Rendiconti di Matematica, Serie VII
Volume 12 , Roma (1992), 1071-1086

Radon-Nikodym theorems for vector-valued
finitely additive measures

D. CANDELORO - A. MARTELLOTTI®™

RIASSUNTO — Fissata una misura finitamente additiva ed esaustiva m, definita su
una o-algebra A e a valori in uno spazio localmente convesso X, st danno condizioni per
U’esistenze di una derivata alla Dunford-Radon-Nikodym di m rispetto ad una misura
(finitamente additiva) di controllo A. Se ne deducono teoremi di esistenza, per un
analogo tipo di derivata, nel caso in cui X sig uno spazio di Banach con duale separabile.

ABSTRACT - Given an s-bounded finitely additive measure m, defined on a o-
algebre A and taking values in a locally conver linear space X, we find conditions
ensuring the existence of a Dunford-Radon-Nikodym derivative of m with respect to a
(finitely additive)} control \. We then deduce ezistence theorems for such o derivative
when X is ¢ Banach space with separable dual.

KEY WORDS — Dunford-type integral - Radon-Nikodym derivatives - Finitely ad-
ditive measures.
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1 — Introduction

In the finitely additive case it is impossible to obtain exact Radon-
Nikodym theorems without some further assumption. Some necessary
and sufficient conditions have been given by Greco ([7]) and by Maynard
([11]) in the scalar case, and by Hagood ([8]) and by Martellotti and

(*)Lavoro svolto nell'ambito del G.N.A.F.A. del C.N.R.
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Sambucini ([9], {10]) in the vector case: nevertheless, those conditions
seem not to have an easy geometrical meaning.

However it is possible to get a Radon-Nikodym theorem when the
range of the pair of the involved finitely additive measures (f.a.m.’s) is
closed ([4], [2]); the closedness hypothesis is in general just a sufficient
one, but it can be weakened in such a way that it turns out to be even
necessary.

In this paper we investigate the existence of a density function for a

vector-valued finitely additive measure in the Dunford sense.
More precisely, given a fa.m. m : A — X, where A is a o-algebra on
a space {2 and X is a locally convex vector space with separable dual,
and A : A— IR is a control for m, we seek a “measurable” function f,
ranging on X, such that

<y,m>(A)=/A<f,y>d,\

foral A€e Aand y€ &".
Here, by “measurability” for f we mean that < f,y > is measurable
for all y € X’ and that the property f is bounded is M-exhaustive.
The following condition:
there ezists a A-ezhaustion (Q,), such that

S(0m) = { i F € O X(F) > 0}

is bounded for every n
characterizes those f.a.m.’s admitting a Dunford-density among those ad-
mitting weak Radon-Nikodym derivatives w.r.t. A.

We remark here that, co;tra.ry to what intuition suggests, the exis-
tence of “weak” derivatives g<ym> for all y € X’ does not yield an
“easy” construction of a Dunford derivative, even if the whole of S(Q) is
bounded.

The general result enables us to investigate the case of Banach-valued
f.a.m.’s by making use of the geometry of the range, and in the finite-

dimensjonal case the strictly connected condition of the existence of Hahn
decompositions.
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2 — Preliminaries

We begin with some notations and assumptions, and keep them valid
till the end of this chapter.

Let (€2, A) be any measurable space, and X any positive finitely addi-
tive measure (f.a.m.) on A. Let M denote the linear space of all bounded

f.a.m.’s u: A — R such that z < A, and such that there exists Z/\-
we assume that a measurable, A-integrable function f : @ — IR exists,

satisfying
u(A) = /A fd

for all A € A
Next, let Y be any real, separable normed space.

THEOREM 2.1. Assume that T : Y — M is a linear operator,
satisfying the following condition:

ITW)I < llyllA  for every yeY,

where |T'(y)| is the total variation of the f.a.m. T(y).
Then there exists a function f : Q — Y’ satisfying:

_ dT(y)
(2.1.1) < f()y>= -
A-almost everywhere for ally €Y.
PROOF. Pick any linearly independent total sequence (e, ), in Y, such
that ||e,|| = 1 for every n. For each n, let’s set Z, = span{ey,... ,ea},
and Z =y Z,. Thus, Z is dense in Y.

