omega) - \eta_i| < \frac{\varepsilon}{2}$$

for every $\omega \in A_i$, and for $i = 1, \ldots, N$.

Similarly, for each $\rho = 1, \ldots, s$ there exists a decomposition of Ω , say $\{B_1(\rho),...,B_{N(\rho)}(\rho)\}$, with corresponding real numbers $\theta_1(\rho),...,\theta_{N(\rho)}(\rho)$ satisfying

$$|h(\omega,t_{\rho})-\theta_{j}(\rho)|<\frac{\varepsilon}{2}$$

for every $\omega \in B_j(\rho)$ and for $j = 1, ..., N(\rho)$.

We denote by \mathcal{F} the algebra generated by the sets A_1, \ldots, A_N and $B_1(\rho), \ldots, B_{N(\rho)}(\rho)$, $\rho = 1, \ldots, s$; also, denote with C the union of all λ -null atoms of \mathcal{F} . Of course, $\lambda(C) = 0$, because \mathcal{F} is finite. We shall suitably modify g_{n+1} in C.

For each $\omega \in \Omega$ it holds:

$$\sup_{t\in Z_n} \{h(\omega,t) - 2\|t - e_{n+1}\|\} \le \inf_{y\in Z_n} \{2\|y + e_{n+1}\| - h(\omega,y)\}$$

by virtue of condition b) above, and the "trick" $t - y = (t - e_{n+1}) + (e_{n+1} - y)$.

Then we modify g_{n+1} into $h(\cdot, e_{n+1})$ as follows:

$$h(\omega, e_{n+1}) = \begin{cases} g_{n+1}(\omega) & \omega \notin C, \\ \sup_{t \in Z_n} \{h(\omega, t) - 2 || t - e_{n+1} || \}, & \omega \in C. \end{cases}$$

Again we find $h(\cdot, e_{n+1}) = \frac{dT(e_{n+1})}{d\lambda}$, and $|h(\omega, e_{n+1})| \leq 2$ for all ω .

Now we define linearly $h(\omega, z)$ for all $z \in \mathbb{Z}_{n+1}$: of course condition a) is satisfied in \mathbb{Z}_{n+1} .

Let's prove also b). Fix $\omega \in C$. Fix $z \in Z_{n+1}$, and assume that $z = t + e_{n+1}$ for some $t \in Z_n$. We find

$$h(\omega, z) = h(\omega, t) + h(\omega, e_{n+1}) < h(\omega, t) + 2||t + e_{n+1}|| - h(\omega, t) = 2||z||.$$

Similarly, if $z = t - e_{n+1}$, we find $h(\omega, z) \le 2||z||$ and therefore b) is proved in case $\omega \in C$ and z of the form $t + e_{n+1}$ for some $t \in Z_n$.

It is now easy to prove b) for $\omega \in C$ and any $z \in Z_{n+1}$. So we have now to consider the case $\omega \notin C$.

We observe that C^c is a finite union of non-zero atoms of \mathcal{F} . Let A be one of such atoms, and fix $\rho = 1, \ldots, s$. Then we must have $A \subset B_j(\rho) \cap A_i$ for some $j = 1, \ldots, N(\rho)$ and some $i = 1, \ldots, N$. We have

$$\int_{A} |h(\cdot,t_{\rho}) + g_{n+1}| d\lambda \le ||t_{\rho} + e_{n+1}||\lambda(A)|$$

because of a).

Now, from $A \subset B_j(\rho) \cap A_i$ and from (2), (3) we deduce

$$|h(\omega,t_
ho)- heta_j(
ho)|<rac{arepsilon}{2}$$

and

$$|g_{n+1}(\omega) - \eta_i| < \frac{\varepsilon}{2},$$

for all $\omega \in A$, whence

$$\left| \int_{A} |h(\cdot,t_{\rho}) + g_{n+1}| d\lambda - |\theta_{j}(\rho) + \eta_{i}| \lambda(A) \right| < \varepsilon \lambda(A).$$

Then we obtain

$$|\theta_i(\rho) + \eta_i|\lambda(A) \le \varepsilon \lambda(A) + ||t_\rho + e_{n+1}||\lambda(A).$$

Dividing by $\lambda(A)$ we get

$$(4) |h(\omega,t_{\rho})+h(\omega,e_{n+1})|=|h(\omega,t_{\rho})+g_{n+1}(\omega)|\leq 2\varepsilon+||t_{\rho}+e_{n+1}||.$$