For n =1, we write

0(0) = hwe1) = E )

for all w € . Without loss of generality, we can suppose

|h’(w) el)l S 2
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for each w: this is because |T'(e;)| < A by assumption.
It’s easy now to define h(w,y) for every y in Z;, in such a way that

dT'(y
h(w, ) is linear on Z;, and h(-,y) = —%), and finally |h(w,y)] < 2|yl
for every y € Z; and w € Q.
From now on we shall assume that a Radon-Nikodym derivative g, =

dz;;") has been fixed, for every n € IN, and that |g,(w)| < 2 for all w.

Assume now that h(w,y) has been defined for every w €  and for
every y € Z, in such a way that

a) h(-,y) = dA) for every y € Z,;
b) h(w,-) € Z,, and ||h(w,-)|] < 2 for every w.

We shall define h(w,y) for all w and for y € Z,4,, in such a way
that a) and b) above are still valid with n replaced by n + 1; this is
much harder than one might think because the natural linear extension
by means of gn,1 may fail to satisfy the norm condition in b).

As Z,,, has finite dimension, we can choose a compact set H C Z, and
a positive number £ > 1 in such a way that

(1) {z € Zps1, |2l <1} € {y + s€p41 : y € H, 3| < k}.

Fixe > 0,e < ﬁ;, and choose t3,...,t, in H, satisfying

Hc |J B(t,,,z)

1<p<s

As gn41 is bounded, there exists a decomposition {A,, ..., Ay} of Q, con-
sisting of pairwise disjoint, measurable sets, and N corresponding num-
bers m, ..., 7n in [—2, 2] satisfying

(2) |gn+1(w) — 5] < ;

for every w € A;, and fori=1,...,N.

Similarly, for each p =1,... , 8 there exists a decomposition of 2, say
{Bi(p), ..., Bn(p)(p)}, with corresponding real numbers 6;(p), ..., On)(p)
satisfying

® 1w ta) = 85(0)] < 3
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for every w € B;(p) and for j =1,...,N(p).

We denote by F the algebra generated by the sets A,,... ,Ay and
Bi(p),--. ,Brig(p), p = 1,...,s; also, denote with C the union of all
A-null atoms of F. Of course, A\(C) = 0, because F is finite. We shall
suitably modify g4, in C.

For each w € Q it holds:

sup{h(w,?) = 2t — enva} < inf {21y + ensall - hlw, 1)}

by virtue of condition b) above, and the “trick” t —y = (t — en41) +
(en+1 - y)'
Then we modify g1 into h(-,en41) as follows:

In+1 (w) w ¢ 07
sup,ez, {M(w,t) — 2t —enull}, weC.

h(wa en+1) = {

Again we find h(-,en41) = &2\”1—), and |h(w,en41)] £ 2 for all w.

Now we define linearly h(w, z) for all z € Zp4,: of course condition
a) is satisfied in Z,4,.

Let's prove also b). Fix w € C. Fix z € Z,4,, and assume that
z =1+ en4 for some ¢t € Z,. We find

h(w, 2) = h(w,t) + h(w, ens1) < h(w, ) + 2[it + enn]| - h(w, ) = 2]z},

Similarly, if z = t — en41, we find h(w, z) < 2||2]| and therefore b) is
proved in case w € C and z of the form t + e, for some t € Z,.

It is now easy to prove b) for w € C and any z € Z,41. So we have
now to consider the case w ¢ C.

We observe that C° is a finite union of non-zero atoms of F. Let
A be one of such atoms, and fix p = 1,...,8. Then we must have
A C B;(p) N A; for some j =1,...,N(p) and some i = 1,...,N. We
have

[ B8 + gasaldA < ltp + ensalIAA)

because of a).
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Now, from A C B;(p) N A; and from (2), (3) we deduce

Ih(w,t) — 05(p)| < 5
and
|gns1(w) —mil < ;,
for all w € A, whence
| fA 1R(yE,) + GasrldA — 105(0) + mIA(A)] < eX(A).
Then we obtain
16;(p) + m]A(A) < eA(A) + Ity + ensaliA(A)-
Dividing by A(A4) we get
(4)  |h(w,t,) + h{w, ensa)l = [R(w, 2,) + Gasr (W)| < 26 + It + eniall-
Now, if we fix t € H there exists p such that || — tll < % and therefore
|h(w, t) — k(w, t,)| < &
moreover, for the same ¢ and ¢, we find
lep + entall = 16+ easall < e = tll < 5,
from which (4) gives
[h(w, t) + h(w, ensa)] S e+ It + ent1lls

for w € A.
Similarly, for w € A and |s| < k, we find

€ €
|sh{(w, ens1) — ami| < lsl5 < k5.
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As a consequence, if z € Z,,|2|| < 1, we get |h(w,2)| = |h(w,t) +
h(w, 8€n41)| for suitable t € H and s € [k, k], because of (1).