Now, if we fix $t \in H$ there exists ho such that $\|t-t_{
ho}\| < rac{arepsilon}{2}$ and therefore

$$|h(\omega,t)-h(\omega,t_{\varrho})|<\varepsilon;$$

moreover, for the same t and t_{ρ} we find

$$||t_{\rho}+e_{n+1}||-||t+e_{n+1}|| \leq ||t-t_{\rho}|| < \frac{\varepsilon}{2},$$

from which (4) gives

$$|h(\omega,t)+h(\omega,e_{n+1})|\leq 4\varepsilon+||t+e_{n+1}||,$$

for $\omega \in A$.

Similarly, for $\omega \in A$ and $|s| \leq k$, we find

$$|sh(\omega,e_{n+1})-s\eta_i|\leq |s|\frac{\varepsilon}{2}\leq k\frac{\varepsilon}{2}.$$

As a consequence, if $z \in Z_n$, $||z|| \le 1$, we get $|h(\omega, z)| = |h(\omega, t) + h(\omega, se_{n+1})|$ for suitable $t \in H$ and $s \in [-k, k]$, because of (1).

So we can deduce $|h(\omega, z)| \le 1 + (4 + k)\varepsilon \le 2$, whenever $z \in \mathbb{Z}_n$, $||z|| \le 1$, and for $\omega \in A$.

As A is arbitrary, we conclude that b) holds for Z_{n+1} .

Now we proceed by induction, thus defining $h(\omega, \cdot)$ on the whole of Z, in such a way that a) and b) are satisfied.

By density, $h(\omega, \cdot)$ can be (uniquely) defined on Y, there satisfying

b). However, we are still to prove that $h(\cdot, y) = \frac{dT(y)}{d\lambda}$.

This is true, for $y \in Z$. If $y \in Y$, pick any sequence (z_n) in Z, norm-converging to y. Then we have

$$|h(\omega, z_n) - h(\omega, y)| \le 2||z_n - y||$$

for all n, and all ω .

This implies that $h(\cdot, z_n)$ converges uniformly to $h(\cdot, y)$. Therefore h is measurable, and

$$\lim_{n\to\infty}\int_E h(\cdot,z_n)d\lambda = \int_E h(\cdot,y)d\lambda$$

for each set $E \in \mathcal{A}$.

As $\int_E h(\cdot, z_n) d\lambda = T(z_n)(E)$, for every n and for every E, we see that

$$\lim_{n\to\infty}T(z_n)(E)=\int_Eh(\cdot,y)d\lambda$$

From the condition $|T(z_n - y)| \le ||z_n - y||\lambda$, it follows that $T(z_n)(E)$ converges to T(y)(E), and so

$$T(y)(E) = \int_{\mathbb{R}} h(\cdot, y) d\lambda$$

for all $E \in \mathcal{A}$, which means that property a) is satisfied.

Finally, if we define $f: \Omega \to Y'$ as

$$< f(\omega), y >= h(\omega, y)$$

for every $\omega \in \Omega$ and $y \in Y$, we are finished.

3 - Existence of a density

We are going to deduce some existence theorems of Radon-Nikodym derivatives, for vector-valued finitely additive measures.

We shall deal with a locally convex TVS \mathcal{X} , a measurable space (Ω, \mathcal{A}) , and dominated finitely additive measures $m : \mathcal{A} \to \mathcal{X}$; our aim is to find a "Dunford-type" derivative of m with respect to its control λ , according with the following definition.

DEFINITION 3.1. Given any f.a.m. $m: A \to \mathcal{X}$, we say that m is dominated if there exists a f.a.m. $\lambda: A \to \mathbb{R}_0^+$ such that $m \ll \lambda$. (If this is the case λ can be chosen to be equivalent to m - see [5]). In such cases, λ will be said to be a *control* for m.

In dealing with \mathcal{X}' , we shall endow it with the "strong" topology, i.e. the topology whose base at 0 is given by the polar sets of all bounded subsets in \mathcal{X} ; the same we shall do for \mathcal{X}'' , once \mathcal{X}' has been "strongly" topologized.

When m happens to be dominated, with a control λ , we say that a Dunford-type derivative $\frac{dm}{d\lambda}$ exists, if there exists a function $f: \Omega \to \mathcal{X}''$ satisfying the following conditions:

- (3.1.1) $< f(\cdot), y >$ is measurable and λ integrable for every $y \in \mathcal{X}'$.
- (3.1.2) There exists an increasing sequence $(\Omega_n)_n$ in \mathcal{A} such that $\lambda(\Omega \Omega_n) \to 0$, and such that $f|_{\Omega_n}$ is bounded for every n (recall that both \mathcal{X}' and \mathcal{X}'' are endowed with the "strong" topology).
- (3.1.3) $\int_E \langle f(\cdot), y \rangle d\lambda = \langle y, m(E) \rangle$ for every $E \in A$.

In the next proposition we shall obtain a bounded Dunford-type derivative.

PROPOSITION 3.2. Let a dominated f.a.m. $m: A \to X$ be given, and assume that a control λ exists such that a Radon-Nikodym derivative exists for $\langle y, m \rangle$ with respect to λ , for all $y \in X'$.

Assume that X' is separable, and that the set

$$S = \left\{ \frac{m(A)}{\lambda(A)} : A \in \mathcal{A}, \lambda(A) > 0 \right\}$$

is bounded in X.

Then there exists a bounded Dunford-type derivative f of m with respect to λ .

PROOF. The polar set of S, S^o , is a balanced, convex neighbourhood of 0 in \mathcal{X}' . Let q denote the Minkowski functional of S^o .

If $y \in \mathcal{X}$ satisfies q(y) = 0, then $y \in tS^o$ for every t > 0, and then

$$|< y, m(A) > | \le \varepsilon \lambda(A)$$

for all $\varepsilon > 0$ and for all $A \in \mathcal{A}$ with $\lambda(A) > 0$: hence q(y) = 0 if and only if $\langle y, m \rangle = 0$.

This allows us to consider the quotient $\mathcal{Y} = \mathcal{X}'/Ker(q)$, endowed with the usual norm deduced from q, and to define on \mathcal{Y} an operator $T: \mathcal{Y} \to \mathcal{M}$ by setting

$$T([y]) = \langle y, m \rangle$$

for every $y \in \mathcal{X}'$. This operator is well-defined and satisfies the hypothesis of Theorem 2.1: in particular, from $|\langle y,m\rangle| \leq \lambda$ for every $y \in S^o$, we can deduce that

$$|T([y])| = |\langle y, m \rangle| = q(y)|\langle \frac{y}{q(y)}, m \rangle| \leq q(y)\lambda = ||[y]||\lambda|$$

for all $y \in \mathcal{X}'$.

Then, by virtue of Theorem 2.1 we can easily get the required derivative f: to see that f is bounded, we can observe that its range is contained in $2S^{oo}$ (here S^{oo} is thought embedded in \mathcal{X}''), and this set is bounded in \mathcal{X}'' .

We can now deduce a more general existence theorem, and then a necessary and sufficient condition for the existence of a Dunford-type derivative.

THEOREM 3.3. Let X, m, λ be as in Proposition 3.2. Assume that X' is separable and that

(3.3.1) there exists an increasing sequence $(\Omega_n)_n$ in A, such that $\lambda(\Omega - \Omega_n) \to 0$ and such that the sets

$$S_n = \left\{ \frac{m(A)}{\lambda(A)} : A \in \mathcal{A}, A \subset \Omega_n, \lambda(A) \neq 0 \right\}$$

are bounded in \mathcal{X} .

Assume also that $\frac{d < y, m >}{d\lambda}$ exists for every $y \in \mathcal{X}'$. Then there exists a Dunford-type derivative $f: \Omega \to \mathcal{X}''$

PROOF. By applying Proposition 3.2 to the sets

$$\Omega_1, \Omega_2 - \Omega_1, \ldots, \Omega_n - \Omega_{n-1}$$

which we shall denote by $F_1, F_2, \ldots, F_n, \ldots$ respectively, we find bounded functions $f_n: F_n \to \mathcal{X}''$, satisfying

$$\int_A < f_n(\cdot), y > d\lambda = < y, m > (A)$$

for every $A \in \mathcal{A}$, $A \subset F_n$. It is now possible to define f λ -almost everywhere on Ω , by "pasting" together the functions f_n . The Radon-Nikodym property follows from the condition that $\lambda(\Omega - \Omega_n) \to 0$.

Our next result is a necessary and sufficient condition for the existence of a derivative.