So we can deduce |h(w,2)] < 1+ (4 + k)e < 2, whenever z € Z,,
1|l €1, and for w € A.

As A is arbitrary, we conclude that b) holds for Z,,,.

Now we proceed by induction, thus defining h(w,-) on the whole of
Z, in such a way that a) and b) are satisfied.

By density, h{(w,-) can be (uniquely) defined on Y, there satisfying

b). However, we are still to prove that h(-,y) = M

This is true, for y € Z. If y € Y, pick any sequence (2,) in Z, norm-
converging to y. Then we have

|h(w, z) — h(w,y)| < 2|20 — vl

for all n, and all w.
This implies that h(-, z,) converges uniformly to k(:,y). Therefore h
is measurable, and

tim [ A(,z)dA= / h(- y)dA
n—w /g E

for each set E € A.
As [ h(+, z,)d\ = T(z,)(E), for every n and for every E, we see that

lim T()(B) = [ (- )aA

From the condition |T'(z, — ¥)| < ||z — ¥||A, it follows that T'(z,)(E)
converges to T(y)(E), and so

T()(E) = [ h(-3)dA

for all E € A, which means that property a) is satisfied.
Finally, if we define f : @ — Y’ as

< f(w),y >= h(w,y)

for every w € Q and y € Y, we are finished.
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3 — Existence of a density

We are going to deduce some existence theorems of Radon-Nikodym
derivatives, for vector-valued finitely additive measures.

We shall deal with a locally convex TVS X, a measurable space
(2, .A), and dominated finitely additive measures m : A — X; our aim
is to find a “Dunford-type” derivative of m with respect to its control X,
according with the following definition.’

DEerFINITION 3.1. Given any fam. m : A — X, we say that m is
dominated if there exists a f.a.m. A: A — IR such that m < A. (If
this is the case A can be chosen to be equivalent to m - see [5]). In such
cases, A will be said to be a control for m.

In dealing with A”, we shall endow it with the “strong” topology, i.e.
the topology whose base at 0 is given by the polar sets of all bounded
subsets in A’; the same we shall do for X", once X’ has been “strongly”
topologized.

When m happens to be dominated, with a control A\, we say that a

d:
Dunford-type derivative L: exists, if there exists a function f: Q — A
satisfying the following conditions:

(3.1.1) < f(-),y > is measurable and A- integrable for every y € &”.
(3.1.2) There exists an increasing sequence {§2,), in A such that A(Q —
§2,) — 0, and such that fl|q, is bounded for every n (recall that
both X’ and X" are endowed with the “strong” topology).
(3.1.3) [ < F(:),y > dA =< y,m(E) > for every E € A.

In the pext proposition we shall obtain a bounded Dunford-type de-
rivative.

PROPOSITION 3.2. Let a dominated f.am. m : A — X be given,
and assume that a control A exists such that a Radon-Nikodym derivative
exists for < y,m > with respect to A, for ally € X',

Assume that X' is separable, and that the set

s={%%‘;‘7):AeA,,\(A)>o}

i3 bounded in X.
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Then there ezists a bounded Dunford-type derivative f of m with
respect to .

PRrOOF. The polar set of S, S°, is a balanced, convex neighbourhood
of 0 in X’. Let q denote the Minkowski functional of S°.
If y € X satisfies g(y) = 0, then y € t5° for every ¢t > 0, and then

| <y,m(4) > | < eM4)

for all € > 0 and for all A € A with A(A) > 0: hence g(y) = 0 if and only
if <y,m>=0.

This allows us to consider the quotient Y = AX’/Ker(q), endowed
with the usual norm deduced from g, and to define on Y an operator
T:Y — M by setting

T(y]) =<y,m >

for every y € X’. This operator is well-defined and satisfies the hypothesis
of Theorem 2.1: in particular, from | < y,m > | < A for every y € S°, we
can deduce that

T[] = | < :m > | = q(y)] < ﬁ,m > | < @A = Iiwlix

for all y € A".

Then, by virtue of Theorem 2.1 we can easily get the required deriva-
tive f: to see that f is bounded, we can observe that its range is contained
in 25° (here S* is thought embedded in X"), and this set is bounded in
P 4

We can now deduce a more general existence theorem, and then a
necessary and sufficient condition for the existence of a Dunford-type
derivative.