Let $\Omega, m, \lambda, \mathcal{X}$ be as before. Assume also that \mathcal{X}' THEOREM 3.4. is separable. Then a necessary and sufficient condition for the existence of a Dunford-type derivative $f:\Omega \to \mathcal{X}''$ of m with respect to λ is that $\frac{d < y, m>}{N}$ exists for each $y \in \mathcal{X}'$, and that an increasing sequence $(\Omega_n)_n$ can be found in A, satisfying $\lambda(\Omega - \Omega_n) \to 0$, and such that the sets

$$S_n = \left\{ \frac{m(A)}{\lambda(A)} : A \in \mathcal{A}, A \subset \Omega_n, \lambda(A) \neq 0 \right\}$$

are bounded in X for all n.

PROOF. Of course, we just have to prove the "only if" part. Assume therefore that f exists, and let $(\Omega_n)_n$ be the sequence given in (3.1.2): we shall prove that the corresponding sets S_n are bounded in \mathcal{X} .

Fix n, and choose any balanced, convex, closed neighbourhood U of $0 \text{ in } \mathcal{X}.$

Then the bipolar U^{oo} in \mathcal{X}'' is a neighbourhood of 0 in \mathcal{X}'' , and therefore there exists a positive number k > 0 such that $f(\Omega_n) \subset kU^{oo}$. Now, if we pick any element $y \in U^o$, we find

$$\left| < \frac{m(A)}{k}, y > \right| = \left| \int_A < \frac{f(\cdot)}{k}, y > d\lambda \right| \le \lambda(A)$$

for all $A \in \mathcal{A}$, $A \subset \Omega_n$.

This implies that $\frac{m(A)}{\lambda(A)}$ is in $kU^{\infty} \cap \mathcal{X}$, for all $A \in \mathcal{A}$, $A \subset \Omega_n$, $\lambda(A) \neq 0$. According with the Bipolar Theorem, $U^{\infty} \cap \mathcal{X} = U$, and therefore $S_n \subset kU$. As U is arbitrary, the theorem is proved.

4 - Dunford-type derivatives for Banach-valued f.a.m.'s

We shall now find some existence theorems for Radon-Nikodym derivatives, when the measures are Banach-valued. We start with the finite-dimensional case.

As usual, let (Ω, \mathcal{A}) be any measurable space, and let μ , ν be two non-negative, finitely additive measures on \mathcal{A} , satisfying $\mu \ll \nu$. In [7] it is proved that a Radon-Nikodym derivative $\frac{d\mu}{d\nu}$ does exists if and only if (4.1.1) for each real number r>0 the scalar f.a.m. $\mu-r\nu$ has a Hahn decomposition.

Given any scalar bounded f.a.m. m on \mathcal{A} , we shall denote with |m| its variation.

DEFINITION 4.1 Let \mathcal{X} be a Banach space, and $m: \mathcal{A} \to \mathcal{X}$ any finitely additive measure. We say that m is s-bounded if $\lim_{n} m(A_n) = 0$, for every sequence $(A_n)_n$ of pairwise disjoint sets in \mathcal{A} .

Moreover, given a scalar f.a.m. $\lambda: \mathcal{A} \to \mathbb{R}_0^+$ we say that λ is a *control* for m if $m \ll \lambda$ and $\lambda \ll m$, namely, for every $\varepsilon > 0$ there exists $\delta > 0$ such that the following implications hold, for every $A \in \mathcal{A}$:

$$\lambda(A) < \delta \Longrightarrow \sup\{\|m(B \cap A)\|, B \in A\} < \varepsilon,$$

and

$$\sup\{\|m(D\cap A)\|, D\in A\} < \delta \Longrightarrow \lambda(A) < \varepsilon.$$

If λ is a control for m, we say that it is a *Rybakov* control if $\lambda = |\langle y, m \rangle|$ for some $y \in \mathcal{X}'$.

In [6], [12] the following result is proved.

THEOREM 4.2. Given any finitely additive measure $m: A \to X$ then the following are equivalent:

- i) m is s-bounded.
- ii) There exists a control for m.
- iii) There exists a Rybakov control for m.

So, our aim is to find "mild" conditions which ensure the existence of a Dunford-type derivative for an exhaustive \mathcal{X} -valued f.a.m. m with respect to any Rybakov control λ .

LEMMA 4.3. Let μ , ν be two bounded f.a.m.'s on \mathcal{A} , and assume that $\mu \ll |\nu|$. If the f.a.m. $a\mu + b\nu$ has a Hahn decomposition for all $a, b \in \mathbb{R}$, then there exists a Radon-Nikodym derivative $\frac{d\mu}{d|\nu|}$.