THEOREM 3.3. Let X, m, ) be as in Proposition 3.2. Assume that
X' is separable and that
(3.3.1) there erists an increasing sequence (,)n in A, such that M(Q —
,) — 0 and such that the sets

S, = {A m(4) . t A€ A ACQ,\A) #0}
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are bounded z'ndX.
Assume also that g<v,m> exists for every y € X’. Then there
erists a Dunford-type derivative f : 3 — X",

PRrROOF. By applying Proposition 3.2 to the sets
01,80 — Q1,00 , 2y — Day

which we shall denote by Fy, F3, ... , F,,... respectively, we find bounded
functions f, : F,, — X", satisfying

/A < fal)y > dA =< y,m > (A)

for every A € A, A C F,. It is now possible to define f A-almost
everywhere on {2, by “pasting” together the functions f,. The Radon-
Nikodym property follows from the condition that A\(Q2 — Q,) — 0.

Our next result is a necessary and sufficient condition for the exis-
tence of a derivative.

THEOREM 3.4. Let Q,m,A, X be as before. Assume also that X'
is separable. Then a necessary and sufficient condition for the eristence
of a Dunford-type derivative f : Q@ — X" of m with respect to X\ is that

d<y,m> exists for each y € X', and that an increasing sequence (),

can be found in A, satisfying A(2 — 2,) — 0, and such that the sets

m(A)

s ={Xa

: A€ A AC 0, AA4) #0}

are bounded in X for all n.

PROOF. Of course, we just have to prove the “only if” part. Assume
therefore that f exists, and let (Q2,). be the sequence given in (3.1.2):
we shall prove that the corresponding sets S,, are bounded in X

Fix n, and choose any balanced, convex, closed neighbourhcod U of
0in X.
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Then the bipolar U% in X" is a neighbourhood of 0 in A”, and
therefore there exists a positive number k > 0 such that f(2,) C kU>.
Now, if we pick any element y € U°, we find

m(4)

3 >|_| f(),y>d,\\<,\(A)

|< &=

foral Ac A, ACQ,.
This implies that ,\((2)) isin kU®N X, forall A € 4, A C Q,,

A(A) # 0. According with the Bipolar Theorem, U* N X = U, and
therefore S, C kU. As U is arbitrary, the theorem is proved.

4 — Dunford-type derivatives for Banach-valued f.a.m.’s

We shall now find some existence theorems for Radon-Nikodym de-
rivatives, when the measures are Banach-valued. We start with the finite-

dimensional case.

As usual, let (2,.4) be any measurable space, and let p, v be two
non-negative, finitely additive measures on A, satisfying u < v. In [7] it
is proved that a Radon-Nikodym derivative Z— does exists if and only if

(4.1.1) for each real number 7 > 0 the scalar f.a.m. u — rv has a Hahn
decomposition.

Given any scalar bounded f.a.m. m on A, we shall denote with |m|
its variation.

DEFINITION 4.1 Let X be a Banach space, and m : A — & any
finitely additive measure. We say that m is s- bounded if li:nm(A,,) =0,
for every sequence (A,), of pairwise disjoint sets in \A.

Moreover, given a scalar fa.m. A: A — IRy we say that A is a control

for m if m < A and A € m, namely, for every € > 0 there exists § > 0
such that the following implications hold, for every A € A:

M4) < 6 = sup{|[m(BN A)|, B € A} <,

and
sup{{lm(DN A)|,D € A} < § => A\(4) < e.



1082 D. CANDELORO - A. MARTELLOTTI [12)

If X is a control for m, we say that it is a Rybakov control if
A=]}<y,m>| for some y € X'.

In (6}, {12] the following result is proved.

THEOREM 4.2.  Given any finitely additive measure m : A — X
then the following are equivalent:
i) m is s-bounded.
ti) There exists a control for m.
iii) There exists a Rybakov control for m.

So, our aim is to find “mild” conditions which ensure the existence
of a Dunford-type derivative for an exhaustive X-valued f.a.m. m with
respect to any Rybakov control A.

LEMMA 4.3. Let u, v be two bounded f.a.m.’s on A, and assume
that p < |v|. If the f.a.m. ap + bv has a Hehn decomposition for all

a,b € R, then there exists a Radon-Nikodym derivative :T‘;T

ProOF. From the assumptions, it follows that both x and v admit a
Hahn decomposition. We denote with (Q, M) a Hahn decomposition for
u and with (P, N) a Hahn decomposition for . Then, forall A € A

vt(A) = v(ANP), v (A) = ~v(ANN),
pt(4) =w(ANQ), u~(4) =-u(ANM).