PROOF. From the assumptions, it follows that both μ and ν admit a Hahn decomposition. We denote with (Q, M) a Hahn decomposition for μ and with (P, N) a Hahn decomposition for ν . Then, for all $A \in \mathcal{A}$

$$\nu^{+}(A) = \nu(A \cap P), \ \nu^{-}(A) = -\nu(A \cap N),$$

$$\mu^{+}(A) = \mu(A \cap Q), \ \mu^{-}(A) = -\mu(A \cap M).$$

We now restrict ourselves to the space Q, endowed with the σ -algebra $A \cap Q$, and show that μ^+ admits a Radon-Nikodym derivative with respect to $|\nu|$.

From (4.1.1) it is enough to prove that $\mu^+-r|\nu|$ has a Hahn decomposition for every r>0. So, let r>0 be fixed, and let (A_r,A_r^c) and (B_r,B_r^c) be Hahn decompositions for $\mu-r\nu$ and $\mu+r\nu$ respectively. Then we have $\mu(E) \geq r\nu(E)$ for every $E \in \mathcal{A}$, $E \subset A_r$ and $\mu(E) \geq -r\nu(E)$ for every $E \in \mathcal{A}$, $E \subset B_r$, and the reverse inequalities hold in the complements of A_r and B_r respectively. We set

$$D_r = Q \cap [(A_r \cap P) \cup (B_r \cap N)].$$

If $E \in \mathcal{A}$, $E \subset D_r$, we put $E_1 = E \cap A_r \cap P$, $E_2 = E \cap B_r \cap N$: then $E_1 \cap E_2 = \emptyset$, $E_1 \cup E_2 = E$. Furthermore

$$\mu(E_1) \ge r\nu(E_1), \ \mu(E_2) \ge -r\nu(E_2)$$

from which we get $\mu^+(E) \geq r|\nu|(E)$. We now notice that

$$Q - D_r = Q \cap [(A_r^c \cap P) \cup (B_r^c \cap N)];$$

hence, if $F \in \mathcal{A}$, $F \subset Q - D_r$, one can proceed as above and see that $\mu^+(F) \leq r|\nu|(F)$.

Thus $(D_r, Q - D_r)$ is a Hahn decomposition for $\mu^+ - r|\nu|$ in Q. This allows us to deduce that there exists a Radon-Nikodym derivative $\frac{d\mu^+}{d|\nu|}$ in Q. As μ^+ vanishes outside Q, the derivative exists globally. In a similar way it can be proved that μ^- has a derivative with respect to $|\nu|$. This concludes the proof.

THEOREM 4.4. Let $m: \mathcal{A} \to \mathbb{R}^n$ be any bounded f.a.m., and assume that every linear combination of its components has a Hahn decomposition. Then m has a Radon-Nikodym derivative with respect to any Rybakov control λ .

PROOF. Indeed, let m_i be any component of m, and the control ν be the variation measure of a linear combination σ of the components of m. Then the f.a.m. $a\sigma + bm_i$ has a Hahn decomposition by hypothesis. So, according with Lemma 4.3, there exists $\frac{dm_i}{d\nu}$. As i is arbitrary, the proof is finished.

COROLLARY 4.5. Assume that $m: A \to \mathbb{R}^n$ is a bounded f.a.m. with closed range. Then there exists a Radon-Nikodym derivative of m with respect to any Rybakov control.

PROOF. It's enough to prove that any combination of the components has closed range. But the latter is the continuous image of a compact set, namely the range of m. Therefore the existence of a Radon-Nikodym derivative is a consequence of Lemma 4.3.

We now turn to Banach-valued f.a.m.'s.

THEOREM 4.6. Let \mathcal{X} be any Banach space with dual \mathcal{X}' having the RNP, and let $m: \mathcal{A} \to \mathcal{X}$ be an s-bounded f.a.m. with separable range. Assume that the scalar f.a.m. < y, m > has a Hahn decomposition for each element $y \in \mathcal{X}'$. Then, for every Rybakov control λ for m, there exists a Dunford-type derivative $\frac{dm}{d\lambda}$ if and only if condition (3.3.1) holds.

PROOF. According with Lemma 4.3, there exists a Radon-Nikodym derivative $\frac{d < y, m >}{d\lambda}$ for all $y \in \mathcal{X}'$. Moreover, by a theorem of Stegall [13], the subspace of \mathcal{X} generated by $m(\mathcal{A})$ has separable dual. So we can readily apply the results in Section 3 and get the theorem.

COROLLARY 4.7. Let $\mathcal X$ and $m: \mathcal A \to \mathcal X$ be as in Theorem 4.6, and assume also that m has weakly closed range. Then for every Rybakov control λ , a Dunford-type derivative $\frac{dm}{d\lambda}$ exists, if and only if condition (3.3.1) holds.

PROOF. According with [6] the range R of m is weakly relatively compact because of s-boundedness. As R is weakly closed by hypothesis, it is weakly compact. Now, if $y \in \mathcal{X}'$ is fixed, the range of < y, m > is closed in R because it is the image of R under the (weakly) continuous map y. This implies that < y, m > has a Hahn decomposition for each $y \in \mathcal{X}'$, and therefore we can apply Theorem 4.6 to get the result.

REMARK 4.8. We mention that results concerning the topological properties of the range of a Banach-valued f.a.m., in particular the closedness, can be found also in [3], [1].

REMARK 4.9 We observe that, when \mathcal{X} is a reflexive Banach space, by the Dunford-Pettis-Phillips Theorem, the assumptions on \mathcal{X}' and m in Theorem 4.6 are both fulfilled. Moreover, the Dunford density in this case is in fact a Pettis density.

Acknowledgements

We wish to thank the referee who suggested us an improvement of the Banach spaces setting in the final section and the last remark.

REFERENCES

- L. BASSI P. GAMBA: On the connections between closedness and convexity for the range of vector-valued finitely additive measures, to appear in Accademia di Scienze, Lettere ed Arti di Palermo, (1989).
- [2] P. Berti E. Regazzini P. Rigo: Finitely additive Radon-Nikodym theorem and concentration function of a Probability with respect to a Probability, Istituto per le Applicazioni della Matematica e dell'Informatica, Milano, preprint (1989).
- [3] D. CANDELORO A. MARTELLOTTI: Sul rango di una massa vettoriale, Atti Sem. Mat. Fis. Univ. Modena, 28, (1979), 102-111.
- [4] D. CANDELORO A. MARTELLOTTI: Geometric properties of the range of twodimensional quasi-measures with respect to Radon- Nikodym properties, Adv. in Math. 29, (1992), 328-344.
- [5] D. CANDELORO A. MARTELLOTTI: Stochastic processes and applications to countably additive restrictions of group-valued finitely additive measures, preprint (1992).
- [6] L. DREWNOWSKI: On control submeasures and measures, Studia Math., 50, (1974), 203-224.
- [7] G.H. GRECO: Un teorema di Radon-Nikodym per funzioni d'insieme subadditive, Ann. Univ. Ferrara sez. VII Sc. Mat 27, (1981) 13-19.
- [8] J.W. HAGOOD: A Radon-Nikodym Theorem and L_p completeness for finitely additive vector measures, J. Math. Anal. Appl. 113, (1986) 266-279.
- [9] A. MARTELLOTTI A.R. SAMBUCINI: A Radon-Nikodym Theorem for a pair of Banach-valued finitely additive measures, Rend. Ist. Mat. Univ. Trieste 20, (1989) 333-343.
- [10] A. MARTELLOTTI A.R. SAMBUCINI: Closure of the range and Radon-Nikodym Theorems for vector-valued finitely additive measures with respect to different types of integration, to appear on Atti Sem. Mat. Fis. Univ. Modena.
- [11] H.B. MAYNARD: A Radon-Nikodym Theorem for finitely additive bounded measures, Pac. J. Math. 83, (1979) 401-413.
- [12] V. RYBAKOV: Theorem of Bartle, Dunford and Schwartz on vector-valued measures, Math. Notes 7, (1970) 147-151.

[13] C. STEGALL: The Radon-Nikodym Property in conjugate Banach spaces, Trans. Amer. Math. Soc. 206, (1975) 213-223.

Lavoro pervenuto alla redazione il 22 giugno 1992 ed accettato per la pubblicazione il 5 novembre 1992 su parere favorevole di G. Letta e di P. de Lucia

INDIRIZZO DEGLI AUTORI:

Domenico Candeloro - Anna Martellotti - Dipartimento di Matematica - Università degli Studi - Via Pascoli - 06100 - PERUGIA, Italy