We now restrict ourselves to the space @, endowed with the o-algebra
ANQ, and show that p* admits 2 Radon-Nikodym derivative with respect
to jv|.

| F‘Yom (4.1.1) it is enough to prove that u*—r|v| has a Hahn decompo-
sition for every r > 0. So, let 7 > 0 be fixed, and let (A,, A¢) and (B, Bf)
be Hahn decompositions for y—rv and p+7v respectively. Then we have
p(E) = rv(E) for every E € A, E C A, and u(E) > —rv(E) for every
E € A, E C B,, and the reverse inequalities hold in the complements of
A, and B, respectively. We set

D, =Qn{(A.nP)u(B.NN)].



(13] Radon-Nikodym theorems for vector-valued etc. 1083

KfEcA ECD,,weput Ey =ENA.NP, E;=ENB,NN: then
E,NE; =0, E;UE, = E. Furthermore

WEy) 2 rv(Ey), u(E,) 2 —rv(E,)
from which we get u*(E) > r|v|(E). We now notice that
Q-D.=Qn[(A7NP)U(B;NN)];

hence, if F € A, F C Q — D,, one can proceed as above and see that
u*(F) < ry|(F).

Thus (D,, Q@ — D) is a Hahn decomposition for u* —rjv| in Q. This

+

allows us to deduce that there exists a Radon- Nikodym derivative % in
Q. As pt vanishes outside @, the derivative exists globally. In a similar
way it can be proved that u~ has a derivative with respect to |v]. This
concludes the proof.

THEOREM 4.4. Let m : A — R" be any bounded f.a.m., and
assume that every linear combination of its components has a Hahn de-
composition. Then m has a Radon-Nikodym derivative with respect to
any Rybakov control A.

PROOF. Indeed, let m; be any component of m, and the control v be
the variation measure of a linear combination o of the components of m.

Then the f.a.m. ao + bm; has a Hahn decomposition by hypothesis. So,
according with Lemma 4.3, there exists d;zi

is finished.

. As i is arbitrary, the proof

COROLLARY 4.5. Assume that m : A — IR" is a bounded f.a.m.
with closed range. Then there exists a Radon-Nikodym derivative of m
with respect to any Rybakov control.

PROOF. It’s enough to prove that any combination of the components
has closed range. But the latter is the continuous image of a compact
set, namely the range of m. Therefore the existence of a Radon-Nikodym
derivative is a consequence of Lemma 4.3.
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We now turn to Banach-valued f.a.m.’s.

THEOREM 4.6. Let X be any Banach space with dual X’ having the
RNP, and let m : A — X be an s-bounded f.a.m. with separable range.
Assume that the scalar f.a.m. < y,m > has a Hahn decomposition for
each element y € X'. Then, for every Rybakov control A for m, there

exists a Dunford-type derivative % if and only if condition (3.3.1) holds.

PROOF. According with Lemma 4.3, there exists a Radon-Nikodym
derivative d<y,m> for all y € X’. Moreover, by a theorem of Stegall

[13], the subspace of X generated by m(.A) has separable dual. So we can
readily apply the results in Section 3 and get the theorem.

COROLLARY 4.7. Let X and m : A — X be as in Theorem 4.6,
and assume also that m has weakly closed range. Then for every Rybakov

control A, a Dunford-type derivative %%n exists, if and only if condition
(3.3.1) holds.

PROOF. According with [6] the range R of m is weakly relatively
compact because of s-boundedness. As R is weakly closed by hypothesis,
it is weakly compact. Now, if y € A’ is fixed, the range of < y,m > is
closed in JR because it is the image of R under the (weakly) continuous
map y. This implies that < y,m > has a Hahn decomposition for each
y € A, and therefore we can apply Theorem 4.6 to get the result.

REMARK 4.8. We mention that results concerning the topological
properties of the range of a Banach-valued f.a.m., in particular the closed-
ness, can be found also in (3], [1].

REMARK 4.9 We observe that, when X is a reflexive Banach space,
by the Dunford-Pettis-Phillips Theorem, the assumptions on X’ and m
in Theorem 4.6 are both fulfilled. Moreover, the Dunford density in this
case is in fact a Pettis density.
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